1
|
Peng Q, Yang Y, Ou W, Wei L, Li Z, Deng X, Gao Q. The characteristics and environmental significance of BVOCs released by aquatic macrophytes. CHEMOSPHERE 2024; 361:142574. [PMID: 38852633 DOI: 10.1016/j.chemosphere.2024.142574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Biogenic volatile organic compounds (BVOCs) emitted by plants serve crucial biological functions and potentially impact atmospheric environment and global carbon cycling. Despite their significance, BVOC emissions from aquatic macrophytes have been relatively understudied. In this study, for the first time we identified there were 68 major BVOCs released from 34 common aquatic macrophytes, and these compounds referred to alcohols, aldehydes, alkanes, alkenes, arenes, ethers, furans, ketones, phenol. For type of BVOC emissions from different life form and phylogenetic group of aquatic macrophytes, 34 of the 68 BVOCs from emergent and submerged macrophytes are classified into alkene and alcohol compounds, over 50% BVOCs from dicotyledon and monocotyledon belong to alcohol and arene compounds. Charophyte and pteridophyte emitted significantly fewer BVOCs than dicotyledon and monocotyledon, and each of them only released 12 BVOCs. These BVOCs may be of great importance for the growth and development of macrophytes, because many BVOCs, such as azulene, (E)-β-farnesene, and dimethyl sulfide are proved to play vital roles in plant growth, defense, and information transmission. Our results confirmed that both life form and phylogenetic group of aquatic macrophytes had significantly affected the BVOC emissions form macrophytes, and suggested that the intricate interplay of internal and external factors that shape BVOC emissions from aquatic macrophytes. Thus, further studies are urgently needed to investigate the influence factors and ecological function of BVOCs released by macrophytes within aquatic ecosystem.
Collapse
Affiliation(s)
- Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Yujing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Wenhui Ou
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Lifei Wei
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China.
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| |
Collapse
|
2
|
Lochmann F, Flatschacher D, Speckbacher V, Zeilinger S, Heuschneider V, Bereiter S, Schiller A, Ruzsanyi V. Demonstrating the Applicability of Proton Transfer Reaction Mass Spectrometry to Quantify Volatiles Emitted by the Mycoparasitic Fungus Trichoderma atroviride in Real Time: Monitoring of Trichoderma-Based Biopesticides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1168-1177. [PMID: 38708575 PMCID: PMC11157538 DOI: 10.1021/jasms.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
The present study aims to explore the potential application of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for real-time monitoring of microbial volatile organic compounds (MVOCs). This investigation can be broadly divided into two parts. First, a selection of 14 MVOCs was made based on previous research that characterized the MVOC emissions of Trichoderma atroviride, which is a filamentous fungus widely used as a biocontrol agent. The analysis of gas-phase standards using PTR-ToF-MS allowed for the categorization of these 14 MVOCs into two groups: the first group primarily undergoes nondissociative proton transfer, resulting in the formation of protonated parent ions, while the second group mainly undergoes dissociative proton transfer, leading to the formation of fragment ions. In the second part of this investigation, the emission of MVOCs from samples of T. atroviride was continuously monitored over a period of five days using PTR-ToF-MS. This also included the first quantitative online analysis of 6-amyl-α-pyrone (6-PP), a key MVOC emitted by T. atroviride. The 6-PP emissions of T. atroviride cultures were characterized by a gradual increase over the first two days of cultivation, reaching a plateau-like maximum with volume mixing ratios exceeding 600 ppbv on days three and four. This was followed by a marked decrease, where the 6-PP volume mixing ratios plummeted to below 50 ppbv on day five. This observed sudden decrease in 6-PP emissions coincided with the start of sporulation of the T. atroviride cultures as well as increasing intensities of product ions associated with 1-octen-3-ol and 3-octanone, whereas both these MVOCs were previously associated with sporulation in T. atroviride. The study also presents the observations and discussion of further MVOC emissions from the T. atroviride samples and concludes with a critical assessment of the possible applications and limitations of PTR-ToF-MS for the online monitoring of MVOCs from biological samples in real time.
Collapse
Affiliation(s)
- Franziska Lochmann
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Daniel Flatschacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Verena Speckbacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Susanne Zeilinger
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Valentina Heuschneider
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Stephanie Bereiter
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Arne Schiller
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Veronika Ruzsanyi
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Tan M. Conversion of agricultural biomass into valuable biochar and their competence on soil fertility enrichment. ENVIRONMENTAL RESEARCH 2023; 234:116596. [PMID: 37423358 DOI: 10.1016/j.envres.2023.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Globally several nations generates a large amount of biomass waste. Thus, this review focuses on the potential for converting plant biomass into nutritionally enriched useful biochar with promising properties. The use of biochar on farmland acts as both a soil fertility enhancer, improving both the physical as well as chemical characteristics of soil. The biochar availability in soil can retain minerals and water as well as considerably enhanced the soil fertility by their optimistic characteristics. Thus, this review also discuss about how biochar enhances the quality of agriculture soil and polluted soil. Since, the biochar derived from the plant residues might contain most valuable nutritional properties, which can enhance the physicochemical properties of soil and that can support the growth of plant along with the increased biomolecule content. Since, the healthy plantation can support the production of nutritionally enriched crop yield. Agriculture biochar amalgamated soil significantly improved soil beneficial microbial diversity. Beneficial microbial activity increased soil fertility and balanced the soil's physicochemical properties significantly. Such balanced soil physicochemical properties significantly enhanced plantation growth, as well as disease resistance and higher yield potential than any other fertiliser supplements for soil fertility and plant growth.
Collapse
Affiliation(s)
- Mingjiao Tan
- Yangtze Normal University, Chongqing, 408100, China; Visiting Scholar of Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Ganiyu SA, Olobadola MO, Adeyemi AA. Concentrations and health risk appraisal of heavy metals and volatile organic compounds in soils of automobile mechanic villages in Ogun State, Nigeria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6407-6433. [PMID: 37316652 DOI: 10.1007/s10653-023-01644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
This report presents the findings of the concentrations, distributions and health risks assessment of heavy metals (HMs) and volatile organic compounds (VOCs) in topsoils of two typical automobile mechanic villages (MVs) situated within Ogun State, Nigeria. One of the MVs is located in basement complex terrain (Abeokuta), while the second is in the sedimentary formation (Sagamu). Ten composite samples were collected at depth of 0-30 cm with the aid of soil auger from spent oil-contaminated spots within the two MVs. The chemical parameters of interest were Pb, Cd, benzene, ethylbenzene, toluene, total petroleum hydrocarbon (TPH) as well as oil and grease (O&G). In addition, soil pH, cation exchange capacity (CEC), electrical conductivity (EC) and particle size distribution were also evaluated in order to find out their impacts on assessed soil pollutants. Results revealed that the soils in both MVs are of sandy loam texture, slight acidic to neutral pH, mean CEC < 15 cmol/kg and mean EC > 100 μS/cm. The mean concentration of each of analyzed HMs and VOCs in soils from the two MVs was < 5 mg/kg, while the mean values of TPH and O&G content were > 50 mg/kg. The mean Cd values in soils of both MVs were higher than the national soil screening level of 0.8 mg/kg, but lower than the Canadian and Italian guidelines. There is no significant correlation between each of HMs/VOCs and any of assessed soil physicochemical variables. The non-cancer risk expressed in terms of hazard index (HI) was > 1 via oral ingestion route for adults and children at the two MVs, indicating adverse non-carcinogenic health risk. The HI > 1 value was obtained for adults only through the dermal absorption pathway in Abeokuta MV. However, HI values for the two age groups at the two MVs via inhalation route were < 1, indicating no likelihood of any non-carcinogenic effects via the breathing exposure. The potential of non-cancer risk via oral ingestion route in both MVs was derived from the contributive ratios of HMs and VOCs in the order: Cd > benzene > Pb > toluene. The carcinogenic risk (CR) values due to ingested Cd, benzene and Pb for both age groups at the two MVs exceed the safe limit range of 10-6 to 10-4. Cadmium, benzene and lead made considerable contributions to the estimation of CR through dermal exposure for adults only in Abeokuta MV. The CR values via inhalation pathway for adults and children in both MVs were within the threshold range. Artisans and children should circumvent accidental ingestion of contaminated soils in addition to wearing of protective clothes during routine vehicle maintenance activities.
Collapse
Affiliation(s)
- Saheed Adekunle Ganiyu
- Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
| | | | - Azeem Adedeji Adeyemi
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
5
|
Hui K, Yuan Y, Xi B, Tan W. A review of the factors affecting the emission of the ozone chemical precursors VOCs and NO x from the soil. ENVIRONMENT INTERNATIONAL 2023; 172:107799. [PMID: 36758299 DOI: 10.1016/j.envint.2023.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The soil environment is one of the main places for the generation, emission, and absorption of various atmospheric pollutants, including nitrogen oxides (NOx) and volatile organic compounds (VOCs), which are the main chemical precursors for the formation of ground-level ozone. Ground-level ozone pollution has become a concerning environmental problem because of the harm it poses to human health and the surrounding ecological environment. However, current studies on chemical precursors of ozone mainly focus on emissions from industrial sources, forest vegetation, and urban vehicle exhaust; by contrast, few studies have examined the role of the soil environment on NOx and VOCs emissions. In addition, the soil environment is complex and heterogeneous. Agricultural activities (fertilization) and atmospheric deposition provide nutrients for the soil environment, with a significant effect on NOx and VOCs emissions. There is thus a need to study the environmental factors related to the release of NOx and VOCs in the soil to enhance our understanding of emission fluxes and the types of NOx and VOCs in the soil environment and aid efforts to control ground-level ozone pollution through appropriate measures such as management of agricultural activities. This paper reviews the generation of NOx and VOCs in the soil environment and the effects of various environmental factors on this process. Some suggestions are provided for future research on the regulation of NOx and VOCs emissions in the soil environment and the ability of the soil environment to contribute to ground-level ozone pollution.
Collapse
Affiliation(s)
- Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Kammer J, Simon L, Ciuraru R, Petit JE, Lafouge F, Buysse P, Bsaibes S, Henderson B, Cristescu SM, Durand B, Fanucci O, Truong F, Gros V, Loubet B. New particle formation at a peri-urban agricultural site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159370. [PMID: 36244494 DOI: 10.1016/j.scitotenv.2022.159370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
New Particle Formation (NPF) is a major source of ultrafine particles that affect both air quality and climate. Despite emissions from agricultural activities having a strong potential to lead to NPF, little is known about NPF within agricultural environments. The aim of the present study was to investigate the occurrence of NPF events at an agricultural site, and any potential relationship between agricultural emissions and NPF events. A field campaign was conducted for 3 months at the FR-Gri-ICOS site (France), at an experimental farm 25 km west of Paris city centre. 16 NPF events have been identified from the analysis of particle number size distributions; 8 during the daytime, and 8 during the night-time. High solar radiation and ozone mixing ratios were observed during the days NPF occurred, suggesting photochemistry plays a key role in daytime NPF. These events were also associated with higher levels of VOCs such as isoprene, methanol, or toluene compared to non-event days. However, ammonia levels were lower during daytime NPF events, contributing to the hypothesis that daytime NPF events were not related to agricultural activities. On the other hand, temperature and ozone were lower during the nights when NPF events were observed, whereas relative humidity was higher. During these nights, higher concentrations of NO2 and ammonia were observed. As a result, agricultural activities, in particular the spreading of fertiliser on surrounding crops, are suspected to contribute to night-time NPF events. Finally, all the identified NPF events were also observed at SIRTA monitoring station 20 km from the FR-Gri ICOS site, showing that both night-time and daytime NPF events were regional processes. We hypothesise that night-time NPF may be related to fertiliser spreading over a regional scale, as opposed to the local activities at the farm. To our knowledge, this is the first time night-time NPF has been observed in the agricultural context.
Collapse
Affiliation(s)
- Julien Kammer
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France; Aix Marseille Univ, CNRS, LCE, Marseille, France.
| | - Leila Simon
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Raluca Ciuraru
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Florence Lafouge
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Pauline Buysse
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Sandy Bsaibes
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Ben Henderson
- Department of Analytical Chemistry and Chemometrics, IMM, Radboud University, Nijmegen, the Netherlands
| | - Simona M Cristescu
- Department of Analytical Chemistry and Chemometrics, IMM, Radboud University, Nijmegen, the Netherlands
| | - Brigitte Durand
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Oliver Fanucci
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Francois Truong
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Valerie Gros
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Benjamin Loubet
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| |
Collapse
|
7
|
Haider KM, Lafouge F, Carpentier Y, Houot S, Petitprez D, Loubet B, Focsa C, Ciuraru R. Chemical identification and quantification of volatile organic compounds emitted by sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155948. [PMID: 35588801 DOI: 10.1016/j.scitotenv.2022.155948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The recycling of organic waste products (e.g. sewage sludge, SS) is currently being promoted as a substitute for mineral fertilizers for agricultural lands. The spreading of SS allows the recycling of the nutrients and organic matter it contains. SS contains various pollutants such as volatile organic compounds (VOCs) that adversely affect the ecosystem and human health through ozone production and serve as critical precursors of atmospheric secondary organic aerosols. There are very few studies quantifying the gaseous compounds emitted from SS, and those studies primarily address their odorant properties for identifying suitable odour abatement techniques. There is an urgent need for more comprehensive quantitative information on VOCs emitted from SS as aerosol precursors. In this context, an experimental study was performed on SS samples taken from a wastewater treatment plant located in France. Undigested SS (UDSS), digested SS (DSS) and SS with 30% and 60% dryness were collected from different stages of treatment sequence and analyzed using atmospheric simulation chambers coupled to proton-transfer-reaction quadrupole ion-guide time-of-flight mass spectrometer. Our study revealed that SS samples emitted a large spectrum of VOCs. 380 compounds were detected, quantified and classified into different chemical groups. The VOC emissions increased with the increase in the dryness of the sample; the highest being in SS 60%, followed by SS 30%, UDSS and DSS. OVOCs were dominant in SS 60%. The statistical analysis showed that the anaerobic digestion and the dewatering to 60% of dryness decreased the emissions of sulphuric compounds. Aromatic compounds and indoles (e.g. skatole) were emitted significantly from the UDSS. Some of these VOCs can serve as precursor gases for atmospheric aerosol formation. The experimental dataset obtained in this study provides an accurate inventory reference for the VOC emissions from SS samples and shows the impacts of the treatment on emission characteristics of VOCs.
Collapse
Affiliation(s)
- K M Haider
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Lille F-59000, France; INRAe, UMR 1402 ECOSYS, AgroParisTech, Université Paris-Saclay, 78850 Thiveral-Grignon, France
| | - F Lafouge
- INRAe, UMR 1402 ECOSYS, AgroParisTech, Université Paris-Saclay, 78850 Thiveral-Grignon, France
| | - Y Carpentier
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Lille F-59000, France
| | - S Houot
- INRAe, UMR 1402 ECOSYS, AgroParisTech, Université Paris-Saclay, 78850 Thiveral-Grignon, France
| | - D Petitprez
- Univ. Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Lille F-59000, France
| | - B Loubet
- INRAe, UMR 1402 ECOSYS, AgroParisTech, Université Paris-Saclay, 78850 Thiveral-Grignon, France
| | - C Focsa
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Lille F-59000, France
| | - R Ciuraru
- INRAe, UMR 1402 ECOSYS, AgroParisTech, Université Paris-Saclay, 78850 Thiveral-Grignon, France.
| |
Collapse
|
8
|
Short-Term Effect of Green Waste and Sludge Amendment on Soil Microbial Diversity and Volatile Organic Compound Emissions. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil amendments with organic waste products (OWPs) have been widely supported in Europe to improve soil fertility, causing wide changes in the microbial community structure and diversity, especially in the short-term period. Those changes are known to affect the volatile organic compound (VOC) emissions by soil. This work aimed to characterize, in terms of quantity and composition, the effect of green waste and sludge (GWS) application on soil VOC emissions and microbial community 49 h after the last GWS application. Two different soil samples were compared to test the effect of the soil history on VOC emissions and microbial communities. For this reason, we chose a soil that received GWS input for 20 years (GWS sample) and one that did not receive any organic input during the same period (CN sample). Furthermore, samples were manipulated to generate three microbial dilution diversity gradients (low, medium, and high). Results showed that Bacteroidetes phyla took advantage of the GWS application in all samples, increasing their relative abundance by 22% after 49 h, while the Proteobacteria phylum was penalized by the GWS amendment, passing from 58% to 49% relative abundance 49 h after the GWS application. Microbial structure differences between microbial diversity dilution levels remained even after the GWS application. GWS amendment induced a change in the emitted VOC profiles, especially in samples used to receiving GWS. GWS amendment doubled the VOC emissions from samples used to receiving GWS after 49 h. Finally, the microbial community was strongly correlated to the VOC emissions. Firmicutes, Proteobacteria, Actinobacteria, and Crenarchaeota were positively correlated (Pearson coefficient > 0.6), while other phyla, such as Bacteroidetes and Verrucomicrobia, were found to be negatively correlated (Pearson coefficient < −0.6) to the VOC emissions. After the addition of GWS, these correlations shifted from positive to negative and from negative to positive.
Collapse
|
9
|
Roy J, Rineau F, De Boeck HJ, Nijs I, Pütz T, Abiven S, Arnone JA, Barton CVM, Beenaerts N, Brüggemann N, Dainese M, Domisch T, Eisenhauer N, Garré S, Gebler A, Ghirardo A, Jasoni RL, Kowalchuk G, Landais D, Larsen SH, Leemans V, Le Galliard J, Longdoz B, Massol F, Mikkelsen TN, Niedrist G, Piel C, Ravel O, Sauze J, Schmidt A, Schnitzler J, Teixeira LH, Tjoelker MG, Weisser WW, Winkler B, Milcu A. Ecotrons: Powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. GLOBAL CHANGE BIOLOGY 2021; 27:1387-1407. [PMID: 33274502 PMCID: PMC7986626 DOI: 10.1111/gcb.15471] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.
Collapse
|
10
|
Kalalian C, Abis L, Depoorter A, Lunardelli B, Perrier S, George C. Influence of indoor chemistry on the emission of mVOCs from Aspergillus niger molds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140148. [PMID: 32610229 DOI: 10.1016/j.scitotenv.2020.140148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
People spend 80% of their time indoors exposed to poor air quality due to mold growth in humid air as well as human activities (painting, cooking, cleaning, smoking…). To better understand the impact of molds on indoor air quality, we studied the emission of microbial Volatile Organic Compounds (mVOCs) from Aspergillus niger, cultivated on malt agar extract, using a high-resolution proton transfer reaction- time of flight- mass spectrometer (PTR-TOF-MS). These emissions were studied for different cultivation time and indoor relative humidities. Our results show that the concentration of the known C4-C9 mVOCs tracers of the microbial activity (like 1-octen-3-ol, 3-methylfuran, 2-pentanone, dimethyl sulfide, dimethyl disulfide, nitromethane, 1,3-octadiene…) was the highest in the early stage of growth. However, these emissions decreased substantially after a cultivation time of 10-14 days and were highly affected by the relative humidity. In addition, the emissions of certain mVOCs were sensitive to indoor light, suggesting an impact of photochemistry on the relative amounts of indoor mVOCs. Based on this study, an estimation of the mVOC concentration for a standard living room was established at different air exchange rates and their indoor lifetimes toward hydroxyl radicals and ozone were also estimated. These findings give insights on possible mVOCs levels in moisture-damaged buildings for an early detection of microbial activity and new evidences about the effect of indoor light on their emission.
Collapse
Affiliation(s)
- Carmen Kalalian
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Letizia Abis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Antoine Depoorter
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Bastien Lunardelli
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Sébastien Perrier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France.
| |
Collapse
|
11
|
de Boer W, Li X, Meisner A, Garbeva P. Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiol Ecol 2020; 95:5527321. [PMID: 31265069 DOI: 10.1093/femsec/fiz105] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022] Open
Abstract
There is increasing evidence that microbial volatile organic compounds (mVOCs) play an important role in interactions between microbes in soils. In this minireview, we zoom in on the possible role of mVOCs in the suppression of plant-pathogenic soil fungi. In particular, we have screened the literature to see what the actual evidence is that mVOCs in soil atmospheres can contribute to pathogen suppression. Furthermore, we discuss biotic and abiotic factors that influence the production of suppressive mVOCs in soils. Since microbes producing mVOCs in soils are part of microbial communities, community ecological aspects such as diversity and assembly play an important role in the composition of produced mVOC blends. These aspects have not received much attention so far. In addition, the fluctuating abiotic conditions in soils, such as changing moisture contents, influence mVOC production and activity. The biotic and abiotic complexity of the soil environment hampers the extrapolation of the production and suppressing activity of mVOCs by microbial isolates on artificial growth media. Yet, several pathogen suppressive mVOCs produced by pure cultures do also occur in soil atmospheres. Therefore, an integration of lab and field studies on the production of mVOCs is needed to understand and predict the composition and dynamics of mVOCs in soil atmospheres. This knowledge, together with the knowledge of the chemistry and physical behaviour of mVOCs in soils, forms the basis for the development of sustainable management strategies to enhance the natural control of soil-borne pathogens with mVOCs. Possibilities for the mVOC-based control of soil-borne pathogens are discussed.
Collapse
Affiliation(s)
- Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands.,Soil Biology Group, Wageningen University, Droevendaalsesteeg 3, 6708PB Wageningen, The Netherlands
| | - Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, 210037 Nanjing, China
| | - Annelein Meisner
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands.,Microbial Ecology, Department of Biology, Lund University, Ecology Building, Sölvegatan 37, SE-22363 Lund, Sweden
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Kammer J, Décuq C, Baisnée D, Ciuraru R, Lafouge F, Buysse P, Bsaibes S, Henderson B, Cristescu SM, Benabdallah R, Chandra V, Durand B, Fanucci O, Petit JE, Truong F, Bonnaire N, Sarda-Estève R, Gros V, Loubet B. Characterization of particulate and gaseous pollutants from a French dairy and sheep farm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135598. [PMID: 31791771 DOI: 10.1016/j.scitotenv.2019.135598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Agricultural activities highly contribute to atmospheric pollution, but the diversity and the magnitude of their emissions are still subject to large uncertainties. A field measurement campaign was conducted to characterize gaseous and particulate emissions from an experimental farm in France containing a sheep pen and a dairy stable. During the campaign, more than four hundred volatile organic compounds (VOCs) were characterized using an original combination of online and off-line measurements. Carbon dioxide (CO2) and ammonia (NH3) were the most concentrated compounds inside the buildings, followed by methanol, acetic acid and acetaldehyde. A CO2 mass balance model was used to estimate NH3 and VOC emission rates. To our knowledge, this study constitutes the first evaluation of emission rates for most of the identified VOCs. The measurements show that the dairy stable emitted more VOCs than the sheep pen. Despite strong VOC and NH3 emissions, the chemical composition of particles indicates that gaseous farm emissions do not affect the loading of fine particles inside the farm and is mainly explained by the low residence time inside the buildings. The experimental dataset obtained in this work will help to improve emissions inventories for agricultural activities.
Collapse
Affiliation(s)
- Julien Kammer
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France; Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Céline Décuq
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Dominique Baisnée
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Raluca Ciuraru
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Florence Lafouge
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Pauline Buysse
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Sandy Bsaibes
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ben Henderson
- Department of Molecular and Laser Physics, IMM, Radboud University, Nijmegen, the Netherlands
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, IMM, Radboud University, Nijmegen, the Netherlands
| | - Rachid Benabdallah
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Varunesh Chandra
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Brigitte Durand
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Oliver Fanucci
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Francois Truong
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Nicolas Bonnaire
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Roland Sarda-Estève
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Valerie Gros
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Benjamin Loubet
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| |
Collapse
|
13
|
Abis L, Loubet B, Ciuraru R, Lafouge F, Houot S, Nowak V, Tripied J, Dequiedt S, Maron PA, Sadet-Bourgeteau S. Reduced microbial diversity induces larger volatile organic compound emissions from soils. Sci Rep 2020; 10:6104. [PMID: 32269288 PMCID: PMC7142124 DOI: 10.1038/s41598-020-63091-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Microorganisms in soil are known to be a source and a sink of volatile organic compounds (VOCs). The role of the microbial VOCs on soil ecosystem regulation has been increasingly demonstrated in the recent years. Nevertheless, little is known about the influence of the microbial soil community structure and diversity on VOC emissions. This novel study analyzed the effect of reduced microbial diversity in soil on VOC emissions. We found that reduced levels of microbial diversity in soil increased VOC emissions from soils, while the number of different VOCs emitted decreased. Furthermore, we found that Proteobacteria, Bacteroidetes and fungi phyla were positively correlated to VOC emissions, and other prokaryotic phyla were either negatively correlated or very slightly positively correlated to VOCs emissions. Our interpretation is that Proteobacteria, Bacteroidetes and fungi were VOC producers while the other prokaryotic phyla were consumers. Finally, we discussed the possible role of VOCs as mediators of microbial interactions in soil.
Collapse
Affiliation(s)
- Letizia Abis
- Sorbonne Université, UPMC, Paris, France.
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
- Technische Universität Berlin, Umweltchemie und Luftrinhaltunz, Straße des 17. Juni 135, Berlin, 10623, Germany.
| | - Benjamin Loubet
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Raluca Ciuraru
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Florence Lafouge
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Sabine Houot
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Virginie Nowak
- INRA, UMR AgroEcologie, AgroSup Dijon, BP 87999, 21079, Dijon, cedex, France
| | - Julie Tripied
- INRA, UMR AgroEcologie, AgroSup Dijon, BP 87999, 21079, Dijon, cedex, France
| | - Samuel Dequiedt
- INRA, UMR AgroEcologie, AgroSup Dijon, BP 87999, 21079, Dijon, cedex, France
| | - Pierre Alain Maron
- INRA, UMR AgroEcologie, AgroSup Dijon, BP 87999, 21079, Dijon, cedex, France
| | | |
Collapse
|
14
|
Characterization of Total OH Reactivity in a Rapeseed Field: Results from the COV3ER Experiment in April 2017. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Croplands remain poorly studied ecosystems in terms of total hydroxyl radical (OH) reactivity, especially when compared to forests. As part of the COV3ER project, total OH reactivity (ROH), defined as the total loss rate of OH due to its reaction with reactive species in the atmosphere, was characterized in a rapeseed field (Grignon, France) during the blooming season in April 2017. Measurements were performed in a dynamic chamber as well as in ambient air using the Comparative Reactivity Method (CRM). Complementary measurements of organic (including a proton transfer reaction quadrupole ion–time of flight mass spectrometry, PTRQi-ToFMS) and inorganic compounds were also performed in order to calculate the expected OH reactivity and evaluate the missing fraction. Measured ROH varied diurnally in the dynamic chamber (mROHchamber) with maxima around 20 to 30 s−1 at midday and minima during dark hours, following the variability of the enclosed branch VOCsrapeseed, which is light- and temperature-dependent. Oxygenated VOCs were the major compounds emitted by the rapeseed crop. However, in terms of contribution to OH reactivity, isoprene accounted for 40% during the daytime, followed by acetaldehyde (21%) and monoterpenes (18%). The comparison between mROHchamber and calculated ROH (cROHchamber) exhibited little or no difference during dark hours, whereas a maximum difference appeared around midday, highlighting a significant missing fraction (46% on average during daytime) mainly related to biogenic temperature- and/or light-dependent emissions.
Collapse
|
15
|
Qin L, Huang X, Xue Q, Liu L, Wan Y. In-situ biodegradation of harmful pollutants in landfill by sludge modified biochar used as biocover. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113710. [PMID: 31838388 DOI: 10.1016/j.envpol.2019.113710] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/14/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
MSW landfill releases a lot of harmful pollutants such as H2S, NH3, and VOCs. In this study, two laboratory-scale biocovers such as biochar (BC) derived from agricultural & forestry wastes (AFW) pyrolysis, and sludge modified the biochar (SBC) were designed and used to remove the harmful pollutants. In order to understand in-situ biodegradation mechanism of the harmful pollutants by the SBC, the removal performances of the harmful pollutants together with the bacterial community in the BC and SBC were investigated in simulated landfill systems for 60 days comparing with the contrast experiment of a landfill cover soil (LCS). Meanwhile, the adsorption capacities of representative harmful pollutants (hydrogen sulfide, toluene, acetone and chlorobenzene) in the LCS, BC, and SBC were also tested in a fixed bed reactor. The removal efficiencies of the harmful pollutants by the SBC ranged from 95.43% to 100.00%, which was much higher than that of the LCS. The adsorption capacities of the harmful pollutants in the SBC were 4 times higher than that of the LCS since the SBC exhibited higher BET surface and N-containing functional groups. Meanwhile, the biodegradation rates of the harmful pollutants in the SBC were also much higher than that of the LCS since the populations of the bacterial community in the SBC were more abundant due to its facilitating the growth and activity of microorganisms in the porous structure of the SBC. In addition, a synergistic combination of adsorption and biodegradation in the SBC that enhanced the reproduction rate of microorganisms by consuming the absorbed-pollutants as carbon sources, which also contributed to enhance the biodegradation rates of the harmful pollutants.
Collapse
Affiliation(s)
- Linbo Qin
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xinming Huang
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yong Wan
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
16
|
Portillo-Estrada M, Ariza-Carricondo C, Ceulemans R. Outburst of senescence-related VOC emissions from a bioenergy poplar plantation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:324-332. [PMID: 32004916 DOI: 10.1016/j.plaphy.2020.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Leaf senescence is a catabolic process that emits volatile organic compounds (VOCs). In densely planted monocultures these VOC emissions occur in outbursts that might be relevant for the local air quality since these VOCs are typically oxygenated. The VOC emissions of a high-density poplar (Populus) bioenergy plantation were monitored along with meteorological parameters, CO2 and H2O exchanges, canopy greenness, and leaf area index during the second half of the year 2015. The emissions of 25 VOCs peaked at the beginning of September, coinciding with the onset of senescence. Together these VOC emissions amounted to a total of 2.85 mmol m-2, translated into 98.3 mg C m-2. The emission peak was mainly composed of oxygenated VOCs as methanol, acetic acid, and lipoxygenase products that are all typical for catabolic processes. So, the senescence process of the poplar plantation was very well reflected in the peak of VOC emissions.
Collapse
Affiliation(s)
- Miguel Portillo-Estrada
- Centre of Excellence PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Cristina Ariza-Carricondo
- Centre of Excellence PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Reinhart Ceulemans
- Centre of Excellence PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium; CzechGlobe, SustES, Belidla 4a, 603 00, Brno, Czech Republic.
| |
Collapse
|