1
|
Guo Y, Qin H, He M, Han G. A comparative evaluation of rehabilitation approaches for ecological recovery in arid limestone mine sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123876. [PMID: 39806729 DOI: 10.1016/j.jenvman.2024.123876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Limestone mining in arid regions, particularly within fragile environments, leads to severe environmental pollution and ecological degradation. Developing a scientifically sound and effective ecological rehabilitation strategy is therefore critical. This study constructed a three-dimensional ecological rehabilitation model integrating soil amelioration and vegetation reconstruction. Seven resilient shrub species (Caragana korshinskii, Corethrodendron scoparium, Atriplex canescens, Calligonum mongolicum, Caryopteris mongholica, Nitraria tangutorum, and Tamarix laxa) and four soil matrix reconstruction treatments-sand:soil:organic fertilizer (8:1:1), sand:soil:compound fertilizer (8:1:1), sand:soil (8:2), and soil:organic fertilizer (9:1)-were evaluated for their effects on soil, plant, and microbial indicators. A comprehensive evaluation system was established to identify the optimal rehabilitation approach. The results indicate that organic fertilizer treatments reduced soil EC by 16.39% and increased microbial biomass carbon (MBC), MBC/nitrogen (MBC/MBN), and MBC/phosphorus (MBC/MBP) by over 41.50%, while improving the height and canopy of C. korshinskii by 71.05% and 180.00%, respectively. Plant species significantly influenced soil properties, with T. laxa achieving the highest soil organic matter and total nitrogen content. Soil matrix amendments and plant species both significantly affected microbial β-diversity. Ultimately, the combination of T. laxa and the sand:soil:organic fertilizer treatment was identified as the optimal rehabilitation strategy. These findings provide critical insights for rehabilitating degraded limestone mine areas in arid regions.
Collapse
Affiliation(s)
- Yuanshang Guo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Resources and environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huijun Qin
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Mingzhu He
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Guojun Han
- College of Resources and environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Ma X, Wei Z, Wang X, Li C, Feng X, Shan J, Yan X, Ji R. Microplastics from polyvinyl chloride agricultural plastic films do not change nitrogenous gas emission but enhance denitrification potential. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135758. [PMID: 39244981 DOI: 10.1016/j.jhazmat.2024.135758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The effects of microplastics (MPs) from agricultural plastic films on soil nitrogen transformation, especially denitrification, are still obscure. Here, using a robotized flow-through system, we incubated vegetable upland soil cores for 66 days with MPs from PE mulching film (F-PE) and PVC greenhouse film (F-PVC) and directly quantified the emissions of nitrogenous gases from denitrification under oxic conditions, as well as the denitrification potential under anoxic conditions. The impact of MPs on soil nitrogen transformation was largely determined by the concentration of the additive phthalate esters (PAEs) containing in the MPs. The F-PE MPs with low level of PAEs (about 0.006 %) had no significant effect on soil mineral nitrogen content and nitrogenous gas emissions under oxic conditions. In contrast, the F-PVC MPs with high levels of PAEs (about 11 %) reduced soil nitrate content under oxic conditions, probably owing to promoted microbial assimilation of nitrogen, as the emissions of denitrification products (N2, NO, and N2O) was not affected. However, the F-PVC MPs significantly enhanced the denitrification potential of the soil due to the increased abundance of denitrifiers under anoxic conditions. These findings highlight the disturbance of MPs from agricultural films, particularly the additive PAEs on nitrogen transformation in soil ecosystems.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Liu T, Tong D, Chen S, Ning C, Zhang X, Filimonenko E, Aloufi AS, Cai W, Farooq A, Liu G, Kuzyakov Y, Yan W. Fertilization shapes microbial life strategies, carbon and nitrogen metabolic functions in Camellia oleifera soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122896. [PMID: 39423612 DOI: 10.1016/j.jenvman.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/13/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Mineral and organic fertilizers as well as microbial inoculations are crucial to maintain and to improve soil health and quality, ecosystem functions, and fruit yield in Camellia oleifera plantations. However, how these fertilizers shape the life strategies and functions of microbial communities in soil is unclear. Here, we conducted a one-year field experiment with three types of fertilizers: mineral (NPK), manure (Man), and microbial (MicrF), and analyzed soil properties, bacterial and fungal communities to assess microbial life strategies, functional traits and their determinants. The application of MicrF strongly increased the diversity of both soil bacterial (by 6.4%) and fungal communities (by 23%). Organic matter inputs from Man and MicrF had greater effects on the life strategies of bacteria than fungi: the dominant r-strategy bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased with Man and MicrF, but K-strategists (Acidobacteria) decreased. Conversely, the abundance of r-strategy fungi (Ascomycota) decreased, but that of K-fungi (Basidiomycota) increased. Predictions of the functions indicated that microbial fertilization accelerated the bacterial carbohydrates, carbon and nitrogen metabolism, while also increasing the prevalence of wood saprotrophic fungi. The changes in the taxonomic and functional characteristics of the microbial communities induced priming effects by co-metabolism, which were mainly regulated by contents of soil organic carbon, available phosphorus, and ammonium nitrogen, as well as carbon to nitrogen ratio. The application of MicrF is an effective approach to increase the diversity and multifunctionality of soil microbial communities in Camellia oleifera plantations, including organic matter decomposition, carbon and nitrogen metabolism. These findings provide valuable insights into the fertilizer regimes based on microbial ecological strategies and functional profiles in Camellia oleifera plantations.
Collapse
Affiliation(s)
- Ting Liu
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Lutou National Station for Scientific Observation and Research of Forest Ecosystems, Yueyang, 414000, Hunan, China.
| | - Dandan Tong
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Shu Chen
- School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Carbondale, IL, 62901, United States
| | - Chen Ning
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xuyuan Zhang
- Lutou National Station for Scientific Observation and Research of Forest Ecosystems, Yueyang, 414000, Hunan, China
| | - Ekaterina Filimonenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, 625003, Russia
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Wenyan Cai
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Asma Farooq
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Gaoqiang Liu
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yakov Kuzyakov
- Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia; Institute of Environmental Sciences, Kazan Federal University, Kazan, 420049, Russia; Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen, 37077, Germany
| | - Wende Yan
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Lutou National Station for Scientific Observation and Research of Forest Ecosystems, Yueyang, 414000, Hunan, China.
| |
Collapse
|
4
|
Li Y, Xu G, Yu Y. Freeze-thaw aged polyethylene and polypropylene microplastics alter enzyme activity and microbial community composition in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134249. [PMID: 38603909 DOI: 10.1016/j.jhazmat.2024.134249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
In cold regions, microplastics (MPs) in the soil undergo freeze-thaw (FT) aging process. Little is known about how FT aged MPs influence soil physico-chemical properties and microbial communities. Here, two environmentally relevant concentrations (50 and 500 mg/kg) of 50 and 500 µm polyethylene (PE) and polypropylene (PP) MPs treated soils were subjected to 45-day FT cycles (FTCs). Results showed that MPs experienced surface morphology, hydrophobicity and crystallinity alterations after FTCs. After 45-day FTCs, the soil urease (SUE) activity in control (MPs-free group that underwent FTCs) was 33.49 U/g. SUE activity in 50 µm PE group was reduced by 19.66 %, while increased by 21.16 % and 37.73 % in 500 µm PE and PP groups compared to control. The highest Shannon index was found in 50 µm PP-MPs group at 50 mg/kg, 2.26 % higher than control (7.09). Compared to control (average weighted degree=8.024), all aged MPs increased the complexity of network (0.19-1.43 %). Bacterial biomarkers of aged PP-MPs were associated with pollutant degradation. Aged PP-MPs affected genetic information, cellular processes, and disrupted the biosynthesis of metabolites. This study provides new insights into the potential hazards of MPs after FTCs on soil ecosystem in cold regions.
Collapse
Affiliation(s)
- Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
5
|
Hu X, Wang S, Feng R, Hu K. Natural organic small molecules promote the aging of plastic wastes and refractory carbon decomposition in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134043. [PMID: 38492386 DOI: 10.1016/j.jhazmat.2024.134043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Microplastics and nanoplastics are ubiquitous in rivers and undergo environmental aging. However, the molecular mechanisms of plastic aging and the in-depth effects of aging on ecological functions remain unclear in waters. The synergies of microplastics and nanoplastics (polystyrene as an example) with natural organic small molecules (e.g., natural hyaluronic acid and vitamin C related to biological tissue decomposition) are the key to producing radicals (•OH and •C). The radicals promote the formation of bubbles on plastic surfaces and generate derivatives of plastics such as monomer and dimer styrene. Nanoplastics are easier to age than microplastics. Pristine plastics inhibit the microbial Shannon diversity index and evenness, but the opposite results are observed for aging plastics. Pristine plastics curb pectin decomposition (an indicator of plant-originated refractory carbon), but aging plastics promote pectin decomposition. Microplastics and nanoplastics undergoing aging processes enhance the carbon biogeochemical cycle. For example, the increased carbohydrate active enzyme diversity, especially the related glycoside hydrolase and functional species Pseudomonas and Clostridium, contributes to refractory carbon decomposition. Different from the well-studied toxicity and aging of plastic pollutants, this study connects plastic pollutants with biological tissue decomposition, biodiversity and climate change together in rivers.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kai Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Gao L, Wang S, Xu X, Zheng J, Cai T, Jia S. Metagenomic analysis reveals the distribution, function, and bacterial hosts of degradation genes in activated sludge from industrial wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122802. [PMID: 37913976 DOI: 10.1016/j.envpol.2023.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
For comprehensive insights into the bacterial community and its functions during industrial wastewater treatment, with a particular emphasis on its pivotal role in the bioremediation of organic pollutants, this study utilized municipal samples as a control group for metagenomic analysis. This approach allowed us to investigate the distribution, function, and bacterial hosts of biodegradation genes (BDGs) and organic degradation genes (ODGs), as well as the dynamics of bacterial communities during the industrial wastewater bioprocess. The results revealed that BDGs and ODGs associated with the degradation of benzoates, biphenyls, triazines, nitrotoluenes, and chlorinated aromatics were notably more abundant in the industrial samples. Specially, genes like clcD, linC, catE, pcaD, hbaB, hcrC, and badK, involved in the peripheral pathways for the catabolism of aromatic compounds, benzoate transport, and central aromatic intermediates, showed a significantly higher abundance of industrial activated sludge (AS) than municipal AS. Additionally, the BDG/ODG co-occurrence contigs in industrial samples exhibited a higher diversity in terms of degradation gene carrying capacity. Functional analysis of Clusters of Orthologous Groups (COGs) indicated that the primary function of bacterial communities in industrial AS was associated with the category of "metabolism". Furthermore, the presence of organic pollutants in industrial wastewater induced alterations in the bacterial community, particularly impacting the abundance of key hosts harboring BDGs and ODGs (e.g. Bradyrhizobium, Hydrogenophaga, and Mesorhizobium). The specific hosts of BDG/ODG could explain the distribution characteristics of degradation genes. For example, the prevalence of the Adh1 gene, primarily associated with Mesorhizobium, was notably more prevalent in the industrial AS. Overall, this study provides valuable insights into the development of more effective strategies for the industrial wastewater treatment and the mitigation of organic pollutant contamination.
Collapse
Affiliation(s)
- Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinli Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Dong D, Guo Z, Wu F, Yang X, Li J. Plastic residues alter soil microbial community compositions and metabolite profiles under realistic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167352. [PMID: 37769723 DOI: 10.1016/j.scitotenv.2023.167352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Wide usage of plastic coupled with mismanagement has created a humongous environmental hazard threatening entire ecosystems. To date, the potential effects of plastic debris-induced soil nutrition substance changes and the relevant microbial metabolic behavior remain unclear. Here, we studied the effect of plastic films polyethylene and polylactic acid in differential soil environments (farmland, woodland, and wetland) for 120 days. Soil enzyme activities (urease, neutral phosphatase, and catalase) and nutrition substance (NH4+-N, available P, available K, and soil organic matter) present obvious variations in polylactic acid groups compared to polyethylene-treated samples. 16S rRNA gene sequencing indicates that several bacteria abundance such as Bacteroidales, Actinobacteriota, Nitrososphaeraceae, Pyrinomonadalcs, Muribaculaceae, exhibited obvious up-regulation or down-regulation, and simultaneously, the carbon, nitrogen, and phosphorus cycling relevant species Bryobacter, Bradyrhizobium, and Sphingomonas, expressed wider margin of down-regulation in abundance in plastic treatment soil samples. As a result, the abundance of metabolites including sugar, amino acid, and fatty acids, which may associated with nutrition substance metabolic pathways, were significantly altered in the stress of plastic. These findings provide valuable information on the environmental effects of plastics, and the relationships of subsequent nutrition substance changes and microbial metabolic behavior.
Collapse
Affiliation(s)
- Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China.
| | - Feiyan Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Jie Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
8
|
Li J, Yang L, Yu S, Ding A, Zuo R, Yang J, Li X, Wang J. Environmental stressors altered the groundwater microbiome and nitrogen cycling: A focus on influencing mechanisms and pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167004. [PMID: 37704146 DOI: 10.1016/j.scitotenv.2023.167004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Nitrogen cycling, as an important biogeochemical process in groundwater, strongly impacts the energy and matter flow of groundwater ecology. Phthalate esters (PAEs) were screened as key environmental stressors in the groundwater of Beijing, contributing to the alteration of microbial community structure and functions; thus, it could be deduced that these stressors might influence nitrogen cycling that is almost exclusively mediated by microorganisms. Identification of the influences of PAEs on groundwater nitrogen cycling and exploration of the potential influence mechanisms and pathways are vital but still challenging. This study explored the influence mechanisms and pathways of the environmental stressor PAE on nitrogen cycling in groundwater collected from a typical monitoring station in Beijing based on high-throughput sequencing and bioinformatics analysis combined with mediation analysis methods. The results suggested that among the 5 detected PAEs, dimethyl phthalate and diethyl phthalate significantly negatively impacted nitrogen cycling processes, especially nitrogen fixation and denitrification processes (p < 0.05), in groundwater. Their influences were fully or partially mediated by functional microorganisms, particularly assigned keystone genera (such as Dechloromonas, Aeromonas and Noviherbaspirillum), whose abundance was significantly inhibited by these PAEs via dysregulation of carbohydrate metabolism and activation of defense mechanisms. These findings confirmed that the influences of environmental stressors PAEs on nitrogen cycling in groundwater might be mediated by the "PAE stress-groundwater microbiome-nitrogen cycling alteration" pathway. This study may advance the understanding of the consequences of environmental stressors on groundwater ecology and support the ecological hazard assessment of groundwater stressors.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lei Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shihang Yu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Aizhong Ding
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jie Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaofei Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| |
Collapse
|
9
|
Zhang Y, Gao Y, Xi B, Yuan Y, Tan W. Influence of leachate microenvironment on the occurrence of phthalate esters in landfills. CHEMOSPHERE 2023; 343:140278. [PMID: 37758088 DOI: 10.1016/j.chemosphere.2023.140278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Phthalate esters (PAEs) are added to various products as plasticizers. Plastic waste containing PAEs enters landfills as they age with use. However, the influence of microenvironmental changes on the occurrence of PAEs during landfill stabilization is still unknown. In this study, we evaluated the relationship between the physical and chemical properties of leachate, the structure of bacterial communities and the chemical structure of dissolved organic matter (DOM), and the occurrence of PAEs and the mechanism underlying their responses to changes. Landfill leachate in different stabilization states had high Cl- and NH4+ contents and its metal element (Cr, Pb, and Zn) contents generally decreased with the increase in landfill ages. Proteobacteria, Bacteroidetes, and Firmicutes were important phyla and had an average relative abundance of 68.63%. The lignin/carboxylate-rich alicyclic molecule structure was the main component of DOM (56%-64%). Of the 6-priority controlled PAEs in leachate, di-n-butyl phthalate was the most abundant (1046 μg L-1), while butyl phthalate was not detected. The results showed that pH, the relative abundance of Chloroflexi, and the value of SUVA254 can directly influence the occurrence of PAEs in leachate. The positive and negative effects vary depending on the PAE content and molecular weight. DBP and DEHP have higher environmental risks in the aquatic system. These results are intended to provide a scientific basis for the evolutionary characterization of the microenvironment in complex environmental systems and the control of novel contaminants, such as PAEs.
Collapse
Affiliation(s)
- Yifan Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
10
|
Zhang Y, Gao Y, Xi B, Li Y, Ge X, Gong Y, Chen H, Chen J, Tan W, Yuan Y. Full life cycle and sustainability transitions of phthalates in landfill: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:215-229. [PMID: 37717503 DOI: 10.1016/j.wasman.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/26/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Phthalates (PAEs) are added to various products as a plasticizer. As these products age and are disposed of, plastic waste containing PAEs enters the landfill. The landfill environment is complicated and can be regarded as a "black box". Also, PAEs do not bind with the polymer matrix. Therefore, when a series of physical chemistry and biological reactions occur during the stabilization of landfills, PAEs leach from waste and migrate to the surrounding environmental media, thereby contaminating the surrounding soil, water ecosystems, and atmosphere. Although research on PAEs has achieved progress over the years, they are mainly concentrated on a particular aspect of PAEs in the landfill; there are fewer inquiries on the life cycle of PAEs. In this study, we review the presence of PAEs in the landfill in the following aspects: (1) the main source of PAEs in landfills; (2) the impact of the landfill environment on PAE migration and conversion; (3) distribution and transmedia migration of PAEs in aquatic ecosystems, soils, and atmosphere; and (4) PAE management and control in the landfill and future research direction. The purpose is to track the life cycle of PAEs in landfills, provide scientific basis for in-depth understanding of the migration and transformation of PAEs and environmental pollution control in landfills, and new ideas for the sustainable utilization of landfills.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoyuan Ge
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Lan Zhou Jiao Tong University, Lanzhou 730070, China
| | - Yi Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiru Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; North China University of Water Resources and Electric Power, Zheng Zhou 450046, China
| | - Jiabao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Zhou Z, Xia L, Wang X, Wu C, Liu J, Li J, Lu Z, Song S, Zhu J, Montes ML, Benzaazoua M. Coal slime as a good modifier for the restoration of copper tailings with improved soil properties and microbial function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109266-109282. [PMID: 37759064 DOI: 10.1007/s11356-023-30008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
In recent years, the solid wastes from the coal industry have been widely used as soil amendments. Nevertheless, the impact of utilizing coal slime for copper tailing restoration in terms of plant growth, physicochemical characteristics of the tailing soil, and microbial succession remains uncertain.Herein, the coal slime was employed as a modifier into copper tailings. Their effect on the growth and physiological response of Ryegrass, and the soil physicochemical properties as well as the bacterial community structure were investigated. The results indicated that after a 30-day of restoration, the addition of coal slime at a ratio of 40% enhanced plant growth, with a 21.69% rise in chlorophyll content, and a 62.44% increase in peroxidase activity. The addition of 40% coal slime also increased the content of nutrient elements in copper tailings. Following a 20-day period of restoration, the concentrations of available copper and available zinc in the modified tailings decreased by 39.6% and 48.51%, respectively, with 40% of coal slime added. In the meantime, there was an observed augmentation in the species diversity of the bacterial community in the modified tailings. The alterations in both community structure and function were primarily influenced by variations in pH value, available nitrogen, phosphorus, potassium, and available copper. The addition of 40% coal slime makes the physicochemical properties and microbial community evolution of copper tailings reach a balance point. The utilization of coal slime has the potential to enhance the physicochemical characteristics of tailings and promote the proliferation of microbial communities, hence facilitating the soil evolution of two distinct solid waste materials. Consequently, the application of coal slime in the restoration of heavy metal tailings is a viable approach, offering both cost-effectiveness and efficacy as an enhancer.
Collapse
Affiliation(s)
- Zhou Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China.
| | - Xizhuo Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Chenyu Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiazhi Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jianbo Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
- Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, Mexico
| | - Zijing Lu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiang Zhu
- Hubei Sanxin Gold Copper Limited Company, Huangshi, Hubei, China
| | | | - Mostafa Benzaazoua
- Mohammed VI Polytechnic University (UM6P), Geology and Sustainable Mining, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| |
Collapse
|
12
|
Jiao G, Huang Y, Dai H, Gou H, Li Z, Shi H, Yang J, Ni S. Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6177-6198. [PMID: 37269417 DOI: 10.1007/s10653-023-01626-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
Metal mineral mining results in releases of large amounts of heavy metals into the environment, and it is necessary to better understand the response of rhizosphere microbial communities to simultaneous stress from multiple heavy metals (HMs), which directly impacts plant growth and human health. In this study, by adding different concentrations of cadmium (Cd) to a soil with high background concentrations of vanadium (V) and chromium (Cr), the growth of maize during the jointing stage was explored under limiting conditions. High-throughput sequencing was used to explore the response and survival strategies of rhizosphere soil microbial communities to complex HM stress. The results showed that complex HMs inhibited the growth of maize at the jointing stage, and the diversity and abundance of maize rhizosphere soil microorganisms were significantly different at different metal enrichment levels. In addition, according to the different stress levels, the maize rhizosphere attracted many tolerant colonizing bacteria, and cooccurrence network analysis showed that these bacteria interacted very closely. The effects of residual heavy metals on beneficial microorganisms (such as Xanthomonas, Sphingomonas, and lysozyme) were significantly stronger than those of bioavailable metals and soil physical and chemical properties. PICRUSt analysis revealed that the different forms of V and Cd had significantly greater effects on microbial metabolic pathways than all forms of Cr. Cr mainly affected the two major metabolic pathways: microbial cell growth and division and environmental information transmission. In addition, significant differences in rhizosphere microbial metabolism under different concentrations were found, and this can serve as a reference for subsequent metagenomic analysis. This study is helpful for exploring the threshold for the growth of crops in toxic HM soils in mining areas and achieving further biological remediation.
Collapse
Affiliation(s)
- Ganghui Jiao
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China.
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| | - Hao Dai
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Hang Gou
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Zijing Li
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Huibin Shi
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Jinyan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Shijun Ni
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| |
Collapse
|
13
|
Sun Q, Zhang X, Liu C, A N, Ying S, Zhang J, Zhao Y, Zhang Y, Wang Z, Shi M. The content of PAEs in field soils caused by the residual film has a periodical peak. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161078. [PMID: 36565862 DOI: 10.1016/j.scitotenv.2022.161078] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The wide use of plastic film mulch has led to the release of phthalate esters (PAEs), which seriously threatens the soil environment and the safety of crop production. However, it is unknown whether there is a maximum threshold of soil PAEs accumulation induced by plastic film residue, and the dynamic changes of soil PAEs under field conditions are still unclear. To address these issues, a field experiment was conducted to investigate the temporal fluctuations of soil PAEs content and the response of microbial community structure in the field with plastic film residue. Results showed that the content of soil PAEs fluctuated during an observation period of one year, had a periodical peak in winter and summer, and was exacerbated by the increase in the aging degree and residual amount of plastic films. The PAEs content in soil with black films was higher than the US soil allowable criteria. High-throughput sequencing analysis showed that the addition of residual film significantly increased the alpha diversity of bacterial communities, changed the structure of bacterial community, and generated significant disturbances in bacterial function. Besides, the residual film recruited more microbiota related to plastic film and PAEs degradation. Results of the present study provide insight into the dynamic variation of soil PAEs caused by plastic film residue in one year, which is important to help evaluate the pollution risk of PAEs on soils and crops caused by residual plastic film.
Collapse
Affiliation(s)
- Qing Sun
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Xinxin Zhang
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Chenrui Liu
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Nier A
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Shan Ying
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Junxin Zhang
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yujie Zhao
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yutong Zhang
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Zhaohui Wang
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mei Shi
- College of Natural Resources and Environment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Liu C, Song Q, Ao L, Zhang N, An H, Lin H, Dong Y. Highly promoted phytoremediation with endophyte inoculation in multi-contaminated soil: plant biochemical and rhizosphere soil ecological functioning behavior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89063-89080. [PMID: 35849233 DOI: 10.1007/s11356-022-21689-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Rhizosphere soil ecological functioning behavior is of critical importance for regulating phytoremediation efficiency during microbial-assisted phytoremediation for multi-heavy metal-polluted soils. In this study, Trifolium repens L. and its endophyte Pseudomonas putida were used to investigate the ecological responses of the microbe-plant-soil system in Cd, Cr, and Pb co-contaminated soil. The results showed that endophyte Pseudomonas putida significantly increased plant biomass by 22.26-22.78% and phytoremediation efficiency by 29.73-64.01%. The increased phytoremediation efficiency may be related to the improvement of photosynthetic pigment content and antioxidant enzyme activities in leaves and the enhancement of rhizosphere soil ecological functioning. With endophyte application, soil nutrient content was significantly increased and heavy metal bioavailability was enhanced that residual fraction was reduced by 3.79-12.87%. Besides, the relative abundance of ecologically beneficial rhizobacteria such as Bacteriovorax and Arthrobacter was increased by 3.04-8.53% and 0.80-1.64%, respectively. Endophyte inoculation also significantly increased all the functional genes involved in cellular processes, genetic information processing, environmental information processing, and metabolism. This study indicated that the application of endophytes has a positive effect on the biochemical responses of Trifolium repens L. and could significantly improve rhizosphere ecological functioning in multi-heavy metal contamination, which provided clear strategies for regulating phytoremediation.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Qian Song
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Linhuazhi Ao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nan Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haowen An
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
15
|
Chen W, Guo R, Wang Z, Xu W, Hu Y. Dimethyl phthalate destroys the cell membrane structural integrity of Pseudomonas fluorescens. Front Microbiol 2022; 13:949590. [PMID: 36071970 PMCID: PMC9441906 DOI: 10.3389/fmicb.2022.949590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
A Gram-negative bacteria (Pseudomonas fluorescens) was exposed to different concentrations (0, 20, and 40 mg/L) of dimethyl phthalate (DMP) for 8 h, and then Fourier transform infrared spectroscopy (FTIR) analysis, lipopolysaccharide content detection, analysis of fatty acids, calcein release test, proteomics, non-targeted metabolomics, and enzyme activity assays were used to evaluate the toxicological effect of DMP on P. fluorescens. The results showed that DMP exposure caused an increase in the unsaturated fatty acid/saturated fatty acid (UFA/SFA) ratio and in the release of lipopolysaccharides (LPSs) from the cell outer membrane (OM) of P. fluorescens. Moreover, DMP regulated the abundances of phosphatidyl ethanolamine (PE) and phosphatidyl glycerol (PG) of P. fluorescens and induced dye leakage from an artificial membrane. Additionally, excessive reactive oxygen species (ROS), malondialdehyde (MDA), and changes in antioxidant enzymes (i.e., catalase [CAT] and superoxide dismutase [SOD]) activities, as well as the inhibition of Ca2+-Mg2+-ATPase and Na+/K+-ATPase activities in P. fluorescens, which were induced by the DMP. In summary, DMP could disrupt the lipid asymmetry of the outer membrane, increase the fluidity of the cell membrane, and destroy the integrity of the cell membrane of P. fluorescens through lipid peroxidation, oxidative stress, and ion imbalance.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- Center for Ecological Research, Northeast Forestry University, Harbin, China
| | - Ruxin Guo
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Zhigang Wang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- *Correspondence: Zhigang Wang
| | - Weihui Xu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Yunlong Hu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| |
Collapse
|
16
|
Wu C, Ma Y, Wang D, Shan Y, Song X, Hu H, Ren X, Ma X, Luo J, Cui J, Ma Y. Microbiology combined with metabonomics revealing the response of soil microorganisms and their metabolic functions exposed to phthalic acid esters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113338. [PMID: 35228031 DOI: 10.1016/j.ecoenv.2022.113338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
As microplastics became the focus of global attention, the hazards of plastic plasticizers (PAEs) have gradually attracted people's attention. Agricultural soil is one of its hardest hit areas. However, current research of its impact on soil ecology only stops at the microorganism itself, and there is still lack of conclusion on the impact of soil metabolism. To this end, three most common PAEs (Dimethyl phthalate: DMP, Dibutyl phthalate: DBP and Bis (2-ethylhexyl) phthalate: DEHP) were selected and based on high-throughput sequencing and metabolomics platforms, the influence of PAEs residues on soil metabolic functions were revealed for the first time. PAEs did not significantly changed the alpha diversity of soil bacteria in the short term, but changed their community structure and interfered with the complexity of community symbiosis network. Metabolomics indicated that exposure to DBP can significantly change the soil metabolite profile. A total of 172 differential metabolites were found, of which 100 were up-regulated and 72 were down-regulated. DBP treatment interfered with 43 metabolic pathways including basic metabolic processes. In particular, it interfered with the metabolism of residual steroids and promoted the metabolism of various plasticizers. In addition, through differential labeling and collinear analysis, some bacteria with the degradation potential of PAEs, such as Gordonia, were excavated.
Collapse
Affiliation(s)
- Changcai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China.
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
17
|
Wu C, Ma Y, Wang D, Shan Y, Song X, Hu H, Ren X, Ma X, Cui J, Ma Y. Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127258. [PMID: 34844367 DOI: 10.1016/j.jhazmat.2021.127258] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Research on microplastic pollution of terrestrial soils is catching up with the aquatic environment, especially agricultural soil systems. Plastic residues have caused various environmental problems in mulch film extensively used agricultural areas. However, studies focusing specifically on the potential influence of mulch film residues on the metabolic cycle of soil systems have yet to be conducted. Here, high-throughput sequencing combined with metabolomics were first used to study the effects of residual mulch on soil microbial communities and related metabolic functions. Plastic film treatment did not significantly affect soil physicochemical properties including pH, organic matter and nitrogen, etc in short term. However, it did significantly changed overall community structure of soil bacteria, and interfered with complexity of soil bacterial symbiosis networks; exposure time and concentration of residues were particularly important factors affecting community structure. Furthermore, metabolomics analysis showed that film residue significantly changed soil metabolite spectrum, and interfered with basic carbon and lipid metabolism, and also affected basic cellular processes such as membrane transport and, in particular, interfered with the biosynthesis of secondary metabolites, as well as, biodegradation and metabolism of xenobiotics. Additionally, through linear discriminant and collinear analysis, some new potential microplastic degrading bacteria including Nitrospira, Nocardioidaceae and Pseudonocardiaceae have been excavated.
Collapse
Affiliation(s)
- Changcai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China.
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
18
|
Wang H, Yu P, Schwarz C, Zhang B, Huo L, Shi B, Alvarez PJJ. Phthalate Esters Released from Plastics Promote Biofilm Formation and Chlorine Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1081-1090. [PMID: 34991317 DOI: 10.1021/acs.est.1c04857] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phthalate esters (PAEs) are commonly released from plastic pipes in some water distribution systems. Here, we show that exposure to a low concentration (1-10 μg/L) of three PAEs (dimethyl phthalate (DMP), di-n-hexyl phthalate (DnHP), and di-(2-ethylhexyl) phthalate (DEHP)) promotes Pseudomonas biofilm formation and resistance to free chlorine. At PAE concentrations ranging from 1 to 5 μg/L, genes coding for quorum sensing, extracellular polymeric substances excretion, and oxidative stress resistance were upregulated by 2.7- to 16.8-fold, 2.1- to 18.9-fold, and 1.6- to 9.9-fold, respectively. Accordingly, more biofilm matrix was produced and the polysaccharide and eDNA contents increased by 30.3-82.3 and 10.3-39.3%, respectively, relative to the unexposed controls. Confocal laser scanning microscopy showed that PAE exposure stimulated biofilm densification (volumetric fraction increased from 27.1 to 38.0-50.6%), which would hinder disinfectant diffusion. Biofilm densification was verified by atomic force microscopy, which measured an increase of elastic modulus by 2.0- to 3.2-fold. PAE exposure also stimulated the antioxidative system, with cell-normalized superoxide dismutase, catalase, and glutathione activities increasing by 1.8- to 3.0-fold, 1.0- to 2.0-fold, and 1.2- to 1.6-fold, respectively. This likely protected cells against oxidative damage by chlorine. Overall, we demonstrate that biofilm exposure to environmentally relevant levels of PAEs can upregulate molecular processes and physiologic changes that promote biofilm densification and antioxidative system expression, which enhance biofilm resistance to disinfectants.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lixin Huo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| |
Collapse
|
19
|
Zhu X, Liu H, Wang Z, Tian R, Li S. Dimethyl phthalate damages Staphylococcus aureus by changing the cell structure, inducing oxidative stress and inhibiting energy metabolism. J Environ Sci (China) 2021; 107:171-183. [PMID: 34412780 DOI: 10.1016/j.jes.2021.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 06/13/2023]
Abstract
Dimethyl phthalate (DMP), used as a plasticizer in industrial products, exists widely in air, water and soil. Staphylococcus aureus is a typical model organism representing Gram-positive bacteria. The molecular mechanisms of DMP toxicology in S. aureus were researched by proteomic and transcriptomic analyses. The results showed that the cell wall, membrane and cell surface characteristics were damaged and the growth was inhibited in S. aureus by DMP. Oxidative stress was induced by DMP in S. aureus. The activities of succinic dehydrogenase (SDH) and ATPase were changed by DMP, which could impact energy metabolism. Based on proteomic and transcriptomic analyses, the oxidative phosphorylation pathway was enhanced and the glycolysis/gluconeogenesis and pentose phosphate pathways were inhibited in S. aureus exposed to DMP. The results of real-time reverse transcription quantitative PCR (RT-qPCR) further confirmed the results of the proteomic and transcriptomic analyses. Lactic acid, pyruvic acid and glucose were reduced by DMP in S. aureus, which suggested that DMP could inhibit energy metabolism. The results indicated that DMP damaged the cell wall and membrane, induced oxidative stress, and inhibited energy metabolism and activation in S. aureus.
Collapse
Affiliation(s)
- Xiaohui Zhu
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Hong Liu
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Zhigang Wang
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China.
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60501, USA
| | - Shenglin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
20
|
Zhang Y, Shi H, Gu J, Jiao Y, Han S, Akindolie MS, Wang Y, Zhang L, Tao Y. Anthraquinone-2,6-disulfonate enhanced biodegradation of dibutyl phthalate: Reducing membrane damage and oxidative stress in bacterial degradation. BIORESOURCE TECHNOLOGY 2020; 302:122845. [PMID: 32000129 DOI: 10.1016/j.biortech.2020.122845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Plasticizer dibutyl phthalate (DBP) pollution has received more and more attention. In this study, a DBP degrading bacteria Enterobacter sp. DNB-S2 was found to suffer membrane damage and oxidative stress during DBP degradation. Physiological and transcriptome analysis showed that 100 μmol L-1 anthraquinone-2,6-disulfonate (AQDS) could enhance the ability of strain DNB-S2 for biodegradation of DBP. AQDS adjusted the cell surface structure, including increase levels of hydrophobic and unsaturated fatty acids. These changes increased the chemotactic ability of the strain DNB-S2 to the hydrophobic pollutant DBP and the fluidity of the cell membrane. The expression of methyl chemotactic protein and genes associated with cell membrane-fixed components were up-regulated. AQDS also improved the scavenging ability of ·OH and H2O2 of DNB-S2 by promoting expression genes related to glutathione metabolism, thereby reducing oxidative stress. These results will provide new insights into the biodegradation of DBP.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongtao Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jidong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Modupe Sarah Akindolie
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
21
|
Wang Z, Zhu X, Su Y, Xu W, Liu H, Liu Z, Chen W, Wang J. Dimethyl phthalate damaged the cell membrane of Escherichia coli K12. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:208-214. [PMID: 31096126 DOI: 10.1016/j.ecoenv.2019.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 05/22/2023]
Abstract
Dimethyl phthalate (DMP), a phthalate ester (PAE), is a ubiquitous and organic pollutant. In this study, the toxicity of DMP to Escherichia coli K12 and its underlying mechanism were investigated. The results showed that DMP inhibited the growth of E. coli K12 and induced cell inactivation and/or death. DMP caused serious damage to the cell membrane of E. coli K12, and the damage increased with higher DMP concentrations. DMP exposure disrupted cell membranes, as evidenced by dose-dependent variations of cell structures, surface properties, and membrane compositions. Increases in the malondialdehyde (MDA) content indicated an increase in oxidative stress induced by DMP in E. coli K12. The activity of succinic dehydrogenase (SDH) was changed by DMP, which could affect energy metabolism in the membrane of E. coli K12. The expression levels of OmpA and OmpX were increased, and the expression levels of OmpF and OmpW were decreased, in E. coli K12 exposed to DMP. The toxicities of DMP to E. coli K12 could be ascribed to membrane disruption and oxidative stress-induced cell inactivation and/or death. The outcomes will shed new light on the assessment of the ecological effects of DMP.
Collapse
Affiliation(s)
- Zhigang Wang
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang, 161006, China
| | - Xiaohui Zhu
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang, 161006, China
| | - Yunpeng Su
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang, 161006, China
| | - Weihui Xu
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang, 161006, China.
| | - Hong Liu
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang, 161006, China
| | - Zeping Liu
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang, 161006, China
| | - Wenjing Chen
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang, 161006, China
| | - Junhe Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, 161006, China
| |
Collapse
|