1
|
Elbanna HM, Ahmed OK, Fayed SAK, Hammam KAM, Yousef RS. Enhancing french basil growth through synergistic Foliar treatment with copper nanoparticles and Spirulina sp. BMC PLANT BIOLOGY 2024; 24:512. [PMID: 38849727 PMCID: PMC11157815 DOI: 10.1186/s12870-024-05153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND This study investigates a novel idea about the foliar application of nanoparticles as nanofertilizer combined with a natural stimulant, blue-green algae Spirulina platensis L. extract, as a bio-fertilizer to achieve safety from using nanoparticles for enhancement of the growth and production of the plant. Thus, this experiment aimed to chemically synthesize copper nanoparticles via copper sulfate in addition to evaluate the impact of CuNPs at 500, 1000, and 1500 mg/L and the combination of CuNPs with or without microalgae extract at 0.5, 1, and 1.5 g/L on the morphological parameters, photosynthetic pigments accumulation, essential oil production, and antioxidant activity of French basil. RESULTS The results revealed that foliar application of CuNPs and its interaction with spirulina extract significantly increased growth and yield compared with control, the treatments of 1000 and 1500 mg/L had less impact than 500 mg/L CuNPs. Plants treated with 500 mg/L CuNPs and 1.5 g/L spirulina extract showed the best growth and oil production, as well as the highest accumulation of chlorophylls and carotenoids. The application of CuNPs nanofertilizer caused a significant increase in the antioxidant activity of the French basil plant, but the combination of CuNPs with spirulina extract caused a decrease in antioxidant activity. CONCULOSION Therefore, foliar application of natural bio-fertilizer with CuNPsis necessary for obtaining the best growth and highest oil production from the French basil plant with the least damage to the plant and the environment.
Collapse
Affiliation(s)
- Heba Mahmoud Elbanna
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agriculture Research Center, Giza, Egypt
| | - Osama Konsowa Ahmed
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | | | - Khaled Abdel-Moneim Hammam
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agriculture Research Center, Giza, Egypt
| | - Rania Saber Yousef
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Jośko I, Kusiak M, Sozoniuk M, Feculak M, Wu KCW, Fitzgerald M, Alyafei MS, Sheteiwy MS. Analysis of multiple biomarkers revealed the size matters of Cu particles for barley response under foliar exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170673. [PMID: 38316301 DOI: 10.1016/j.scitotenv.2024.170673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The impact of particle size of engineered nanoparticles (ENPs) on plant response has marginally been investigated under the foliar application so far. Concerning the significance of particle diameter for their properties and interaction with plants, the effect of size should be considered in the analysis of the effect of micronutrient-based ENPs on plants. It is of particular importance for ENPs containing Cu due to plants needing a relatively low amount of this element, thus there is a risk of overdosing during application as a fertilizer or pesticide. Here, we examined the biochemical and transcriptional response of barley (Hordeum vulgare L.) to Cu nanoparticles (nano-Cu) with different diameters (25 nm, 50 nm, 70 nm), microparticles (micro-Cu), and chelated Cu (EDTA-Cu). The plants suffering from Cu deficiency were foliar sprayed with Cu compounds at 1000 mg/L during the tillering stage. 1- and 7-day plants were analyzed in terms of biomass, Cu content, the activity of enzymes involved with antioxidant response, the content of low molecular weight compounds, and the expression of genes regulated metal homeostasis, aquaporins, and defense. The results showed that the Cu leaf level was differentiated over time and after 7 days it was higher under exposure to the smallest nano-Cu than other particulate Cu. Regardless of the duration of exposure, the Cu content was highest in plants treated with Cu-EDTA. The cluster analysis of all markers revealed a clear distinct response to the smallest nano-Cu and other particulate and ionic treatments. The bigger nano-Cu, depending on the markers, caused the medium effects between the nano-Cu 25 nm and micro-Cu and Cu-EDTA. The found size thresholds at the nanoscale will be useful for the fabrication of safe-by-design agrochemicals to provide crop security and attenuate environmental impact.
Collapse
Affiliation(s)
- Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland.
| | - Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland
| | - Mikołaj Feculak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 32003, Taiwan; Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City 350, Taiwan
| | - Melissa Fitzgerald
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Mohamed Salem Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mohamed Salah Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates; Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Yang Y, Wang S, Zhao C, Jiang X, Gao D. Responses of non-structural carbohydrates and biomass in plant to heavy metal treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168559. [PMID: 37979880 DOI: 10.1016/j.scitotenv.2023.168559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The contamination of heavy metals profoundly impacts plant metabolic processes and various physiological indicators, such as non-structural carbohydrates (NSC). However, a comprehensive understanding of how NSC in plants respond to heavy metal treatment and how different experimental setting and plant types affect the response of plant NSC is still lacking. Here, we compiled data of 2084 observations of NSC from 85 published studies and conducted a meta-analysis to investigate the responses of soluble sugars, starch, the ratio of soluble sugar to starch, and total non-structural carbohydrates (TNSC) to heavy metal treatment. Our results showed that, under heavy metal treatment, foliar soluble sugars, foliar TNSC, and the ratio of soluble sugars to starch in both foliage and root increased significantly by 21.6 %, 11.6 %, 55.9 %, and 65.1 %, respectively; and foliar starch, root starch, and root TNSC decreased significantly by 10 %, 23.3 %, and 11 %, respectively; while root soluble sugars remained unchanged. The treatment of heavy metals significantly diminished the biomass of foliage, above-ground, and root by 12.3 %, 29.5 %, and 34.3 %, respectively. The responses of foliar NSC to heavy metal treatment were strongly dependent on leaf habit, the duration and concentration of heavy metal treatment, and soil pH value. The magnitude of the response of NSC to heavy metals increased with the duration and concentration of heavy metal treatment. Furthermore, the types of heavy metals modulated the magnitude of the response of foliar NSC to heavy metal treatment. Overall, our findings provide valuable insights into the responses of plant NSC to heavy metal stress and contribute to a comprehensive understanding of this crucial aspect of plant physiology.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Siyu Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Chunhong Zhao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Xiangyu Jiang
- Georgia Environmental Protection Division, Atlanta, GA, USA
| | - Decai Gao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Gomez A, Narayan M, Zhao L, Jia X, Bernal RA, Lopez-Moreno ML, Peralta-Videa JR. Effects of nano-enabled agricultural strategies on food quality: Current knowledge and future research needs. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123385. [PMID: 32763688 DOI: 10.1016/j.jhazmat.2020.123385] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
It is becoming more feasible to use nano-enabled agricultural products such as nanofertilizers and nanopesticides to improve the efficiency of agrochemical delivery to crop plants. Experimental results have shown that nano-agrochemicals have great potential for reducing the environmental impact of traditional agrochemicals while simultaneously significantly increasing crop production. However, emerging data suggest that nano-enabled products are not only capable of increasing yield, but also result in alterations in crop quality. Variation in proteins, sugars, starch content, as well as in metallic essential elements have been reported. Verbi gratia, albumin, globulin, and prolamin have been significantly increased in rice exposed to CeO2 engineered nanoparticles (ENPs), while CeO2, CuO, and ZnO ENPs have increased Ca, Mg, and P in several crops. Conversely, reductions in Mo and Ni have been reported in cucumber and kidney beans exposed to CeO2 and ZnO engineered nanomaterials, respectively. However, reports on specific effects in human health due to the consumption of agricultural products obtained from plants exposed to nano-agrochemicals are still missing.
Collapse
Affiliation(s)
- Alejandra Gomez
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave. El Paso, TX 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave. El Paso, TX 79968, United States.
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Xiaorong Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Ricardo A Bernal
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave. El Paso, TX 79968, United States
| | - Martha L Lopez-Moreno
- Chemistry Department, University of Puerto Rico at Mayagüez, PO Box 9019, Mayagüez, 00681-9019, Puerto Rico
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave. El Paso, TX 79968, United States.
| |
Collapse
|
5
|
Bonilla-Bird NJ, Ye Y, Akter T, Valdes-Bracamontes C, Darrouzet-Nardi AJ, Saupe GB, Flores-Marges JP, Ma L, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. Effect of copper oxide nanoparticles on two varieties of sweetpotato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:277-286. [PMID: 32580091 DOI: 10.1016/j.plaphy.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Little information is available on the interaction of CuO nanoparticles (nCuO) with tuberous roots. In this study, Beauregard-14 (B-14, low lignin) and Covington (COV, high lignin) sweetpotato varieties were cultivated until maturity in soil amended with nCuO, bulk copper oxide (bCuO) and CuCl2 at 25-125 mg/kg. The Cu treatments had no significant influence on chlorophyll content. Gas exchange parameters were not affected in B-14. In COV, however, at 125 mg/kg treatments, bCuO reduced the intercellular CO2 (11%), while CuCl2 increased it by 7%, compared with control (p ≤ 0.035). At 25 mg/kg nCuO increased the length of COV roots (20.7 ± 2.0 cm vs. 14.6 ± 0.8 cm, p ≤ 0.05). In periderm of B-14, nCuO, at 125 mg/kg, increased Mg by 232%, while the equivalent concentration of CuCl2 reduced P by 410%, compared with control (p ≤ 0.05). The data suggest the potential application of nCuO as nanofertilizer for sweetpotato storage root production.
Collapse
Affiliation(s)
- N J Bonilla-Bird
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - Y Ye
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - T Akter
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - C Valdes-Bracamontes
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - A J Darrouzet-Nardi
- Biological Science Department, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - G B Saupe
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - J P Flores-Marges
- Autonomous University of Ciudad Juarez, Plutarco Elias Calles 1210, Ciudad Juarez, Chihuahua, CP, 32310, Mexico
| | - L Ma
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - J A Hernandez-Viezcas
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - J R Peralta-Videa
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States; Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - J L Gardea-Torresdey
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States; Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States.
| |
Collapse
|
6
|
Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW, Xing B. Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:319-327. [PMID: 31015082 DOI: 10.1016/j.jenvman.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/06/2019] [Accepted: 04/13/2019] [Indexed: 05/04/2023]
Abstract
Engineered nanoparticles (NPs) are now used as additives in pesticides and fungicides and as novel fertilizers in agriculture so there is an urgent need to explore their effects on crop yield and quality in a full life cycle study. In the present study, three widely used NPs (TiO2, Fe2O3 and CuO NPs applied at doses of 50 and 500 mg/kg) were selected to investigate their long-term impact on wheat growth. TiO2 NPs did not affect the growth and development of wheat, but Fe2O3 NPs promoted wheat precocity and CuO NPs inhibited the growth and development of the wheat grains. The Cu content in grains treated with CuO NP increased by 18.84%-30.45% compared with the control. However, the contents of Fe and Zn were both significantly lower in the CuO NP treatments. Univariate and multivariate analyses were used to analyze the effect of different NPs on the composition of amino acids in wheat grains. Exposure to TiO2 NPs at dose of 500 mg/kg increased the overall amino acid nutrition in the edible portion of wheat. Fe2O3 NPs at both doses increased the contents of cysteine (Cys) and tyrosine (Tyr). The addition of CuO NPs reduced the level of some essential amino acids in wheat grains, isoleucine (Ile), leucine (Leu), threonine (Thr) and histidine (His). Overall, evaluation of the potential impacts of metal-based NPs on the nutritional quality of wheat grains could provide important information for their safe use when incorporated into agrichemicals in sustainable agriculture.
Collapse
Affiliation(s)
- Yaoyao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fuping Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, United States; Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, United States.
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, United States
| |
Collapse
|
7
|
Tighe-Neira R, Carmora E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, Rengel Z, Inostroza-Blancheteau C. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:408-417. [PMID: 30064097 DOI: 10.1016/j.plaphy.2018.07.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The applications of nanoparticles continue to expand into areas as diverse as medicine, bioremediation, cosmetics, pharmacology and various industries, including agri-food production. The widespread use of nanoparticles has generated concerns given the impact these nanoparticles - mostly metal-based such as CuO, Ag, Au, CeO2, TiO2, ZnO, Co, and Pt - could be having on plants. Some of the most studied variables are plant growth, development, production of biomass, and ultimately oxidative stress and photosynthesis. A systematic appraisal of information about the impact of nanoparticles on these processes is needed to enhance our understanding of the effects of metallic nanoparticles and oxides on the structure and function on the plant photosynthetic apparatus. Most nanoparticles studied, especially CuO and Ag, had a detrimental impact on the structure and function of the photosynthetic apparatus. Nanoparticles led to a decrease in concentration of photosynthetic pigments, especially chlorophyll, and disruption of grana and other malformations in chloroplasts. Regarding the functions of the photosynthetic apparatus, nanoparticles were associated with a decrease in the photosynthetic efficiency of photosystem II and decreased net photosynthesis. However, CeO2 and TiO2 nanoparticles may have a positive effect on photosynthetic efficiency, mainly due to an increase in electron flow between the photosystems II and I in the Hill reaction, as well as an increase in Rubisco activity in the Calvin and Benson cycle. Nevertheless, the underlying mechanisms are poorly understood. The future mechanistic work needs to be aimed at characterizing the enhancing effect of nanoparticles on the active generation of ATP and NADPH, carbon fixation and its incorporation into primary molecules such as photo-assimilates.
Collapse
Affiliation(s)
- Ricardo Tighe-Neira
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Erico Carmora
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Gonzalo Recio
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Minas Gerais, 36570-900, Viçosa, Brazil
| | - Marjorie Reyes-Diaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Miren Alberdi
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile.
| |
Collapse
|