1
|
Sangkachai N, Gummow B, Hayakijkosol O, Suwanpakdee S, Wiratsudakul A. A review of risk factors at the human-animal-environmental interface of garbage dumps that are driving current and emerging zoonotic diseases. One Health 2024; 19:100915. [PMID: 39468997 PMCID: PMC11513544 DOI: 10.1016/j.onehlt.2024.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
An increasing trend in zoonotic and emerging infectious diseases (EIDs) has been observed worldwide. Most EID outbreaks originate from wildlife, and these outbreaks often involve pathogen-host-environment interaction. Garbage dumps act as an interface between humans, animals, and the environment, from which EIDs could arise. Therefore, this review considers the presence of important pathogens associated with animals and vectors at garbage dumps from a One Health perspective, looking at animal, human, and environmental factors that play a role. A narrative review was performed focusing on four key points, including garbage dumps, animals, waste pickers, zoonoses and EIDs. Articles addressing the presence of terrestrial animals, insects in garbage dumps, and infectious diseases among waste pickers were included in this study. There were 345 relevant articles covering 395 species of terrestrial animals and insects, consisting of 4 species of amphibians, 180 species of birds, 84 species of insects, 114 species of mammals, and 13 species of reptiles. Furthermore, 97 articles (28.12 %) addressed pathogens found in those populations. About half of the articles were interested in bacterial diseases (52.58 %), followed by parasitic diseases (30.93 %) and viral diseases (30.93 %). Zoonotic pathogens were described in 53.6 % of all articles, while 19.59 % focused on drug-resistant microbes, 13.40 % on rodent-borne diseases, and 7.21 % on vector-borne diseases. Garbage dumps would play a role in the emergence of diseases. The relevant factors at garbage dumps that may increase the risk of disease emergence include increased animal populations and density, increased vector population, newly evolved strains of pathogens, increased interaction between humans, domestic animals, wildlife, and vectors, and socio-economic factors. Therefore, sustainable waste management will reduce waste generation, and improve waste collection, and disposal which helps reduce the emergence of new diseases.
Collapse
Affiliation(s)
- Nareerat Sangkachai
- ASEAN Institute for Health Development, Mahidol University, Salaya, Nakhon Pathom, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Bruce Gummow
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Orachun Hayakijkosol
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sarin Suwanpakdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Anuwat Wiratsudakul
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Muñoz-Arnanz J, Cortés-Avizanda A, Donázar-Aramendía I, Arrondo E, Ceballos O, Colomer-Vidal P, Jiménez B, Donázar JA. Levels of persistent organic pollutants (POPs) and the role of anthropic subsidies in the diet of avian scavengers tracked by stable isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123188. [PMID: 38123115 DOI: 10.1016/j.envpol.2023.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Persistent Organic Pollutants (POPs) have been identified as a significant factor driving declines in wildlife populations. These contaminants exhibit a dual tendency to biomagnify up the food chains and persist within tissues, rendering long-lived vertebrates, such as raptors, highly vulnerable to their adverse effects. We assessed the concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in fledglings of two vulture species, the Egyptian vulture (Neophron percnopterus) and the griffon vulture (Gyps fulvus), coexisting in northern Spain. Vultures, currently facing a severe threat with a population decline exceeding 90%, represent one of the most critically endangered avian groups in the Old World. Despite this critical situation, there remains a scarcity of research examining the intricate relationship between contaminant levels and individual foraging behaviors. In parallel, we analyzed stable isotope levels (δ15N and δ13C) in fledgling's feathers and prey hair to determine the association between individual dietary and contaminant burdens. Our findings revealed higher levels of PCBs in Egyptian vultures, while pesticide concentrations remained very similar between focal species. Furthermore, higher individual values of δ13C, indicating a diet based on intensive farming carcasses and landfills, were associated with higher levels of PCBs. While the levels of POPs found do not raise immediate alarm, the presence of individuals with unusually high values reveals the existence of accessible contamination sources in the environment for avian scavengers. The increasing reliance of these birds on intensive livestock farming and landfills, due to the decline of extensive livestock farming, necessitates long-term monitoring of potential contaminant effects on their populations.
Collapse
Affiliation(s)
- J Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| | - A Cortés-Avizanda
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Av. Reina Mercedes 6, 41012, Seville, Spain; Department of Conservation Biology, Estación Biológica de Doñana, CSIC, C/. Americo Vespucio 26, 41092, Seville, Spain
| | - I Donázar-Aramendía
- Laboratorio de Biología Marina, Seville Aquarium R + D + I Biological Research Area, Department of Zoology, Faculty of Biology, University of Sevilla, 41012, Seville, Spain
| | - E Arrondo
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, C/. Americo Vespucio 26, 41092, Seville, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Elche, Spain; Department of Zoology, University of Granada, Spain
| | - O Ceballos
- UGARRA, Avda. Carlos III 1, 31002, Pamplona, Navarre, Spain
| | - P Colomer-Vidal
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - B Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - J A Donázar
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, C/. Americo Vespucio 26, 41092, Seville, Spain
| |
Collapse
|
3
|
Pineda-Pampliega J, Herrera-Dueñas A, de la Puente J, Aguirre JI, Camarero P, Höfle U. Influence of climatic conditions on the link between oxidative stress balance and landfill utilisation as a food resource by white storks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166116. [PMID: 37586533 DOI: 10.1016/j.scitotenv.2023.166116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
Landfills have played a significant role in the recovery of white storks (Ciconia ciconia) populations across various European countries. While there is ample information about the populational-level effects, there is a lack of knowledge regarding the individual effects of using this food resource for feeding nestlings. This study aims to assess the nutritional status and oxidative stress balance of nestlings with varying degrees of exposure to landfill-provided food This study aims to assess the nutritional status and oxidative stress balance of nestlings with different use of landfill-provided food. Nestlings fed with food foraged by breeding pairs from landfills exhibited better nutritional status compared to individuals located farther from landfills. This can be attributed to a higher ingestion rate, resulting in increased plasmatic values of cholesterol, triglycerides, and HDL in plasma. However, the oxidative stress balance varied across different years, with individuals raised in 2014 showing higher values of Vitamin E and lower values of LDH compared to those raised in 2013. Furthermore, the impact of landfills on certain oxidative stress parameters also depended on the year of study. In 2013, the Total Antioxidant Capacity (TAC) of plasma showed a positive correlation with the distance to landfills, while the concentration of Malondialdehyde (MDA), an indicator of lipid peroxidation, exhibited a negative correlation. These findings suggest that the use of landfills as a food resource has a consistently positive effect on the nutritional status of white stork nestling. However, the relationship with oxidative stress is highly dependent on the climatic conditions of each year, emphasizing the importance of considering these factors when evaluating the use of landfills as a food resource.
Collapse
Affiliation(s)
- Javier Pineda-Pampliega
- Department of Biology, Lund University, Lund, Sweden; Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain.
| | | | | | - José I Aguirre
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Pablo Camarero
- Ecotoxicology Group, Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Ursula Höfle
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain
| |
Collapse
|
4
|
Arévalo-Ayala DJ, Real J, Mañosa S, Aymerich J, Durà C, Hernández-Matías A. Age-Specific Demographic Response of a Long-Lived Scavenger Species to Reduction of Organic Matter in a Landfill. Animals (Basel) 2023; 13:3529. [PMID: 38003146 PMCID: PMC10668657 DOI: 10.3390/ani13223529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Food availability shapes demographic parameters and population dynamics. Certain species have adapted to predictable anthropogenic food resources like landfills. However, abrupt shifts in food availability can negatively impact such populations. While changes in survival are expected, the age-related effects remain poorly understood, particularly in long-lived scavenger species. We investigated the age-specific demographic response of a Griffon vulture (Gyps fulvus) population to a reduction in organic matter in a landfill and analyzed apparent survival and the probability of transience after initial capture using a Bayesian Cormack-Jolly-Seber model on data from 2012-2022. The proportion of transients among newly captured immatures and adults increased after the reduction in food. Juvenile apparent survival declined, increased in immature residents, and decreased in adult residents. These results suggest that there was a greater likelihood of permanent emigration due to intensified intraspecific competition following the reduction in food. Interestingly, resident immatures showed the opposite trend, suggesting the persistence of high-quality individuals despite the food scarcity. Although the reasons behind the reduced apparent survival of resident adults in the final four years of the study remain unclear, non-natural mortality potentially plays a part. In Europe landfill closure regulations are being implemented and pose a threat to avian scavenger populations, which underlines the need for research on food scarcity scenarios and proper conservation measures.
Collapse
Affiliation(s)
- Diego J. Arévalo-Ayala
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain; (J.R.); (S.M.); (A.H.-M.)
| | - Joan Real
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain; (J.R.); (S.M.); (A.H.-M.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Santi Mañosa
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain; (J.R.); (S.M.); (A.H.-M.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joan Aymerich
- Grup d’Anellament de Calldetenes-Osona (GACO), 08506 Calldetenes, Spain; (J.A.); (C.D.)
| | - Carles Durà
- Grup d’Anellament de Calldetenes-Osona (GACO), 08506 Calldetenes, Spain; (J.A.); (C.D.)
- Estació Biològica del Montseny, Institut Català d’Ornitologia (ICO), Edifici Fontmartina, 08081 Fogars de Montclús, Spain
| | - Antonio Hernández-Matías
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain; (J.R.); (S.M.); (A.H.-M.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Herrero-Villar M, Taggart MA, Mateo R. Medicated livestock carcasses and landfill sites: Sources of highly toxic veterinary pharmaceuticals and caffeine for avian scavengers. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132195. [PMID: 37541118 DOI: 10.1016/j.jhazmat.2023.132195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Veterinary drugs are of concern in terms of potential environmental pollution and their negative impacts on avian scavengers. These pharmaceuticals reach vultures through the consumption of carcasses of previously treated livestock. Here, we analysed samples from livestock carcasses (n = 159), avian scavenger tissues (n = 116) and plasma (n = 312) for 49 compounds commonly used in veterinary medicine in Aragon (NE Spain) and nearby regions. Samples were analysed using liquid chromatography with electrospray ionization mass spectrometry (LC-ESI-MS/MS). We detected pharmaceuticals in 54.1% of livestock carcasses analysed (50.3% with antibiotics, 10.8% with NSAIDs). For veterinary pharmaceuticals in tissues and plasma from avian scavengers, we detected pharmaceuticals in 51.7% and 28.5% of samples, respectively. Antibiotics were detected in 50.9% and 25.3% while NSAIDs were determined in 6.0% and 5.5% of tissues and plasma from avian scavengers, respectively. Moreover, caffeine was detected in plasma in 73.7% of vultures sampled at landfill sites, indicating its usefulness as a biomarker of urban garbage ingestion. We found an association between livestock carcasses, especially pigs and chickens, and the presence of veterinary pharmaceuticals in avian scavengers. We highlight that carcass disposal for feeding avian scavengers must address the potential risks posed by veterinary pharmaceutical residues.
Collapse
Affiliation(s)
- Marta Herrero-Villar
- Instituto de Investigación en Recursos Cinegéticos-IREC, CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Mark A Taggart
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos-IREC, CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
6
|
Cerecedo-Iglesias C, Pretus JL, Hernández-Matías A, Cortés-Avizanda A, Real J. Key Factors behind the Dynamic Stability of Pairs of Egyptian Vultures in Continental Spain. Animals (Basel) 2023; 13:2775. [PMID: 37685040 PMCID: PMC10486963 DOI: 10.3390/ani13172775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Conservation science aims to identify the factors influencing the distribution of threatened species, thereby permitting the implementation of effective management strategies. This is key for long-lived species that require long-term monitoring such as the worldwide endangered Egyptian vulture (Neophron percnopterus). We studied temporal and spatial variations in the distribution of breeding pairs and examined the intrinsic and anthropic factors that may be influencing the abundance of breeding territories in continental Spain. Based on the census data of breeding pairs from 2000, 2008, and 2018, we used Rank Occupancy-Abundance Profiles to assess the temporal stability of the population and identified the spatial heterogeneity through a Local Index of Spatial Autocorrelation analysis. The GLMs showed that the abundance distribution was mainly influenced by the abundance of griffon vultures (Gyps fulvus) and cattle at a regional scale. Nonparametric comparisons showed that the presence of wind farms had a significant negative effect on local breeding pairs abundance, but that supplementary feeding stations and food resource-related variables had a positive impact. In light of these findings, we recommend a hierarchical approach in future conservation programs involving actions promoting regional-scale food resource availability and highlight the need to address the negative impact of wind farms at local levels.
Collapse
Affiliation(s)
- Catuxa Cerecedo-Iglesias
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de la Recerca de la Biodiversitat i (IRBIO), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (J.L.P.); (A.H.-M.); (J.R.)
| | - Joan Lluís Pretus
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de la Recerca de la Biodiversitat i (IRBIO), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (J.L.P.); (A.H.-M.); (J.R.)
| | - Antonio Hernández-Matías
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de la Recerca de la Biodiversitat i (IRBIO), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (J.L.P.); (A.H.-M.); (J.R.)
| | - Ainara Cortés-Avizanda
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Avenida Reina Mercedes 6, 41012 Seville, Spain;
- Estacion Biologica Doñana, CSIC, Avenida Americo Vespucio 26, Isla de la Cartuja, 41012 Seville, Spain
| | - Joan Real
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de la Recerca de la Biodiversitat i (IRBIO), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (J.L.P.); (A.H.-M.); (J.R.)
| |
Collapse
|
7
|
Oliva-Vidal P, Martínez JM, Sánchez-Barbudo IS, Camarero PR, Colomer MÀ, Margalida A, Mateo R. Second-generation anticoagulant rodenticides in the blood of obligate and facultative European avian scavengers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120385. [PMID: 36257565 DOI: 10.1016/j.envpol.2022.120385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The widespread use of second-generation anticoagulant rodenticides (SGARs) and their high persistence in animal tissues has led to these compounds becoming ubiquitous in rodent-predator-scavenger food webs. Exposure to SGARs has usually been investigated in wildlife species found dead, and despite growing evidence of the potential risk of secondary poisoning of predators and scavengers, the current worldwide exposure of free-living scavenging birds to SGARs remains scarcely investigated. We present the first active monitoring of blood SGAR concentrations and prevalence in the four European obligate (i.e., vultures) and facultative (red and black kites) avian scavengers in NE Spain. We analysed 261 free-living birds and detected SGARs in 39.1% (n = 102) of individuals. Both SGAR prevalence and concentrations (ΣSGARs) were related to the age and foraging behaviour of the species studied. Black kites showed the highest prevalence (100%), followed by red kites (66.7%), Egyptian (64.2%), bearded (20.9%), griffon (16.9%) and cinereous (6.3%) vultures. Overall, both the prevalence and average ΣSGARs were higher in non-nestlings than nestlings, and in species such as kites and Egyptian vultures foraging in anthropic landscapes (e.g., landfill sites and livestock farms) and exploiting small/medium-sized carrions. Brodifacoum was most prevalent (28.8%), followed by difenacoum (16.1%), flocoumafen (12.3%) and bromadiolone (7.3%). In SGAR-positive birds, the ΣSGAR (mean ± SE) was 7.52 ± 0.95 ng mL-1; the highest level detected being 53.50 ng mL-1. The most abundant diastereomer forms were trans-bromadiolone and flocoumafen, and cis-brodifacoum and difenacoum, showing that lower impact formulations could reduce secondary exposures of non-target species. Our findings suggest that SGARs can bioaccumulate in scavenging birds, showing the potential risk to avian scavenging guilds in Europe and elsewhere. We highlight the need for further studies on the potential adverse effects associated with concentrations of SGARSs in the blood to better interpret active monitoring studies of free-living birds.
Collapse
Affiliation(s)
- Pilar Oliva-Vidal
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain; Department of Animal Science, Faculty of Life Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | - José María Martínez
- Gobierno de Aragón, Subdirección General de Desarrollo Rural y Sostenibilidad, Departamento Medio Ambiente, C/ General Lasheras 8, E-22003 Huesca, Spain
| | - Inés S Sánchez-Barbudo
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| | - Pablo R Camarero
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| | - Mª Àngels Colomer
- Department of Mathematics, Faculty of Life Sciences and Engineering, University of Lleida, Avda. Alcalde Rovira Roure, 191, 25198, Spain
| | - Antoni Margalida
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain; Pyrenean Institute of Ecology (CSIC), Avda. Nuestra Señora de la Victoria, 12, 22700, Jaca, Spain
| | - Rafael Mateo
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13005, Ciudad Real, Spain
| |
Collapse
|
8
|
Buechley ER, Murgatroyd M, Ruffo AD, Bishop RC, Christensen T, Marra PP, Sillett TS, Şekercioğlu ÇH. Declines in scavenging by endangered vultures in the Horn of Africa. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Evan R. Buechley
- HawkWatch International 2240 South 900 East Salt Lake City UT 84106 USA
| | - Megan Murgatroyd
- HawkWatch International 2240 South 900 East Salt Lake City UT 84106 USA
| | - Alazar Daka Ruffo
- Addis Ababa University, Faculty of Natural Science, Department of Zoological Sciences Ethiopia
| | - Rebecca C. Bishop
- School of Biological Sciences University of Utah 257 S 1400 E Salt Lake City UT 84112 USA
| | - Tara Christensen
- School of Biological Sciences University of Utah 257 S 1400 E Salt Lake City UT 84112 USA
| | - Peter P. Marra
- Department of Biology and McCourt School of Public Policy Georgetown University 37th and O Streets NW Washington DC 20057 USA
| | - T. Scott Sillett
- Migratory Bird Center, Smithsonian Conservation Biology Institute National Zoological Park, MRC 5503 Washington DC 20013‐7012
| | | |
Collapse
|
9
|
López-García A, Sanz-Aguilar A, Aguirre JI. The trade-offs of foraging at landfills: Landfill use enhances hatching success but decrease the juvenile survival of their offspring on white storks (Ciconia ciconia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146217. [PMID: 33714819 DOI: 10.1016/j.scitotenv.2021.146217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
During the last decades, landfills have become a valuable food source for wildlife, being in some cases determinants of large avian population increases. Superabundant food resources at landfills can increase reproductive and/or survival parameters; however, negative effects such as intoxication, plastic ingestion, skeletal deformities, unbalanced oxidative stress, and other health problems have also been reported. White stork (Ciconia ciconia) commonly benefits from landfill resources. Here, we evaluate potential landfill effects on demographic parameters (reproduction and offspring survival) at the individual level in a single population. Our results show that a more intense use of landfills by breeders has a positive effect on hatching success but a negative effect on juvenile survival probability after emancipation, at least during the first year of life. High amount of food and proximity to landfill may explain their beneficial effect on reproductive parameters. On the other hand, poor quality food, pollutants, and pathogens acquired during early development from a diet based on refuse may be responsible for reduced future survival probability. Consequently, both positive and negative effects were detected, being foraging at landfills at low to medium levels the better strategy. Although our study shows that intense foraging on rubbish can imply both costs and benefits at an individual level, the benefits of superabundant food provisioning observed at population level by other studies cannot be ignored. Management actions should be designed to improve natural food resources, reduce non-natural mortality and/or human disturbances to guarantee the species viability under current European Union regulations designed to ban open-air landfills in a near future.
Collapse
Affiliation(s)
- Alejandro López-García
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain.
| | - Ana Sanz-Aguilar
- Animal Demography and Ecology Unit, IMEDEA (CSIC-UIB), Miquel Marquès 21, 07190 Esporles, Spain; Applied Zoology and Conservation Group, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma, Spain
| | - José I Aguirre
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain
| |
Collapse
|
10
|
Pineda-Pampliega J, Ramiro Y, Herrera-Dueñas A, Martinez-Haro M, Hernández JM, Aguirre JI, Höfle U. A multidisciplinary approach to the evaluation of the effects of foraging on landfills on white stork nestlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145197. [PMID: 33631567 DOI: 10.1016/j.scitotenv.2021.145197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The use of landfills as foraging areas by white storks (Ciconia ciconia) is a recent well-known behaviour. While several studies have highlighted positive effects at a populational level others suggest that the presence of pollutants, pathogens and the lower presence of antioxidants in the food could pose a health risk for individuals. The objective of this study was to evaluate potential effects of the use of landfills as a food resource on the physiology and health of white stork nestlings, by a multidisciplinary approach based on the analysis of nutritional status, body condition, blood parameters, oxidative stress balance and the presence of pathogens. Results showed better body condition in individuals associated with landfills compared to the ones feeding on natural resources, as well as better nutritional status, as indicated by higher levels of albumin, cholesterol, and triglycerides in plasma. As many pollutants have a pro-oxidant effect, we evaluated oxidative stress balance, with no differences in the indicators of damage except for methaemoglobin (metHb), significantly higher in nestlings associated with landfill-origin food. Regarding antioxidants, GSH was higher in nestlings associated with landfills, which may suggest a hormetic response induced potentially by the presence of pollutants in waste. Nestlings fed food from landfills also had a higher presence of Escherichia coli with a multiresistant phenotype to antibiotics. In conclusion, our results show that nestlings fed with a higher proportion of food from landfills present a better nutritional status and body condition than those fed with a higher proportion of natural diet, being the only indicators of negative effects of the use of this food resource the higher percentage of metHb in the peripheral blood and the presence of antibiotic-resistant E. coli.
Collapse
Affiliation(s)
- Javier Pineda-Pampliega
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain..
| | - Yolanda Ramiro
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Amparo Herrera-Dueñas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Monica Martinez-Haro
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF). Centro de Investigación Agroambiental El Chaparrillo, Ciudad Real, Spain
| | | | - José I Aguirre
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Ursula Höfle
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain
| |
Collapse
|
11
|
Ballejo F, Plaza P, Speziale KL, Lambertucci AP, Lambertucci SA. Plastic ingestion and dispersion by vultures may produce plastic islands in natural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142421. [PMID: 33035984 DOI: 10.1016/j.scitotenv.2020.142421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 05/04/2023]
Abstract
Rubbish dumps can become an important environmental source of plastic. Several species feed on organic waste from these sites, but at the same time are exposed to non-organic materials. Species that can gather food in these sites might at the same time disperse waste consumed, but this has rarely been evaluated. We compare the occurrence of plastic debris in regurgitated pellets of three sympatric vultures from northwest Patagonia, Andean condors (Vultur gryphus), black vultures (Coragyps atratus) and turkey vultures (Cathartes aura), foraging in different degrees of humanized sites. We also evaluate the influence of rubbish dumps in the presence of plastic debris in pellets of the studied species and their potential role in spreading plastic to the environment. Most synthetic material present in pellets was plastic. Pellets of Andean condors, which avoid disturbed anthropic sites in this area, showed almost no plastic debris compared with the other sympatric vulture species, suggesting an influence of the foraging habits on plastic ingestion. For black and turkey vultures, we found that rubbish dumps may be an important source of plastic. The occurrence of plastic debris in pellets of black vultures sampled in 2010 and 2020 increased, probably associated with the increase in urbanization and waste production in the study area. Avian scavengers were exposed to and are able to transport plastic to distant communal roosts generating "plastic islands". It is necessary to reduce plastic generation and better waste management practices to avoid species and environments to be affected by this pollutant.
Collapse
Affiliation(s)
- Fernando Ballejo
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250, R8400FRF San Carlos de Bariloche, Argentina.
| | - Pablo Plaza
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250, R8400FRF San Carlos de Bariloche, Argentina
| | - Karina L Speziale
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250, R8400FRF San Carlos de Bariloche, Argentina
| | - Agustina P Lambertucci
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250, R8400FRF San Carlos de Bariloche, Argentina
| | - Sergio A Lambertucci
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250, R8400FRF San Carlos de Bariloche, Argentina
| |
Collapse
|
12
|
Wang L, Nabi G, Yin L, Wang Y, Li S, Hao Z, Li D. Birds and plastic pollution: recent advances. AVIAN RESEARCH 2021; 12:59. [PMID: 34745642 PMCID: PMC8561682 DOI: 10.1186/s40657-021-00293-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 05/19/2023]
Abstract
Plastic waste and debris have caused substantial environmental pollution globally in the past decades, and they have been accumulated in hundreds of terrestrial and aquatic avian species. Birds are susceptible and vulnerable to external environments; therefore, they could be used to estimate the negative effects of environmental pollution. In this review, we summarize the effects of macroplastics, microplastics, and plastic-derived additives and plastic-absorbed chemicals on birds. First, macroplastics and microplastics accumulate in different tissues of various aquatic and terrestrial birds, suggesting that birds could suffer from the macroplastics and microplastics-associated contaminants in the aquatic and terrestrial environments. Second, the detrimental effects of macroplastics and microplastics, and their derived additives and absorbed chemicals on the individual survival, growth and development, reproductive output, and physiology, are summarized in different birds, as well as the known toxicological mechanisms of plastics in laboratory model mammals. Finally, we identify that human commensal birds, long-life-span birds, and model bird species could be utilized to different research objectives to evaluate plastic pollution burden and toxicological effects of chronic plastic exposure.
Collapse
Affiliation(s)
- Limin Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Ghulam Nabi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Liyun Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Yanqin Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Shuxin Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Zhuang Hao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Dongming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| |
Collapse
|
13
|
Stewart LG, Lavers JL, Grant ML, Puskic PS, Bond AL. Seasonal ingestion of anthropogenic debris in an urban population of gulls. MARINE POLLUTION BULLETIN 2020; 160:111549. [PMID: 32810669 DOI: 10.1016/j.marpolbul.2020.111549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Gulls are generalist seabirds, increasingly drawn to urban environments where many species take advantage of abundant food sources, such as landfill sites. Despite this, data on items ingested at these locations, including human refuse, is limited. Here we investigate ingestion of prey and anthropogenic debris items in boluses (regurgitated pellets) from Pacific Gulls (Larus pacificus). A total of 374 boluses were collected between 2018 and 2020 in Tasmania. Debris was present in 92.51% of boluses (n = 346), with plastic (86.63%, n = 324) and glass (64.71%, n = 242) being the most prominent types. An abundance of intact, household items (e.g., dental floss, food wrappers) suggest the gulls regularly feed at landfill sites. In addition, the boluses are deposited at a roosting site located within an important wetland, thus we propose that the gulls may be functioning as a previously unrecognised vector of anthropogenic debris from urban centres to aquatic environments.
Collapse
Affiliation(s)
- Lillian G Stewart
- Institute for Marine and Antarctic Studies, University of Tasmania, School Road, Newnham, Tasmania 7250, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia.
| | - Megan L Grant
- Institute for Marine and Antarctic Studies, University of Tasmania, School Road, Newnham, Tasmania 7250, Australia
| | - Peter S Puskic
- Institute for Marine and Antarctic Studies, University of Tasmania, School Road, Newnham, Tasmania 7250, Australia
| | - Alexander L Bond
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia; Bird Group, Department of Life Sciences, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom
| |
Collapse
|
14
|
Carvalho I, Tejedor-Junco MT, González-Martín M, Corbera JA, Suárez-Pérez A, Silva V, Igrejas G, Torres C, Poeta P. Molecular diversity of Extended-spectrum β-lactamase-producing Escherichia coli from vultures in Canary Islands. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:540-547. [PMID: 32755023 DOI: 10.1111/1758-2229.12873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Antimicrobial resistance among isolates from wild animals is increasingly reported. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, and particularly Escherichia coli, have spread worldwide as one of the most common multidrug-resistant organisms. The aim of this study was to determine the carriage rate of ESBL-producing E. coli isolates and their genetic characteristics in wild vultures from the Canary Islands. Faecal samples were collected from 22 apparently healthy free-ranging (wild) vulture chicks from Lanzarote and Fuerteventura (Canary Islands) during July 2019. They were seeded in MacConkey agar supplemented with cefotaxime (2 μg ml-1 ). Colonies with typical morphology of E. coli were identified by MALDI-TOF-MS. Antimicrobial susceptibility was done by disk diffusion. Phenotypic detection of ESBL was performed by double-disk tests. The presence of blaCTX-M , blaSHV , blaTEM , blaKPC and blaOXA-48 genes, as well as mcr-1 (colistin resistance), tetA/tetB and int1 gene, was tested by PCR/sequencing. Phylogenetic groups and multilocus sequence typing (MLST) were determined by PCR/sequencing. ESBL-producing E. coli isolates were detected in 5/22 tested animals (22.7%), and all isolates (one/animal) carried blaCTX-M genes: blaCTX-M-15 (n = 3) and blaCTX-M-55 (n = 2). ESBL-positive isolates were ascribed to phylogenetic group D (two isolates), B1 (two isolates) and A (one isolate), and five sequence types were detected (ST/phylogenetic-group/ESBL): ST515/B1/CTX-M-15, ST1290/A/CTX-M-15, ST38/D/CTX-M-15, ST457/D/CTX-M-55 and ST6448/B1 /CTX-M-55; this suggests a genetic diversity among these isolates. Three CTX-M-15-producing isolates contained the blaTEM gene and one the tetA gene. To our knowledge, this appears to be the first report of ESBL-producing E. coli in vulture chicks from the Canary Islands.
Collapse
Affiliation(s)
- Isabel Carvalho
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, Monte da Caparica, Portugal
- Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Margarita González-Martín
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Juan Alberto Corbera
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Animal Pathology, Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Alejandro Suárez-Pérez
- Department of Animal Pathology, Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, Monte da Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, Monte da Caparica, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, Monte da Caparica, Portugal
| |
Collapse
|
15
|
Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures ( Neophron percnopterus majorensis). Animals (Basel) 2020; 10:ani10060970. [PMID: 32503222 PMCID: PMC7341323 DOI: 10.3390/ani10060970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Antibiotics are used to prevent and treat bacterial infections in both animals and humans. If bacteria become resistant to them, in particular as the result of the misuse and overuse of antibiotics, the infections that they cause are harder to treat. Therefore, the detection of microorganisms resistant to antimicrobial drugs is an important issue, considering the interaction among domestic animals, human, the ecosystem and wild animals. Wild birds, and particularly birds-of-prey, are sentinels, reservoirs, spreaders and a source of infection for human beings and other animals. Wildlife can also act as an asymptomatic reservoir for zoonotic bacteria (e.g., Salmonella). The presence of antimicrobial-resistant microorganisms was investigated for a period of three years and the differences between chicks in the nest (n = 81) and adult and immature birds (n = 61) were analyzed. Gram negative bacteria were isolated in all the samples. Escherichia coli was obtained in 80.28% of the samples, where the prevalence of Salmonella in our study was 6.3%. The results of our study support the idea that raptors could act as reservoirs of Salmonella and antimicrobial-resistant bacteria, posing a risk not only to wildlife but also to livestock and the human population. Abstract Due to their predatory habits, raptors may serve as indicators of the presence of antimicrobial-resistant bacteria in the environment, but they also represent a public health risk for livestock and humans because they can act as reservoirs, sources and spreaders of these bacteria. Our objective was to determine the presence of antimicrobial-resistant bacteria in cloacal samples of Canarian Egyptian vultures (Neophron percnopterus majorensis), an endemic bird of prey. One hundred and forty-two cloacal swabs were obtained; Escherichia coli was isolated from 80.28% and Salmonella from 6.3% of these samples. Low levels of susceptibility to ampicillin, tetracycline and trimethoprim/sulfamethoxazole were found. About 20% of the isolates were resistant or presented intermediate susceptibility to fluoroquinolones. Surprisingly, we found isolates resistant to imipenem (6.96%). Isolates from chicks were more susceptible to antimicrobial drugs than adult and immature birds. About 50% of E. coli isolates were resistant to ampicillin, tetracycline and trimethoprim/sulfamethoxazole, and about 20% to piperacillin, enrofloxacin and marbofloxacin. High percentages of isolates of Salmonella were found to be resistant to cephalexin (88%) and aminoglycosides (greater than 77%). Our results support the idea that raptors could act as reservoirs of Salmonella and antimicrobial-resistant bacteria, posing a risk not only to wildlife but also to livestock and the human population, thus reinforcing the need to minimize the exposure of wildlife to antimicrobial agent through human and livestock waste.
Collapse
|
16
|
Leclaire S, Bourret V, Pineaux M, Blanchard P, Danchin E, Hatch SA. Red coloration varies with dietary carotenoid access and nutritional condition in kittiwakes. ACTA ACUST UNITED AC 2019; 222:jeb.210237. [PMID: 31597729 DOI: 10.1242/jeb.210237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
Abstract
Carotenoid-based ornaments are common signaling features in animals. Although the mechanisms that link color-based signals to individual condition is key to understanding the evolution and function of these ornaments, they are most often poorly known. Several hypotheses have been posited. They include: (i) the role of foraging abilities on carotenoid acquisition and thereby carotenoid-based ornaments, and (ii) the role of internal processes linked to individual quality on the allocation and conversion of carotenoids in integuments. Here, we tested the influence of dietary carotenoid access versus internal process on gape coloration in black-legged kittiwakes (Rissa tridactyla). This seabird displays a vibrant red gape, whose coloration varies with individual quality in males and is due to the deposition of red ketocarotenoids, such as astaxanthin. We decreased hydroxycarotenoid and ketocarotenoid levels in plasma, but increased efficiency in internal processes linked to nutritional condition, by supplementing breeding males with capelin, a natural energy-rich fish prey. We found that, despite having lower carotenoid levels in plasma, supplemented birds developed redder coloration than control birds, but only in the year when dietary levels of astaxanthin in the natural diet were low. In contrast, in the astaxanthin-rich year, supplemented males had a less-red gape than unsupplemented birds. These results suggest that inter-individual differences in internal processes may be sufficient to maintain the honesty of gape coloration under conditions of low dietary astaxanthin levels. Nonetheless, when inter-individual variations in dietary astaxanthin levels are elevated (such as in the crustacean-rich year), carotenoid access seems a more limiting factor to the expression of gape coloration than internal processes. Therefore, our study revealed a complex mechanism of gape color production in kittiwakes, and suggests that the main factor maintaining the condition dependency of this ornaments may vary with environmental conditions and diet composition.
Collapse
Affiliation(s)
- Sarah Leclaire
- Laboratoire Évolution et Diversité Biologique, UMR5174 (CNRS, Université Paul Sabatier), 118 route de Narbonne, 31062 Toulouse, France
| | - Vincent Bourret
- Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB30ES, UK
| | - Maxime Pineaux
- Laboratoire Évolution et Diversité Biologique, UMR5174 (CNRS, Université Paul Sabatier), 118 route de Narbonne, 31062 Toulouse, France
| | - Pierrick Blanchard
- Laboratoire Évolution et Diversité Biologique, UMR5174 (CNRS, Université Paul Sabatier), 118 route de Narbonne, 31062 Toulouse, France
| | - Etienne Danchin
- Laboratoire Évolution et Diversité Biologique, UMR5174 (CNRS, Université Paul Sabatier), 118 route de Narbonne, 31062 Toulouse, France
| | - Scott A Hatch
- Institute for Seabird Research and Conservation, 12850 Mountain Place, Anchorage, AK 99516, USA
| |
Collapse
|
17
|
Ortiz-Santaliestra ME, Tauler-Ametller H, Lacorte S, Hernández-Matías A, Real J, Mateo R. Accumulation of pollutants in nestlings of an endangered avian scavenger related to territory urbanization and physiological biomarkers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1801-1809. [PMID: 31299509 DOI: 10.1016/j.envpol.2019.06.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
We monitor pollutant accumulation and investigate associated changes at the physiological level within the population of an obligate avian scavenger, the Egyptian Vulture (Neophron percnopterus), from Catalonia (NE Spain). This population is expanding its range, presumably because of the use of human waste disposal sites as food resource. We hypothesized that habitat urbanization, presumably associated with feeding from human wastes, could influence the accumulation of persistent organic pollutants and metals. The aim of this study was to explore the relationship between accumulated pollutants and biochemical parameters in nestling blood. We used the proportion of urban surface within an 8 km radius of each nest as a proxy to study the relationship between anthropic influence and pollutant accumulation. Observed blood levels of metals, organochlorine pesticides, polychlorinated biphenyls (PCBs), per- and polyfluoroalkylated substances (PFAS) and polybrominated diphenyl ethers (PBDEs) were relatively low, as expected for nestling individuals due to short-term exposures. CB-180 and PBDEs were associated with variations in blood biochemistry parameters; hexa-BDEs appeared positively associated with activities of the enzymes aspartate aminotransferase and lactate dehydrogenase, whereas CB-180 accumulation was associated with an increased activity of creatine phosphokinase and elevated glutathione levels. Increased CB-180 levels were also related to decreased blood concentrations of calcium, cholesterol, α-tocopherol and lutein. A proportion of urban surfaces as low as 6.56% within a radius of 8 km around the nest appears related to the accumulation of CB-180, the majority of analysed PFAS and of PBDE congeners 99 and 209, and increased urbanization was also associated with decreased plasma levels of α-tocopherol and carotenoids. These associations suggest that changes in blood profiles of vitamins, carotenoids or other analytes, despite related to increased plasma levels of CB-180, would be consequence of exploitation of artificial food sources rather than of a direct effect of the pollutants.
Collapse
Affiliation(s)
- Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Helena Tauler-Ametller
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals and Institut de la Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Antonio Hernández-Matías
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals and Institut de la Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain; Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Joan Real
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals and Institut de la Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|