1
|
Li Y, Zeng Y, Chen Z, Tan X, Mei X, Wu Z. The role of aryl hydrocarbon receptor in vitiligo: a review. Front Immunol 2024; 15:1291556. [PMID: 38361944 PMCID: PMC10867127 DOI: 10.3389/fimmu.2024.1291556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Vitiligo is an acquired autoimmune dermatosis characterized by patchy skin depigmentation, causing significant psychological distress to the patients. Genetic susceptibility, environmental triggers, oxidative stress, and autoimmunity contribute to melanocyte destruction in vitiligo. Due to the diversity and complexity of pathogenesis, the combination of inhibiting melanocyte destruction and stimulating melanogenesis gives the best results in treating vitiligo. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that can regulate the expression of various downstream genes and play roles in cell differentiation, immune response, and physiological homeostasis maintenance. Recent studies suggested that AhR signaling pathway was downregulated in vitiligo. Activation of AhR pathway helps to activate antioxidant pathways, inhibit abnormal immunity response, and upregulate the melanogenesis gene, thereby protecting melanocytes from oxidative stress damage, controlling disease progression, and promoting lesion repigmentation. Here, we review the relevant literature and summarize the possible roles of the AhR signaling pathway in vitiligo pathogenesis and treatment, to further understand the links between the AhR and vitiligo, and provide new potential therapeutic strategies.
Collapse
Affiliation(s)
- Yiting Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, China
| | - Zile Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Tan
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Hassaan MA, Elkatory MR, Ragab S, El Nemr A. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in water-sediment system of southern Mediterranean: Concentration, source and ecological risk assessment. MARINE POLLUTION BULLETIN 2023; 196:115692. [PMID: 37871457 DOI: 10.1016/j.marpolbul.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were studied in the Nile Delta area of Egypt's southern Mediterranean for their environmental impacts, probable sources, and ecological risk assessment. Using the Gas Chromatography Triple Quadrupole technique, the residues of 16 OCPs and 18 PCBs were determined. The total OCPs content in the seawater and sediment samples ranged from 0.108 to 10.97 μg/L and 0.301 to 5.268 ng/g, respectively, while the PCBs residues had values between 0.808 and 1069.75 μg/L in seawater and between not detected and 575.50 ng/g in sediment samples. The findings of the risk evaluation showed that, except for endosulfan-I, OCPs caused little harm in seawater. However, PCB180, PCB153, PCB156, PCB126 and PCB138 posed a comparatively significant risk. The concentration of DDTs was higher than the effect range low and threshold effect level but remained below the effect range median and probable effect level, posing a minimal ecological concern.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Marwa R Elkatory
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
3
|
Liu B, Zhang S, Liu C, Han X. Clinical role of CYP1B1 gene polymorphism in prediction of postoperative chemotherapy efficacy in NSCLC based on individualized health model. Open Life Sci 2023; 18:20220705. [PMID: 37854320 PMCID: PMC10579881 DOI: 10.1515/biol-2022-0705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/30/2023] [Indexed: 10/20/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common cancers worldwide, and chemotherapy is one of its main treatment methods. However, there are significant differences in patients' reactions to chemotherapy, leading to unsatisfactory treatment outcomes. Therefore, identifying relevant factors that affect the efficacy of chemotherapy can help doctors better develop personalized treatment plans, improve the treatment effectiveness, and quality of life of patients. This article aims to understand the specific clinical role of CYP1B1 gene in NSCLC. Therefore, based on the individualized health model of CYP1B1 gene polymorphism, this article analyzes the prediction of postoperative chemotherapy efficacy for NSCLC. Through a study on the control variables of postoperative recovery of stage III NSCLC in a hospital, according to the findings of this study, 14 of the 32 patients in the EGFR mutation-positive group relapsed. In the EGFR-negative group, 13 of the 36 patients relapsed. It can be considered that CYP1B1 gene polymorphism has a good curative effect in postoperative chemotherapy of NSCLC, and it can effectively control the recurrence rate of cancer.
Collapse
Affiliation(s)
- Bo Liu
- Xingtai People’s Hospital, Xingtai 054001, Hebei, China
| | - Shaofeng Zhang
- Department of Chest Surgery, Xingtai People’s Hospital, Xingtai 054001, Hebei, China
| | - Chunyan Liu
- Department of Chest Surgery, Xingtai People’s Hospital, Xingtai 054001, Hebei, China
| | - Xia Han
- Department of Thoracic Surgery, Xingtai People’s Hospital, Xingtai 054001, Hebei, China
| |
Collapse
|
4
|
Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, Deng M, Wang X. Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health 2023; 11:1140786. [PMID: 36908414 PMCID: PMC9999012 DOI: 10.3389/fpubh.2023.1140786] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming increasingly prevalent with the improvement of people's living standards in recent years, especially in urban areas. The emerging environmental contaminant is a newly-proposed concept in the progress of industrialization and modernization, referring to synthetic chemicals that were not noticed or researched before, which may lead to many chronic diseases, including IBD. The emerging contaminants mainly include microplastics, endocrine-disrupting chemicals, chemical herbicides, heavy metals, and persisting organic pollutants. In this review, we summarize the adverse health effect of these emerging contaminants on humans and their relationships with IBD. Therefore, we can better understand the impact of these new emerging contaminants on IBD, minimize their exposures, and lower the future incidence of IBD.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xueyi Mao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Xiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Centre for Global Health, Zhejiang University, Hangzhou, China
| | - Angran Zhu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yifei Meng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiya Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Peng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
5
|
Wang X, Zhang Z, Zhang R, Huang W, Dou W, You J, Jiao H, Sun A, Chen J, Shi X, Zheng D. Occurrence, source, and ecological risk assessment of organochlorine pesticides and polychlorinated biphenyls in the water-sediment system of Hangzhou Bay and East China Sea. MARINE POLLUTION BULLETIN 2022; 179:113735. [PMID: 35567961 DOI: 10.1016/j.marpolbul.2022.113735] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The pollution characteristics, potential sources, and potential ecological risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Hangzhou Bay (HZB) and East China Sea (ECS). Total OCPs concentration ranged from 2.62 to 102.07 ng/L and 4.41 to 75.79 μg/kg in the seawater and sediment samples, with PCBs concentration in the range of 0.40-51.75 ng/L and 0.80-45.54 μg/kg, respectively. The OCPs were positively correlated with nutrients, whereas PCBs presented a negative correlation. The newly imported dichlorodiphenyltrichloroethane (DDT) in HZB is mainly the mixing of technical DDT and dicofol sources. The PCB source composition is more likely related to the mixture of Kanechlor 300, 400, Aroclor 1016, 1242, and Aroclor 1248. Risk assessment results indicate that OCPs posed low risk in seawater. The potential risk of DDTs in the sediments is a cause of concern.
Collapse
Affiliation(s)
- Xiaoni Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Wenke Dou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jinjie You
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Haifeng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Dan Zheng
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315042, PR China
| |
Collapse
|
6
|
Leijs M, Fietkau K, Merk HF, Schettgen T, Kraus T, Esser A. Upregulation of CCL7, CCL20, CXCL2, IL-1β, IL-6 and MMP-9 in Skin Samples of PCB Exposed Individuals-A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189711. [PMID: 34574641 PMCID: PMC8468641 DOI: 10.3390/ijerph18189711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Polychlorinated biphenyls (PCBs) are well known immunotoxic and carcinogenic compounds. Although cutaneous symptoms are the hallmark of exposure to these compounds, exact pathophysiologic mechanisms are not well understood. We took skin biopsies from moderately high PCB exposed workers (n = 25) after an informed consent and investigated the expression of immunological markers such as CCL-7, CCL-20, CXCL2, IL-1β and IL-6, as well as the matrix metalloproteinase MMP-9, EPGN and NRF2 by RT-qPCR, and compared expression levels with plasma PCB levels. Statistical analyses showed a significant correlation between CCL-20, CXCL2, IL-6, IL-1β, CCL-7 and MMP-9 and PCB serum levels. EPGN and NRF2 were not correlated to PCB levels in the blood. We found a significant correlation of genes involved in autoimmune, auto-inflammatory and carcinogenesis in skin samples of PCB exposed individuals with elevated plasma PCB levels. Confirmation of these findings needs to be performed in bigger study groups and larger gen-sets, including multiple housekeeping genes. Further study needs to be performed to see whether a chronical exposure to these and similar compounds can cause higher incidence of malignancies and inflammatory disease.
Collapse
Affiliation(s)
- Marike Leijs
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (K.F.); (H.F.M.)
- Department of Dermatology, St. Nikolaus Hospital Eupen, 4700 Eupen, Belgium
- Correspondence:
| | - Katharina Fietkau
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (K.F.); (H.F.M.)
| | - Hans F. Merk
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (K.F.); (H.F.M.)
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (T.S.); (T.K.); (A.E.)
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (T.S.); (T.K.); (A.E.)
| | - André Esser
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (T.S.); (T.K.); (A.E.)
| |
Collapse
|
7
|
Lin BG, Chen CR, Chen XC, Qiao J, Yan QX, Yang P, Chen WL, Li LZ, Qiu PC, Ding C, Huang DJ, Yu YJ. Effects of organochlorine exposure on male reproductive disorders in an electronic waste area of South China. ENVIRONMENT INTERNATIONAL 2021; 147:106318. [PMID: 33387882 DOI: 10.1016/j.envint.2020.106318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Several studies suggest that organochlorine exposure can affect male reproductive functions, causing poor semen quality, endocrine disruption, or dysregulation of thyroid hormones. This study uses multiple linear regression (MLR) models to analyze the correlation between male reproductive functions and polychlorinated biphenyl (PCBs) congeners or p,p'-DDE levels in serum, semen, and indoor dust samples. Multiple comparisons were all adjusted using the false discovery rate (FDR). The results revealed that the PCB congener levels in seminal plasma were significantly associated with the quality parameters of human semen (i.e., sperm count, morphology, and motility) and thyroid hormones after adjusting for covariates, e.g., associations of the sperm concentration with levels of CB105 (β = -0.323, 95% CI: -0.561, -0.085, p = 0.009), CB44 (β = 0.585, 95% CI: 0.290, 0.880, p < 0.001), and CB66 (β = -0.435, 95% CI: -0.728, -0.143, p = 0.004) in the seminal plasma were observed. Correlations between serum pollutants levels and the semen quality, reproductive hormones, or thyroid hormones were also observed. Moreover, our results demonstrate that the quantification of PCBs in seminal plasma can better describe male reproductive disorders than that in serum or dust. Organochlorine exposure measured in serum or dust, especially in seminal plasma, was associated with semen quality, as well as reproductive and thyroid hormones, thus suggesting that the impacts of persistent pollutants on male reproductive health require further investigation.
Collapse
Affiliation(s)
- Bi-Gui Lin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Cai-Rong Chen
- Reproductive Medicine Center, People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, PR China
| | - Xi-Chao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jing Qiao
- Reproductive Medicine Center, People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, PR China
| | - Qiu-Xia Yan
- Reproductive Medicine Center, People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, PR China
| | - Pan Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of the Environment, Jinan University, Guangzhou 510632, PR China
| | - Wan-le Chen
- Reproductive Medicine Center, People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, PR China
| | - Liang-Zhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Pei-Chang Qiu
- Reproductive Medicine Center, People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, PR China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Dao-Jian Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
8
|
Li Y, Cui J, Jia J. The Activation of Procarcinogens by CYP1A1/1B1 and Related Chemo-Preventive Agents: A Review. Curr Cancer Drug Targets 2021; 21:21-54. [PMID: 33023449 DOI: 10.2174/1568009620666201006143419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
CYP1A1 and CYP1B1 are extrahepatic P450 family members involved in the metabolism of procarcinogens, such as PAHs, heterocyclic amines and halogen-containing organic compounds. CYP1A1/1B1 also participate in the metabolism of endogenous 17-β-estradiol, producing estradiol hydroquinones, which are the intermediates of carcinogenic semiquinones and quinones. CYP1A1 and CYP1B1 proteins share approximately half amino acid sequence identity but differ in crystal structures. As a result, CYP1A1 and CYP1B1 have different substrate specificity to chemical procarcinogens. This review will introduce the general molecular biology knowledge of CYP1A1/1B1 and the metabolic processes of procarcinogens regulated by these two enzymes. Over the last four decades, a variety of natural products and synthetic compounds which interact with CYP1A1/1B1 have been identified as effective chemo-preventive agents against chemical carcinogenesis. These compounds are mainly classified as indirect or direct CYP1A1/1B1 inhibitors based on their distinct mechanisms. Indirect CYP1A1/1B1 inhibitors generally impede the transcription and translation of CYP1A1/1B1 genes or interfere with the translocation of aryl hydrocarbon receptor (AHR) from the cytosolic domain to the nucleus. On the other hand, direct inhibitors inhibit the catalytic activities of CYP1A1/1B1. Based on the structural features, the indirect inhibitors can be categorized into the following groups: flavonoids, alkaloids and synthetic aromatics, whereas the direct inhibitors can be categorized into flavonoids, coumarins, stilbenes, sulfur containing isothiocyanates and synthetic aromatics. This review will summarize the in vitro and in vivo activities of these chemo-preventive agents, their working mechanisms, and related SARs. This will provide a better understanding of the molecular mechanism of CYP1 mediated carcinogenesis and will also give great implications for the discovery of novel chemo-preventive agents in the near future.
Collapse
Affiliation(s)
- Yubei Li
- China-UK Low Carbon College, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
9
|
Ruan J, Guo J, Huang Y, Mao Y, Yang Z, Zuo Z. Adolescent exposure to environmental level of PCBs (Aroclor 1254) induces non-alcoholic fatty liver disease in male mice. ENVIRONMENTAL RESEARCH 2020; 181:108909. [PMID: 31776016 DOI: 10.1016/j.envres.2019.108909] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants found in various environmental media, and there is growing evidence that PCBs may contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The purposes of this study were to investigate whether environmental level of Aroclor 1254 (a commercial mixture of PCBs) exposure to adolescent male mice could induce the development of NAFLD and the mechanisms involved. Twenty-one-day-old male C57BL/6 mice were exposed to Aroclor 1254 (0.5-500 μg/kg body weight) by oral gavage once every third day for 60 days. The results showed that exposure to Aroclor 1254 increased body weight and decreased the liver-somatic index in a dose-dependent manner. Aroclor 1254 administration increased lipid accumulation in the liver and induced the mRNA expression of genes associated with lipogenesis, including acetyl-CoA carboxylase 1 (Acc1), acetyl-CoA carboxylase 2 (Acc2) and fatty acid synthase (Fasn). Moreover, Aroclor 1254 decreased peroxisome proliferator-activated receptor alpha (PPARα) signaling and lipid oxidation. In addition, we found that Aroclor 1254 administration induced oxidative stress in mouse liver and elevated the protein level of cyclooxygenase 2 (COX-2), an inflammatory molecule, possibly via the endoplasmic reticulum (ER) stress inositol-requiring enzyme 1α-X-box-binding protein-1 (IRE1α-XBP1) pathway, but not the nuclear factor-κB (NF-κB) pathway. In summary, adolescent exposure to environmental level of PCBs stimulated oxidative stress, ER stress and the inflammatory response and caused NAFLD in male mice. This work provides new insight into the idea that adolescent exposure to environmental level of PCBs might induce the development of NAFLD under the regulation of ER stress in males.
Collapse
Affiliation(s)
- Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yameng Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yunzi Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenggang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
10
|
Chen N, Shan Q, Qi Y, Liu W, Tan X, Gu J. Transcriptome analysis in normal human liver cells exposed to 2, 3, 3', 4, 4', 5 - Hexachlorobiphenyl (PCB 156). CHEMOSPHERE 2020; 239:124747. [PMID: 31514003 DOI: 10.1016/j.chemosphere.2019.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/31/2019] [Accepted: 09/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUNDS Polychlorinated biphenyls are persistent environmental pollutants associated with the onset of non-alcoholic fatty liver disease in humans, but there is limited information on the underlying mechanism. In the present study, we investigated the alterations in gene expression profiles in normal human liver cells L-02 following exposure to 2, 3, 3', 4, 4', 5 - hexachlorobiphenyl (PCB 156), a potent compound that may induce non-alcoholic fatty liver disease. METHODS The L-02 cells were exposed to PCB 156 for 72 h and the contents of intracellular triacylglyceride and total cholesterol were subsequently measured. Microarray analysis of mRNAs and long non-coding RNAs (lncRNAs) in the cells was also performed after 3.4 μM PCB 156 treatment. RESULTS Exposure to PCB 156 (3.4 μM, 72 h) resulted in significant increases of triacylglyceride and total cholesterol concentrations in L-02 cells. Microarray analysis identified 222 differentially expressed mRNAs and 628 differentially expressed lncRNAs. Gene Ontology and pathway analyses associated the differentially expressed mRNAs with metabolic and inflammatory processes. Moreover, lncRNA-mRNA co-expression network revealed 36 network pairs comprising 10 differentially expressed mRNAs and 34 dysregulated lncRNAs. The results of bioinformatics analysis further indicated that dysregulated lncRNA NONHSAT174696, lncRNA NONHSAT179219, and lncRNA NONHSAT161887, as the regulators of EDAR, CYP1B1, and ALDH3A1 respectively, played an important role in the PCB 156-induced lipid metabolism disorder. CONCLUSION Our findings provide an overview of differentially expressed mRNAs and lncRNAs in L-02 cells exposed to PCB 156, and contribute to the field of polychlorinated biphenyl-induced non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China; State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yu Qi
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaojun Tan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jinsong Gu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
11
|
Long Y, Liu X, Tan XZ, Jiang CX, Chen SW, Liang GN, He XM, Wu J, Chen T, Xu Y. ROS-induced NLRP3 inflammasome priming and activation mediate PCB 118- induced pyroptosis in endothelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 189:109937. [PMID: 31785945 DOI: 10.1016/j.ecoenv.2019.109937] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 02/05/2023]
Abstract
Growing epidemiological evidence has shown that exposure to polychlorinated biphenyls (PCBs) is harmful to the cardiovascular system. However, how PCB 118-induced oxidative stress mediates endothelial dysfunction is not fully understood. Here, we explored whether and how PCB 118 exposure-induced oxidative stress leads to NLRP3 inflammasome-dependent pyroptosis in endothelial cells. As expected, PCB 118 was cytotoxic to HUVECs and induced caspase-1 activation and cell membrane disruption, which are characteristics of pyroptosis. Moreover, PCB 118-induced pyroptosis may have been due to the activation of the NLRP3 infammasomes. PCB 118 also induced excessive reactive oxygen species (ROS) in HUVECs. The ROS scavenger (±)-α-tocopherol and the NFκB inhibitor BAY11-7082 reversed the upregulation of NLRP3 expression and the increase in NLRP3 inflammasome activation induced by PCB 118 exposure in HUVECs. Additionally, PCB 118-induced oxidative stress and pyroptosis were dependent on Aryl hydrocarbon receptor (AhR) activation and subsequent cytochrome P450 1A1 upregulation, which we confirmed by using the AhR selective antagonist CH 223191. These data suggest that PCB 118 exposure induces NLRP3 inflammasome activation and subsequently leads to pyroptosis in endothelial cells in vitro and in vivo. AhR-mediated ROS production play a central role in PCB 118-induced pyroptosis by priming NFκB-dependent NLRP3 expression and promoting inflammasome activation.
Collapse
Affiliation(s)
- Yang Long
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China; Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Xin Liu
- Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Xiao-Zhen Tan
- Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Chun-Xia Jiang
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Shao-Wei Chen
- Medical Reproduction Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Guan-Nan Liang
- Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Xue-Mei He
- Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Jian Wu
- Laboratory of Endocrinology, Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Tao Chen
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Yong Xu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China; Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.
| |
Collapse
|
12
|
Mordaunt CE, Park BY, Bakulski KM, Feinberg JI, Croen LA, Ladd-Acosta C, Newschaffer CJ, Volk HE, Ozonoff S, Hertz-Picciotto I, LaSalle JM, Schmidt RJ, Fallin MD. A meta-analysis of two high-risk prospective cohort studies reveals autism-specific transcriptional changes to chromatin, autoimmune, and environmental response genes in umbilical cord blood. Mol Autism 2019; 10:36. [PMID: 31673306 PMCID: PMC6814108 DOI: 10.1186/s13229-019-0287-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects more than 1% of children in the USA. ASD risk is thought to arise from both genetic and environmental factors, with the perinatal period as a critical window. Understanding early transcriptional changes in ASD would assist in clarifying disease pathogenesis and identifying biomarkers. However, little is known about umbilical cord blood gene expression profiles in babies later diagnosed with ASD compared to non-typically developing and non-ASD (Non-TD) or typically developing (TD) children. Methods Genome-wide transcript levels were measured by Affymetrix Human Gene 2.0 array in RNA from cord blood samples from both the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) and the Early Autism Risk Longitudinal Investigation (EARLI) high-risk pregnancy cohorts that enroll younger siblings of a child previously diagnosed with ASD. Younger siblings were diagnosed based on assessments at 36 months, and 59 ASD, 92 Non-TD, and 120 TD subjects were included. Using both differential expression analysis and weighted gene correlation network analysis, gene expression between ASD and TD, and between Non-TD and TD, was compared within each study and via meta-analysis. Results While cord blood gene expression differences comparing either ASD or Non-TD to TD did not reach genome-wide significance, 172 genes were nominally differentially expressed between ASD and TD cord blood (log2(fold change) > 0.1, p < 0.01). These genes were significantly enriched for functions in xenobiotic metabolism, chromatin regulation, and systemic lupus erythematosus (FDR q < 0.05). In contrast, 66 genes were nominally differentially expressed between Non-TD and TD, including 8 genes that were also differentially expressed in ASD. Gene coexpression modules were significantly correlated with demographic factors and cell type proportions. Limitations ASD-associated gene expression differences identified in this study are subtle, as cord blood is not the main affected tissue, it is composed of many cell types, and ASD is a heterogeneous disorder. Conclusions This is the first study to identify gene expression differences in cord blood specific to ASD through a meta-analysis across two prospective pregnancy cohorts. The enriched gene pathways support involvement of environmental, immune, and epigenetic mechanisms in ASD etiology.
Collapse
Affiliation(s)
- Charles E Mordaunt
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Bo Y Park
- 2Department of Public Health, California State University, Fullerton, CA USA
| | - Kelly M Bakulski
- 3Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Jason I Feinberg
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Lisa A Croen
- 5Division of Research and Autism Research Program, Kaiser Permanente Northern California, Oakland, CA USA
| | | | - Craig J Newschaffer
- 6Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA USA
| | - Heather E Volk
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Sally Ozonoff
- 7Psychiatry and Behavioral Sciences and MIND Institute, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - Janine M LaSalle
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Rebecca J Schmidt
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - M Daniele Fallin
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
13
|
Meng X, Zhang A, Wang X, Sun H. A kaempferol-3-O-β-d-glucoside, intervention effect of astragalin on estradiol metabolism. Steroids 2019; 149:108413. [PMID: 31152828 DOI: 10.1016/j.steroids.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/30/2019] [Accepted: 05/21/2019] [Indexed: 01/15/2023]
Abstract
Kaempherol-3-O-β-d-glucoside, known as astragalin, is one of flavonoids found in a variety of plants including Cuscuta australis R.Br. In recent studies, astragalin possess many biological functions. Although astragalin is formed by linking glucose to kaempherol, its biological activity is not the same as kaempferol. In vivo, 17 β-estradiol (E2) is hydroxylated by cytochrome P450 (CYP) 1B1 to form 4-hydroxy-E2 (4-OH-E2). This metabolite 4-OH-E2 is highly expressed in tumor tissues and has a strong tumorigenic effect. In this paper, the inhibition of astragalin and kaempferol on the activity of cytochrome 1B1 catalyzing estradiol to form 4-hydroxy-estradiol was studied, and the structure-activity relationship between astragalin and kaempferol due to their structural differences was discussed. This study showed that astragalin could inhibit the activity of CYP1B1. The inhibitory effect of astragalin (IC50 5.36 ± 1.13 μM) was weaker than kaempferol (IC50 0.45 ± 0.11 μM). For astragalin, Ki and Vmax values were 4.061 ± 0.737 μM and 1.457 pmol/μg protein/min, while for kaempferol, Ki and Vmax values were 2.631 ± 0.381 μM protein/min and 1.023 ± 0.231 pmol/μg. By kinetic analysis, astragalin and kaempferol were all mixed inhibition, indicating that although astragalin is formed by linking glucose to kaempherol, its inhibitory mechanism on CYP1B1 remained unchanged, and still belonged to a mixed inhibition. The data indicated that astragalin has been able to inhibit the metabolism of estradiol into the carcinogenic metabolite 4-hydroxyl-estradiol in vivo and illustrated an anti-tumor mechanism of astragalin. This study helps to reveal the structure-activity relationship between CYP1B1 activity and its inhibitors.
Collapse
Affiliation(s)
- Xin Meng
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin 150040, PR China
| | - Aihua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin 150040, PR China
| | - Xijun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin 150040, PR China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
14
|
Parrado C, Mercado-Saenz S, Perez-Davo A, Gilaberte Y, Gonzalez S, Juarranz A. Environmental Stressors on Skin Aging. Mechanistic Insights. Front Pharmacol 2019; 10:759. [PMID: 31354480 PMCID: PMC6629960 DOI: 10.3389/fphar.2019.00759] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
The skin is the main barrier that protects us against environmental stressors (physical, chemical, and biological). These stressors, combined with internal factors, are responsible for cutaneous aging. Furthermore, they negatively affect the skin and increase the risk of cutaneous diseases, particularly skin cancer. This review addresses the impact of environmental stressors on skin aging, especially those related to general and specific external factors (lifestyle, occupation, pollutants, and light exposure). More specifically, we have evaluated ambient air pollution, household air pollutants from non-combustion sources, and exposure to light (ultraviolet radiation and blue and red light). We approach the molecular pathways involved in skin aging and pathology as a result of exposure to these external environmental stressors. Finally, we reflect on how components of environmental stress can interact with ultraviolet radiation to cause cell damage and the critical importance of knowing the mechanisms to develop new therapies to maintain the skin without damage in old age and to repair its diseases.
Collapse
Affiliation(s)
- Concepcion Parrado
- Department of Histology and Pathology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Sivia Mercado-Saenz
- Department of Histology and Pathology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | | | | | - Salvador Gonzalez
- Medicine and Medical Specialties Department, Alcala University, Madrid, Spain
| | - Angeles Juarranz
- Biology Department, Sciences School, Autonoma University, Madrid, Spain
| |
Collapse
|
15
|
Leijs MM, Gan L, De Boever P, Esser A, Amann PM, Ziegler P, Fietkau K, Schettgen T, Kraus T, Merk HF, Baron JM. Altered Gene Expression in Dioxin-Like and Non-Dioxin-Like PCB Exposed Peripheral Blood Mononuclear Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122090. [PMID: 31200452 PMCID: PMC6617415 DOI: 10.3390/ijerph16122090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are well known carcinogenic persistent environmental pollutants and endocrine disruptors. Our aim was to identify the possible dysregulation of genes in PCB exposed peripheral blood mononuclear cells (PBMCs) in order to give more insight into the differential pathophysiological effects of PCB congeners and mixtures, with an emphasis on immunological effects and oxidative stress. The PBMCs of a healthy volunteer (male, 56 years old) were exposed to a mixture of dioxin-like (DL)-PCBs (PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, and 189, 250 µg/L resp.) or non-dioxin-like (NDL)-PCBs (PCB 28, 52, 101, 138, 153, 180, 250 µg/L resp.) or single PCB congener (no.28, 138, 153, 180, 250 µg/L resp.). After an incubation period of 24 h, a microarray gene expression screening was performed, and the results were compared to gene expression in control samples (PBMCs treated with the vehicle iso-octane). Treatment of PBMCs with the DL-PCB mixture resulted in the largest number of differentially regulated genes (181 upregulated genes >2-fold, 173 downregulated >2-fold). Treatment with the NDL-PCB mix resulted in 32 upregulated genes >2-fold and 12 downregulated genes >2-fold. A gene set enrichment analysis (GSEA) on DL-PCB treated PBMCs resulted in an upregulation of 125 gene sets and a downregulation of 76 gene sets. Predominantly downregulated gene sets were involved in immunological pathways (such as response to virus, innate immune response, defense response). An upregulation of pathways related to oxidative stress could be observed for all PCB congeners except PCB-28; the latter congener dysregulated the least number of genes. Our experiment augments the information known about immunological and cellular stress responses following DL- as well as NDL-PCB exposure and provides new information on PCB 28. Further studies should be performed to evaluate how disruption of these pathways contributes to the development of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Marike M Leijs
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Lin Gan
- IZKF, RWTH Aachen University, 52074 Aachen, Germany.
| | - Patrick De Boever
- Flemish Institute for Technological Research (VITO), Health unit, 2400 Mol, Belgium.
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
| | - André Esser
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Philipp M Amann
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
- Department of Dermatology, SLK Hospital Heilbronn, 74078 Heilbronn, Germany.
| | - Patrick Ziegler
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Katharina Fietkau
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Hans F Merk
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Jens M Baron
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
16
|
Merk H. Aryl hydrocarbon receptor signalling in the skin and adverse vemurafenib effects. J Eur Acad Dermatol Venereol 2018; 32:1233-1234. [DOI: 10.1111/jdv.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H.F. Merk
- Universitäts-Hautklinik; RWTH Aachen University; Aachen Germany
| |
Collapse
|