1
|
Zhang J, Zhu M, Ouyang X, Yuan Y, Tang S, Yin H. Co-metabolism degradation of tetrabromobisphenol A by the newly isolated Sphingobium sp. strain QY1-1: Multiple metabolic pathways, toxicity evaluation, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137440. [PMID: 39889608 DOI: 10.1016/j.jhazmat.2025.137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Tetrabromobisphenol A (TBBPA), a hydrophobic and persistent brominated flame retardant, has attracted considerable attention due to its potential ecotoxicity. Herein, a newly isolated Sphingobium sp. strain QY1-1 was employed to degrade TBBPA under optimized conditions determined by response surface methodology and kinetic analysis. Complete degradation of TBBPA was achieved by the fourth day under optimal conditions. Five main transformation pathways, i.e., debromination, hydroxylation, O-methylation, sulfation, and glycosylation, were proposed for TBBPA biodegradation based on 19 intermediates including two novel transformation products. The toxicity prediction of TBBPA and its degradation products suggested that the biodegradation of TBBPA by strain QY1-1 could effectively reduce its biotoxicity in aquatic environments. Moreover, transcriptomic analysis revealed significant up-regulation of multiple genes encoding oxidoreductases, lyases, free radical proteins, transporter proteins, and efflux transporters, particularly in the presence of glucose. This indicated that these functional enzymes could be involved in the transmembrane transport and catabolism of TBBPA and its by-products. Additionally, the overexpression of genes encoding chemotactic proteins and antioxidant-defense-related enzymes implied that the addition of glucose could heighten the adaptability of strain QY1-1 to TBBPA stress. This study provides new insights into the biodegradation of TBBPA by Sphingobium sp. and potential strategies for its enhancement.
Collapse
Affiliation(s)
- Junxin Zhang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China; Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaofang Ouyang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yibo Yuan
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Yu Y, Huang W, Tang S, Xiang Y, Yuan L, Zhu X, Yin H, Dang Z, Niu J. Metagenomic and enzymatic mechanisms underpinning efficient water treatment of 2-ethylhexyl diphenyl phosphate (EHDPP) by the microbial consortium 8-ZY. WATER RESEARCH 2025; 275:123178. [PMID: 39855018 DOI: 10.1016/j.watres.2025.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/08/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The ubiquitous presence, potential toxicity, and persistence of 2-ethylhexyl diphenyl phosphate (EHDPP) in the environment have raised significant concerns. In this study, we successfully isolate a novel microbial consortium, named 8-ZY, and we demonstrate its remarkable ability to degrade EHDPP using an extremely low concentration of the inoculate. A total of 11 degradation metabolites were identified, including hydrolysis, hydroxylated, methylated, glucuronide-conjugated, and previously unreported byproducts, enabling us to propose new transformation pathways. Further, we unveiled the active members of the microbial consortium 8-ZY during the degradation of EHDPP. We observed the presence of diverse active populations, which included Bradyrhizobium, Rhodopseudomonas, Sphingomonas, Hyphomicrobium, Chitinophaga, Aminobacter, and Ralstonia. A metagenomic analysis revealed the presence of genes that encode phosphatase, phosphodiesterase, cytochrome P450, and hydroxylase enzymes, thus indicating their crucial role in EHDPP degradation. Furthermore, we successfully isolated Burkholderia cepacia ZY1, Sphingopyxis terrae ZY2, and Amycolatopsis ZY3 from the 8-ZY consortium, confirming their significance in EHDPP degradation and metabolite formation. These findings underscored the diversity of strains and functional genes responsible for the transformation of EHDPP within the consortium 8-ZY, highlighting the essential role of synergistic interactions during EHDPP biodegradation processes. Molecular docking and dynamics simulation suggested that alkaline phosphatase, cytochrome P450, and hydroxylase stably bonded to EHDPP within their respective active pockets, targeting distinct sites on the EHDPP molecule. These findings provide a comprehensive understanding of the transformation mechanisms of OPEs and contribute valuable insights into their fate in the environment.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wantang Huang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Ying Xiang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lizhu Yuan
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
3
|
Wang Y, Song X, Pan X, Gao R, Yang X. The multifunctional fungus Phanerochaete chrysosporium enriches metabolites while degrading seed mucilage of a sand-fixing shrub. J Appl Microbiol 2025; 136:lxaf009. [PMID: 39779306 DOI: 10.1093/jambio/lxaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
AIMS The sand-fixing desert shrub Artemisia sphaerocephala produces a large amount of seed mucilage, which plays crucial roles in the adaptation of this species to desert environments. Seed mucilage has been shown to be degraded by Phanerochaete chrysosporium from habitat soils, but the process and products of this degradation remain unclear. To fill this gap, we explored the factors and processes involved in mucilage degradation. METHODS AND RESULTS We found that P. chrysosporium had the ability to produce iron carriers and to solubilize potassium and phosphorus. Mucilage degradation was affected by multiple factors, and the optimum conditions for mucilage degradation were 30°C, pH 4.5, 10 ml of fungal solution, and 1.0 g of mucilage substrate, with a degradation rate of 93.04% ± 4.87% at 20 days. The untargeted metabolome screened 300 significantly different metabolites during mucilage degradation, of which 291 were upregulated and 9 downregulated. The main degradation products were organoxides, lipids, lipid-like molecules, phenylpropanoids, polyketides, and organic acids. The most significantly affected pathway was the valine, leucine, and isoleucine biosynthetic pathway. CONCLUSIONS Our study has elucidated the mucilage degradation process and metabolites, which may help us to better understand the ecological functions of seed mucilage and the mechanisms of plant-microbe interactions in deserts.
Collapse
Affiliation(s)
- Yiyuan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian District, Beijing 100093, China
- The School of Life Sciences, Shanxi Normal University, 339 Taiyu Road, Xiadian District, Taiyuan 030031, China
| | - Xiaoxian Song
- The School of Life Sciences, Shanxi Normal University, 339 Taiyu Road, Xiadian District, Taiyuan 030031, China
| | - Xiaofang Pan
- The School of Life Sciences, Shanxi Normal University, 339 Taiyu Road, Xiadian District, Taiyuan 030031, China
| | - Ruiru Gao
- The School of Life Sciences, Shanxi Normal University, 339 Taiyu Road, Xiadian District, Taiyuan 030031, China
| | - Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian District, Beijing 100093, China
| |
Collapse
|
4
|
Yin L, Yin Y, Xu L, Zhang Y, Shi K, Wang J, An J, He H, Yang S, Ni L, Li S. Uncovering toxin production and molecular-level responses in Microcystis aeruginosa exposed to the flame retardant Tetrabromobisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136886. [PMID: 39689566 DOI: 10.1016/j.jhazmat.2024.136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Tetrabromobisphenol A (TBBPA) poses significant ecological risks owing to its toxicity; however, its specific effects on toxin-producing cyanobacteria in aquatic environments remain poorly understood. This study systematically investigated the effects of TBBPA at concentrations ranging from 100 ng/L to 100 mg/L on Microcystis aeruginosa (M. aeruginosa) by examining growth, photosynthesis, toxin production, antioxidant responses, and molecular-level changes. The results indicated that low levels of TBBPA (0.1-1000 μg/L) induced stimulatory effects on the growth and microcystin-leucine-arginine (MC-LR) production of M. aeruginosa. Metabolomic analysis revealed that low levels of TBBPA significantly upregulated metabolites associated with energy metabolism, xenobiotic biodegradation, oxidative stress responses, and protein biosynthesis in M. aeruginosa, potentially contributing to the observed hormetic effect. Conversely, higher doses (40-100 mg/L) inhibited growth and significantly increased MC-LR release by compromising cellular structural integrity. Proteomic analysis revealed that toxic levels of TBBPA significantly affected the expression of proteins associated with energy harvesting and utilization. Specifically, TBBPA disrupted electron flow in oxidative phosphorylation and the photosynthetic system (PS) by targeting PSI, PSII, and Complex I, impairing energy acquisition and causing oxidative damage, ultimately leading to algal cell death. Additionally, proteins involved in the biosynthesis and metabolism of cysteine, methionine, phenylalanine, tyrosine, and tryptophan were upregulated, potentially enhancing M. aeruginosa resistance to TBBPA-induced stress. This study offers insights into the effects of TBBPA on M. aeruginosa and its potential risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Li Yin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yu Yin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lin Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kaipian Shi
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Juan Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Junfeng An
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lixiao Ni
- School of Environment, Hohai University, Nanjing 210098, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
5
|
Shah K, Ray S, Bose H, Pandey V, Wohlschlegel JA, Mahendra S. Proteomics insights into the fungal-mediated bioremediation of environmental contaminants. Curr Opin Biotechnol 2024; 90:103213. [PMID: 39393120 DOI: 10.1016/j.copbio.2024.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 10/13/2024]
Abstract
As anthropogenic activities continue to introduce various contaminants into the environment, the need for effective monitoring and bioremediation strategies is critical. Fungi, with their diverse enzymatic arsenal, offer promising solutions for the biotransformation of many pollutants. While conventional research reports on ligninolytic, oxidoreductive, and cytochrome P450 (CYP) enzymes, the vast potential of fungi, with approximately 10 345 protein sequences per species, remains largely untapped. This review describes recent advancements in fungal proteomics instruments as well as software and highlights their detoxification mechanisms and biochemical pathways. Additionally, it highlights lesser-known fungal enzymes with potential applications in environmental biotechnology. By reviewing the benefits and challenges associated with proteomics tools, we hope to summarize and promote the studies of fungi and fungal proteins relevant in the environment.
Collapse
Affiliation(s)
- Kshitija Shah
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Soham Ray
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Himadri Bose
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Yu Y, Ai T, Huang J, Jin L, Yu X, Zhu X, Sun J, Zhu L. Metabolism of isodecyl diphenyl phosphate in rice and microbiome system: Differential metabolic pathways and underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124803. [PMID: 39181304 DOI: 10.1016/j.envpol.2024.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Isodecyl diphenyl phosphate (IDDP) is among the emerging aromatic organophosphate esters (aryl-OPEs) that pose risks to both human beings and other organisms. This study aims to investigate the translocation and biotransformation behavior of IDDP in rice and the rhizosphere microbiome through hydroponic exposure (the duration of hydroponic exposure was 10 days). The rhizosphere microbiome 9-FY was found to efficiently eliminate IDDP, thereby reducing its uptake in rice tissues and mitigating the negative impact of IDDP on rice growth. Furthermore, this study proposed the first-ever transformation pathways of IDDP, identifying hydrolysis, hydroxylation, methylation, methoxylation, carboxylation, and glucuronidation products. Notably, the methylation and glycosylation pathways were exclusively observed in rice, indicating that the transformation of IDDP in rice may be more complex than in microbiome 9-FY. Additionally, the presence of the product COOH-IDDP in rice suggested that there might be an exchange of degradation products between rice and rhizobacteria, implying their potential interaction. This finding highlights the significance of rhizobacteria's role which cannot be overlooked in the accumulation and transformation of organic pollutants in grain crops. The study revealed active members in 9-FY during IDDP degradation, and metagenomic analysis indicated that most of the active populations contained IDDP-degrading genes. Moreover, transcriptome sequencing showed that cytochrome P450, acid phosphatase, glucosyltransferase, and methyltransferases genes in rice were up-regulated, which was further confirmed by RT-qPCR. This provides insight into the intermediate products identified in rice, such as hydrolysis, hydroxylated, glycosylated, and methylated products. These results significantly contribute to our understanding of the translocation and transformation of organophosphate esters (OPEs) in plants and the rhizosphere microbiome, and reveal the fate of OPEs in rice and microbiome system to ensure the paddy yield and rice safety.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Tao Ai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
7
|
Wang J, Zhang L, He Y, Ji R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133906. [PMID: 38430590 DOI: 10.1016/j.jhazmat.2024.133906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The widespread use of phenolic compounds renders their occurrence in various environmental matrices, posing ecological risks especially the endocrine disruption effects. Biodegradation-based techniques are efficient and cost-effective in degrading phenolic pollutants with less production of secondary pollution. This review focuses on phenol, 4-nonylphenol, 4-nitrophenol, bisphenol A and tetrabromobisphenol A as the representatives, and summarizes the current knowledge and future perspectives of their biodegradation and the enhancement strategy of bioaugmentation. Biodegradation and isolation of degrading microorganisms were mainly investigated under oxic conditions, where phenolic pollutants are typically hydroxylated to 4-hydroxybenzoate or hydroquinone prior to ring opening. Bioaugmentation efficiencies of phenolic pollutants significantly vary under different application conditions (e.g., increased degradation by 10-95% in soil and sediment). To optimize degradation of phenolic pollutants in different matrices, the factors that influence biodegradation capacity of microorganisms and performance of bioaugmentation are discussed. The use of immobilization strategy, indigenous degrading bacteria, and highly competent exogenous bacteria are proposed to facilitate the bioaugmentation process. Further studies are suggested to illustrate 1) biodegradation of phenolic pollutants under anoxic conditions, 2) application of microbial consortia with synergistic effects for phenolic pollutant degradation, and 3) assessment on the uncertain ecological risks associated with bioaugmentation, resulting from changes in degradation pathway of phenolic pollutants and alterations in structure and function of indigenous microbial community.
Collapse
Affiliation(s)
- Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
8
|
Qian Z, Yang H, Li J, Peng T, Huang T, Hu Z. The unique biodegradation pathway of benzo[a]pyrene in moderately halophilic Pontibacillus chungwhensis HN14. CHEMOSPHERE 2024; 354:141705. [PMID: 38494000 DOI: 10.1016/j.chemosphere.2024.141705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Benzo[a]pyrene (BaP), as the typical representative of polycyclic aromatic hydrocarbons (PAHs), is a serious hazard to human health and natural environments. Though the study of microbial degradation of PAHs has persisted for decades, the degradation pathway of BaP is still unclear. Previously, Pontibacillus chungwhensis HN14 was isolated from high salinity environment exhibiting a high BaP degradation ability. Here, based on the intermediates identified, BaP was found to be transformed to 4,5-epoxide-BaP, BaP-trans-4,5-dihydrodiol, 1,2-dihydroxy-phenanthrene, 2-carboxy-1-naphthol, and 4,5-dimethoxybenzo[a]pyrene by the strain HN14. Furthermore, functional genes involved in degradation of BaP were identified using genome and transcriptome data. Heterogeneous co-expression of monooxygenase CYP102(HN14) and epoxide hydrolase EH(HN14) suggested that CYP102(HN14) could transform BaP to 4,5-epoxide-BaP, which was further transformed to BaP-trans-4,5-dihydrodiol by EH(HN14). Moreover, gene cyp102(HN14) knockout was performed using CRISPR/Cas9 gene-editing system which confirmed that CYP102(HN14) play a key role in the initial conversion of BaP. Finally, a novel BaP degradation pathway was constructed in bacteria, which showed BaP could be converted into chrysene, phenanthrene, naphthalene pathways for the first time. These findings enhanced our understanding of microbial degradation process for BaP and suggested the potential of using P. chungwhensis HN14 for bioremediation in PAH-contaminated environments.
Collapse
Affiliation(s)
- Zhihui Qian
- Department of Biology, School of Science, Shantou University, Shantou, Guangdong, 515000, China.
| | - Haichen Yang
- Department of Biology, School of Science, Shantou University, Shantou, Guangdong, 515000, China.
| | - Jin Li
- Department of Biology, School of Science, Shantou University, Shantou, Guangdong, 515000, China; College of Life Sciences, China West Normal University, Nanchong, Sichuan, 637002, China
| | - Tao Peng
- Department of Biology, School of Science, Shantou University, Shantou, Guangdong, 515000, China
| | - Tongwang Huang
- Department of Biology, School of Science, Shantou University, Shantou, Guangdong, 515000, China.
| | - Zhong Hu
- Department of Biology, School of Science, Shantou University, Shantou, Guangdong, 515000, China; Guangdong Research Center of Offshore Environmental Pollution Control Engineering, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
9
|
Mori T, Sugimoto S, Ishii S, Wu J, Nakamura A, Dohra H, Nagai K, Kawagishi H, Hirai H. Biotransformation and detoxification of tetrabromobisphenol A by white-rot fungus Phanerochaete sordida YK-624. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133469. [PMID: 38219585 DOI: 10.1016/j.jhazmat.2024.133469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The bulky phenolic compound tetrabromobisphenol A (TBBPA) is a brominated flame retardant used in a wide range of products; however, it diffuses into the environment, and has been reported to have toxic effects. Although it is well-known that white-rot fungi degrade TBBPA through ligninolytic enzymes, no other metabolic enzymes have yet been identified, and the toxicity of the reaction products and their risks have not yet been examined. We found that the white-rot fungus Phanerochaete sordida YK-624 converted TBBPA to TBBPA-O-β-D-glucopyranoside when grown under non-ligninolytic-enzyme-producing conditions. The metabolite showed less cytotoxicity and mitochondrial toxicity than TBBPA in neuroblastoma cells. From molecular biological and genetic engineering experiments, two P. sordida glycosyltransferases (PsGT1c and PsGT1e) that catalyze the glycosylation of TBBPA were newly identified; these enzymes showed dramatically different glycosylation activities for TBBPA and bisphenol A. The results of computational analyses indicated that the difference in substrate specificity is likely due to differences in the structure of the substrate-binding pocket. It appears that P. sordida YK-624 takes up TBBPA, and reduces its cytotoxicity via these glycosyltransferases.
Collapse
Affiliation(s)
- Toshio Mori
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Sayaka Sugimoto
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Syouma Ishii
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Akihiko Nakamura
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hideo Dohra
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kaoru Nagai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Faculty of Global Interdisciplinary Science and Innovation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
10
|
Xie H, Xu Y, Sun F, Li J, Liu R. Determination of tetrabromobisphenol A and its brominated derivatives in water, sediment and soil by high performance liquid chromatography-tandem mass spectrometry. ANAL SCI 2023; 39:1875-1888. [PMID: 37460918 DOI: 10.1007/s44211-023-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/04/2023] [Indexed: 10/26/2023]
Abstract
Tetrabromobisphenol A (TBBPA) was typical brominated flame retardant and potential environmental endocrine disruptor, and it had persistence, bioaccumulation and chronic toxicity. Simultaneous determination of ultra-trace TBBPA, tribromobiphenol A (tri-BBPA), dibromobiphenol A (di-BBPA), monobromobisphenol A (mono-BBPA) and bisphenol A (BPA) was developed by high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS), the parent ion charge ratios (m/z) had been optimized. The linear range was wider and the limit of detection was (LOD) 0.09 ~ 0.21 ng mL-1, which could detect trace pollutants. The extraction efficiency was improved by optimizing the parameters, HLB cartridge was used in the water sample by solid phase extraction (SPE), the recovery rates in water samples were over 80.28% with three concentration levels, the relative standard deviations (RSD) were less than 7.12%, and the minimum detection limit of the method was 0.90 ~ 2.10 × 10-3 ng mL-1. Soil and sediment samples were extracted by accelerated solvent extraction (ASE), the recovery rates in soil and sediment were over 79.40% and 75.65%, the minimum detection limit was 0.0225 ~ 0.0525 ng g-1, RSD was less than 7.19%. The proffered method was successfully utilized to detect actual samples, the residue of di-BBPA and mono-BBPA are detected in Naihe River and Shuxi River in Tai'an City, residue of di-BBPA and mono-BBPA was detected in the soil, and there was low residual amount of di-BBPA, mono-BBPA and BPA in the sediment of Shuxi River.
Collapse
Affiliation(s)
- Hui Xie
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Yuxin Xu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Fengxia Sun
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Jinling Li
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Ruiyuan Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
11
|
Yu Y, Huang W, Yu W, Tang S, Yin H. Metagenomic insights into the mechanisms of triphenyl phosphate degradation by bioaugmentation with Sphingopyxis sp. GY. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115261. [PMID: 37459723 DOI: 10.1016/j.ecoenv.2023.115261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 09/20/2023]
Abstract
Biodegradation of triphenyl phosphate (TPHP) by Sphingopyxis sp. GY was investigated, and results demonstrated that TPHP could be completely degraded in 36 h with intracellular enzymes playing a leading role. This study, for the first time, systematically explores the effects of the typical brominated flame retardants, organophosphorus flame retardants, and heavy metals on TPHP degradation. Our findings reveal that TCPs, BDE-47, HBCD, Cd and Cu exhibit inhibitory effects on TPHP degradation. The hydrolysis-, hydroxylated-, monoglucosylated-, methylated products and glutathione (GSH) conjugated derivative were identified and new degradation pathway of TPHP mediated by microorganism was proposed. Moreover, toxicity evaluation experiments indicate a significant reduction in toxicity following treatment with Sphingopyxis sp. GY. To evaluate its potential for environmental remediation, we conducted bioaugmentation experiments using Sphingopyxis sp. GY in a TPHP contaminated water-sediment system, which resulted in excellent remediation efficacy. Twelve intermediate products were detected in the water-sediment system, including the observation of the glutathione (GSH) conjugated derivative, monoglucosylated product, (OH)2-DPHP and CH3-O-DPHP for the first time in microorganism-mediated TPHP transformation. We further identify the active microbial members involved in TPHP degradation within the water-sediment system using metagenomic analysis. Notably, most of these members were found to possess genes related to TPHP degradation. These findings highlight the significant reduction of TPHP achieved through beneficial interactions and cooperation established between the introduced Sphingopyxis sp. GY and the indigenous microbial populations stimulated by the introduced bacteria. Thus, our study provides valuable insights into the mechanisms, co-existed pollutants, transformation pathways, and remediation potential associated with TPHP biodegradation, paving the way for future research and applications in environmental remediation strategies.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Wantang Huang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Wenyan Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
12
|
Ghosh S, Rusyn I, Dmytruk OV, Dmytruk KV, Onyeaka H, Gryzenhout M, Gafforov Y. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Front Bioeng Biotechnol 2023; 11:1106973. [PMID: 36865030 PMCID: PMC9971017 DOI: 10.3389/fbioe.2023.1106973] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
This review presents a comprehensive summary of the latest research in the field of bioremediation with filamentous fungi. The main focus is on the issue of recent progress in remediation of pharmaceutical compounds, heavy metal treatment and oil hydrocarbons mycoremediation that are usually insufficiently represented in other reviews. It encompasses a variety of cellular mechanisms involved in bioremediation used by filamentous fungi, including bio-adsorption, bio-surfactant production, bio-mineralization, bio-precipitation, as well as extracellular and intracellular enzymatic processes. Processes for wastewater treatment accomplished through physical, biological, and chemical processes are briefly described. The species diversity of filamentous fungi used in pollutant removal, including widely studied species of Aspergillus, Penicillium, Fusarium, Verticillium, Phanerochaete and other species of Basidiomycota and Zygomycota are summarized. The removal efficiency of filamentous fungi and time of elimination of a wide variety of pollutant compounds and their easy handling make them excellent tools for the bioremediation of emerging contaminants. Various types of beneficial byproducts made by filamentous fungi, such as raw material for feed and food production, chitosan, ethanol, lignocellulolytic enzymes, organic acids, as well as nanoparticles, are discussed. Finally, challenges faced, future prospects, and how innovative technologies can be used to further exploit and enhance the abilities of fungi in wastewater remediation, are mentioned.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa,*Correspondence: Soumya Ghosh, ,
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Lviv, Ukraine
| | - Olena V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Kostyantyn V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Yusufjon Gafforov
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan,AKFA University, Tashkent, Uzbekistan
| |
Collapse
|
13
|
Yu Y, Huang J, Jin L, Yu M, Yu X, Zhu X, Sun J, Zhu L. Translocation and metabolism of tricresyl phosphate in rice and microbiome system: Isomer-specific processes and overlooked metabolites. ENVIRONMENT INTERNATIONAL 2023; 172:107793. [PMID: 36739853 DOI: 10.1016/j.envint.2023.107793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Tricresyl phosphate (TCP) is extensively used organophosphorus flame retardants and plasticizers that posed risks to organisms and human beings. In this study, the translocation and biotransformation behavior of isomers tri-p-cresyl phosphate (TpCP), tri-m-cresyl phosphate (TmCP), and tri-o-cresyl phosphate (ToCP) in rice and rhizosphere microbiome was explored by hydroponic exposure. TpCP and TmCP were found more liable to be translocated acropetally, compared with ToCP, although they have same molecular weight and similar Kow. Rhizosphere microbiome named microbial consortium GY could reduce the uptake of TpCP, TmCP, and ToCP in rice tissues, and promote rice growth. New metabolites were successfully identified in rice and microbiome, including hydrolysis, hydroxylated, methylated, demethylated, methoxylated, and glucuronide- products. The methylation, demethylation, methoxylation, and glycosylation pathways of TCP isomers were observed for the first time in organisms. What is more important is that the demethylation of TCPs could be an important and overlooked source of triphenyl phosphate (TPHP), which broke the traditional understanding of the only manmade source of toxic TPHP in the environment. Active members of the microbial consortium GY during degradation were revealed and metagenomic analysis indicated that most of active populations contained TCP-degrading genes. It is noteworthy that the strains and function genes in microbial consortium GY that responsible for TCP isomers' transformation were different. These results can improve our understanding of the translocation and transformation of organic pollutant isomers in plants and rhizosphere microbiome.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Miao Yu
- The Jackson Laboratory For Genomic Medicine 10 Discovery Dr, Farmington, CT 06032, USA
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
14
|
Yu Y, Yu X, Zhang D, Jin L, Huang J, Zhu X, Sun J, Yu M, Zhu L. Biotransformation of Organophosphate Esters by Rice and Rhizosphere Microbiome: Multiple Metabolic Pathways, Mechanism, and Toxicity Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1776-1787. [PMID: 36656265 DOI: 10.1021/acs.est.2c07796] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The biotransformation behavior and toxicity of organophosphate esters (OPEs) in rice and rhizosphere microbiomes were comprehensively studied by hydroponic experiments. OPEs with lower hydrophobicity were liable to be translocated acropetally, and rhizosphere microbiome could reduce the uptake and translocation of OPEs in rice tissues. New metabolites were successfully identified in rice and rhizosphere microbiome, including hydrolysis, hydroxylated, methylated, and glutathione-, glucuronide-, and sulfate-conjugated products. Rhizobacteria and plants could cooperate to form a complex ecological interaction web for OPE elimination. Furthermore, active members of the rhizosphere microbiome during OPE degradation were revealed and the metagenomic analysis indicated that most of these active populations contained OPE-degrading genes. The results of metabolomics analyses for phytotoxicity assessment implied that several key function metabolic pathways of the rice plant were found perturbed by metabolites, such as diphenyl phosphate and monophenyl phosphate. In addition, the involved metabolism mechanisms, such as the carbohydrate metabolism, amino acid metabolism and synthesis, and nucleotide metabolism in Escherichia coli, were significantly altered after exposure to the products mixture of OPEs generated by rhizosphere microbiome. This work for the first time gives a comprehensive understanding of the entire metabolism of OPEs in plants and associated microbiome, and provides support for the ongoing risk assessment of emerging contaminants and, most critically, their transformation products.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon999077, Hong Kong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon999077, Hong Kong
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Miao Yu
- The Jackson Laboratory For Genomic Medicine, 10 Discovery Dr., Farmington, Connecticut06032, United States
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
15
|
Chen Q, Gao Z, Wang K, Magnuson JT, Chen Y, Li M, Shi H, Xu L. High accumulation of microplastic fibers in fish hindgut induces an enhancement of triphenyl phosphate hydroxylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120804. [PMID: 36470455 DOI: 10.1016/j.envpol.2022.120804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Fiber shedding from artificial textiles is among the primary sources of pervasive microplastics in various aquatic habitats. To avoid molten drop burning, triphenyl phosphate (TPhP), a typical flame retardant additive, is commonly incorporated into textile fibers. However, the role of microplastic fibers (MFs) as a vehicle for TPhP remains largely unknown. In this study, we investigated the effects of MFs on the bioaccumulation and metabolism of TPhP in zebrafish. We applied the compound spinning technique for a non-disruptive in situ measurement of fluorescent MFs in fish, and the desorption electrospray ionization mass spectrometry (DESI-MS) to display the tissue distribution of TPhP and its metabolites vividly. Laboratory results showed that ingested MFs did not change the TPhP distribution in fish; however, they statistically increased the metabolite p-OH-TPhP concentration in the fish hindgut, which was probably because the high accumulation of MFs there enhanced the TPhP hydroxylation. Field investigation further supported the lab-based analyses. Higher concentrations of MFs did cause a higher ratio of [p-OH-TPhP]/[TPhP] in the wild fish gut, particularly in the hindgut. Collectively, our results demonstrated that MFs can change the distribution and bioavailability of TPhP metabolites, which was confirmed by both laboratory and fieldwork. Therefore, the ingestion of MFs can indirectly but substantially influence the bioaccumulation and biotransformation of co-existing pollutants.
Collapse
Affiliation(s)
- Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Kang Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021, Stavanger, Norway
| | - Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Mingyuan Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
16
|
Hu D, Wu J, Fan L, Li S, Jia R. Aerobic Degradation Characteristics and Mechanism of Decabromodiphenyl Ether (BDE-209) Using Complex Bacteria Communities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17012. [PMID: 36554891 PMCID: PMC9778866 DOI: 10.3390/ijerph192417012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Complex bacteria communities that comprised Brevibacillus sp. (M1) and Achromobacter sp. (M2) with effective abilities of degrading decabromodiphenyl ether (BDE-209) were investigated for their degradation characteristics and mechanisms under aerobic conditions. The experimental results indicated that 88.4% of 10 mg L-1 BDE-209 could be degraded after incubation for 120 h under the optimum conditions of pH 7.0, 30 °C and 15% of the inoculation volume, and the addition ratio of two bacterial suspensions was 1:1. Based on the identification of BDE-209 degradation products via liquid chromatography-mass spectrometry (LC-MS) analysis, the biodegradation pathway of BDE-209 was proposed. The debromination, hydroxylation, deprotonation, breakage of ether bonds and ring-opening processes were included in the degradation process. Furthermore, intracellular enzymes had the greatest contribution to BDE-209 biodegradation, and the inhibition of piperyl butoxide (PB) for BDE-209 degradation revealed that the cytochrome P450 (CYP) enzyme was likely the key enzyme during BDE-209 degradation by bacteria M (1+2). Our study provided alternative ideas for the microbial degradation of BDE-209 by aerobic complex bacteria communities in a water system.
Collapse
Affiliation(s)
- Dingfan Hu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Juan Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Luosheng Fan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shunyao Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Rong Jia
- School of Life Sciences, Anhui University, Hefei 230601, China
| |
Collapse
|
17
|
Li W, Wang S, Chen Y, Liu L, Hou S, You H. Integration of transcriptomic and proteomic reveals the toxicological molecular mechanisms of decabromodiphenyl ethane (DBDPE) on Pleurotus ostreatus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120263. [PMID: 36155225 DOI: 10.1016/j.envpol.2022.120263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Decabromodiphenyl ethane (DBDPE), as one of the most widely used new brominated flame retardants (NBFRs), can pose a potential threat to human health and the environment. An integrated transcriptome and proteome was performed for investigating the toxicological molecular mechanisms of Pleurotus ostreatus (P. ostreatus) during the biodegradation of DBDPE at the concentrations of 5 and 20 mg/L. A total of 1193/1018 and 92/126 differentially expressed genes/proteins (DEGs/DEPs) were found, respectively, with DBDPE exposure at 5 and 20 mg/L. These DEGs and DEPs were mainly involved in the cellular process as well as metabolic process. DEPs for oxidation-reduction process and hydrolase activity were up-regulated, and those for membrane, lipid metabolic process and transmembrane transport were down-regulated. The DEGs and DEPs related to some key enzymes were down-regulated, such as NADH dehydrogenase/oxidoreductase, succinate dehydrogenase, cytochrome C1 protein, cytochrome-c oxidase/reductase and ATP synthase, which indicated that DBDPE affected the oxidative phosphorylation as well as tricarboxylic acid (TCA) cycle. Cytochrome P450 enzymes (CYPs) might be involved in DBDPE degradation through hydroxylation and oxidation. Some stress proteins were induced to resist DBDPE toxicity, including major facilitator superfamily (MFS) transporter, superoxide dismutase (SOD), molecular chaperones, heat shock proteins (HSP20, HSP26, HSP42), 60S ribosomal protein and histone H4. The findings help revealing the toxicological molecular mechanisms of DBDPE on P. ostreatus, aiming to improve the removal of DBDPE.
Collapse
Affiliation(s)
- Wanlun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yangyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Liu
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shuying Hou
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
18
|
Khan MF, Murphy CD. Cytochrome P450 5208A3 is a promiscuous xenobiotic biotransforming enzyme in Cunninghamella elegans. Enzyme Microb Technol 2022; 161:110102. [DOI: 10.1016/j.enzmictec.2022.110102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
|
19
|
Yu Y, Mo W, Zhu X, Yu X, Sun J, Deng F, Jin L, Yin H, Zhu L. Biodegradation of tricresyl phosphates isomers by a novel microbial consortium and the toxicity evaluation of its major products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154415. [PMID: 35276152 DOI: 10.1016/j.scitotenv.2022.154415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
A novel microbial consortium ZY1 capable of degrading tricresyl phosphates (TCPs) was isolated, it could quickly degrade 100% of 1 mg/L tri-o-cresyl phosphate (ToCP), tri-p-cresyl phosphate (TpCP) and tri-m-cresyl phosphate (TmCP) within 36, 24 and 12 h separately and intracellular enzymes occupied the dominated role in TCPs biodegradation. Additionally, triphenyl phosphate (TPHP), 2-ethylhexyl diphenyl phosphate (EHDPP), bisphenol-A bis (diphenyl phosphate) (BDP), tris (2-chloroethyl) phosphate (TCEP) and tris (1-chloro-2-propyl) phosphate (TCPP) could also be degraded by ZY1 and the aryl-phosphates was easier to be degraded. The TCPs reduction observed in freshwater and seawater indicated that high salinity might weak the degradability of ZY1. The detected degradation products suggested that TCPs was mainly metabolized though the hydrolysis and hydroxylation. Sequencing analysis presented that the degradation of TCPs relied on the cooperation between sphingobacterium, variovorax and flavobacterium. The cytochrome P450/NADPH-cytochrome P450 reductase and phosphatase were speculated might involve in TCPs degradation. Finally, toxicity evaluation study found that the toxicity of the diesters products was lower than their parent compound based on the generation of the intracellular reactive oxygen (ROS) and the apoptosis rate of A549 cell. Taken together, this research provided a new insight for the bioremediation of TCPs in actual environment.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Wentao Mo
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Fucai Deng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
20
|
Peng X, Zheng Q, Liu L, He Y, Li T, Jia X. Efficient biodegradation of tetrabromobisphenol A by the novel strain Enterobacter sp. T2 with good environmental adaptation: Kinetics, pathways and genomic characteristics. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128335. [PMID: 35121290 DOI: 10.1016/j.jhazmat.2022.128335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
T2, a gram-positive bacterium capable of rapidly degrading tetrabromobisphenol A (TBBPA), and affiliated with the genus Enterobacter, was isolated for the first time from sludge that had been contaminated for several years. The TBBPA degradation data fitted the first-order model well. Under optimal conditions (pH of 7, temperature of 31 °C, TBBPA concentration of 5 mg L-1, and inoculum size of 5%), 99.4% of the initially added TBBPA was degraded after 48 h. TBBPA degradation fitted the first-order model with the half-life of 3.3 h. These results illustrated that the TBBPA degradation capability of strain T2 was significantly better than that of previously reported bacteria. A total of 17 intermediates were detected, among which five were reported for the first time. Whole-genome sequencing revealed that strain T2 had a chromosome with the total length of 4 854 376 bp and a plasmid with the total length of 21 444 bp. It harbored essential genes responsible for debromination, such as cyp450, gstB, gstA, and HADH, and genes responsible for subsequent complete mineralization, such as bioC, yrrM, Tam, and Ubil. A key protein of haloacid dehalogenases responsible for the biodegradation of TBBPA may also be involved in the regulation of TBBPA degradation in natural environment. In soil bioremediation experiments, strain T2 showed excellent environmental adaptation. It was able to biodegrade TBBPA and its typical intermediate bisphenol A efficiently. Therefore, it could potentially be applied to treat TBBPA-contaminated sites.
Collapse
Affiliation(s)
- Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Qihang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
21
|
Wang Y, Chen S, Zhou J, Fan X, He L, Fan G. Enhanced degradation capability of white-rot fungi after short-term pre-exposure to silver ion: Performance and selectively antimicrobial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151672. [PMID: 34793791 DOI: 10.1016/j.scitotenv.2021.151672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Azo dyes in wastewater have great threats to environment and human health. White-rot fungi (WRF) have broad-spectrum potential for such refractory organics bioremediation; however, their applications are largely restrained by the poor viability owning to microbial invasion under non-sterile conditions. In this study, short-term pre-exposure to silver ion (Ag+) was demonstrated to be a practical, economic, and green method to enhance the perdurability of azo dyes decoloration by WRF Phanerochaete chrysosporium under non-sterile conditions. In control (without Ag+ pre-exposure), decoloration deactivated since cycle 7 (<10%), whereas in Ag+ pre-exposure groups, the decoloration ratios remained 91.5%-94.7% after 7 cycles. Variations in decoloration-related extracellular lignin enzyme activities were consistent with the decoloration effectiveness. The enhanced decoloration capability in Ag+ pre-exposure groups under non-sterile conditions could be ascribed to the selectively antimicrobial action by Ag+. The released Ag+ from the self-assembled silver nanoparticles (AgNPs) could selectively "stimulate" the proliferation and viability of P. chrysosporium, and simultaneously inhibit the growths of invasive microorganisms. The pyrosequencing results indicated that genus Sphingomonas (24.1%-31.3%) was the main invasive bacteria in Ag+ pre-exposure groups after long-term operation owing to the AgNPs passivation. As control, the invasive fungi (Asterotremella humicola) and bacteria (Burkholderia spp.) occurred in control after short-term operation, and genus Burkholderia (74.9%) dominated after long-term operation, leading to decoloration deactivation. Overall, these findings offer a new insight into the bio-nano interactions between WRF and invasive microorganisms in response to Ag+ or biogenic AgNPs, and could extend WRF application perspective under non-sterile conditions in future.
Collapse
Affiliation(s)
- Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Shi Chen
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
22
|
Macêdo WV, Poulsen JS, Oliveira GHD, Nielsen JL, Zaiat M. Tetrabromobisphenol A (TBBPA) biodegradation in acidogenic systems: One step further on where and who. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152016. [PMID: 34856259 DOI: 10.1016/j.scitotenv.2021.152016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of brominated flame retardants such as Tetrabromobisphenol A (TBBPA) in water bodies poses a serious threat to aquatic ecosystems. Degradation of TBBPA in wastewater has successfully been demonstrated to occur through anaerobic digestion (AD), although the involved microorganisms and the conditions favouring the conversion remains unclear. In this study, it was observed that bioconversion of TBBPA did not occur during the hydrolytic stage of the AD, but during the strictly fermentative stage. Bioconversion occurred in hydrolytic-acidogenic as well as in strictly acidogenic continuous bioreactors. This indicates that the microorganisms that degrade TBBPA benefit from the electron flux taking place during glycolysis and further transformations into short-chain fatty acids. The degradation kinetics of TBBPA was inversely proportional to the complexity of the wastewater as the apparent kinetics constants were 2.11, 1.86, and 0.52 h-1·gVSS-1 for glucose, starch, and domestic sewage as carbon source, respectively. Additionally, the micropollutant loading rate relative to the overall organic loading rate is of major importance during the investigation of cometabolic transformations. The long-term exposure to TBBPA at environmentally realistic concentrations did not cause any major changes in the microbiome composition. Multivariate statistical analysis of the evolvement of the microbiome throughout the incubation suggested that Enterobacter spp. and Clostridium spp. are the key players in TBBPA degradation. Finally, a batch enrichment was conducted, which showed that concentrations of 0.5 mg·L-1 or higher are detrimental to Clostridium spp., even though these organisms are putative TBBPA degraders. The Clostridium genus was outcompeted by the Enterobacter and Klebsiella genera, hereby highlighting the effect of unrealistic concentrations frequently used in culture-dependent studies on the microbial community composition.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Laboratory of Biological Processes, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, SP, Brazil; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark.
| | - Jan Struckmann Poulsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Guilherme Henrique Duarte Oliveira
- Laboratory of Biological Processes, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, SP, Brazil
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Marcelo Zaiat
- Laboratory of Biological Processes, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, SP, Brazil
| |
Collapse
|
23
|
Feng M, Zhou J, Yu X, Mao W, Guo Y, Wang H. Insights into biodegradation mechanisms of triphenyl phosphate by a novel fungal isolate and its potential in bioremediation of contaminated river sediment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127545. [PMID: 34879531 DOI: 10.1016/j.jhazmat.2021.127545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
In this study, Aspergillus sydowii FJH-1 isolated from soil was verified to be a novel triphenyl phosphate (TPhP) degrader. Biodegradation efficiency of TPhP by Aspergillus sydowii FJH-1 exceeded 90% within 6 days under the optimal conditions (pH 4-9, 30 ℃, initial concentration less than 20 mg/L). Proteomics analysis uncovered the proteins perhaps involved in hydrolysis, hydroxylation, methylation and sulfonation of TPhP and the primary intracellular adaptive responses of Aspergillus sydowii FJH-1 to TPhP stress. The expression of carboxylic ester hydrolase along with several thioredoxin- and glutathione-dependent oxidoreductases were induced to withstand the toxicity of TPhP. The presence of TPhP also caused obvious upregulation of proteins concerned with glycolysis, pentose phosphate pathway and tricarboxylic acid cycle. Data from toxicological tests confirmed that the cytotoxicity and phytotoxicity of TPhP was effectively decreased after treatment with Aspergillus sydowii FJH-1. Additionally, bioaugmentation with Aspergillus sydowii FJH-1 was available for promoting TPhP removal in real water and water-sediment system. Collectively, the present study offered a deeper insight into the biodegradation mechanism and pathway of TPhP by a newly screened fungal strain Aspergillus sydowii FJH-1 and validated the feasibility of applying this novel degrader in the bioremediation of TPhP-polluted matrices.
Collapse
Affiliation(s)
- Mi Feng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Jiahua Zhou
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Wei Mao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Yushuo Guo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Hao Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| |
Collapse
|
24
|
Wang S, Li W, Liu L, Qi H, You H. Biodegradation of decabromodiphenyl ethane (DBDPE) by white-rot fungus Pleurotus ostreatus: Characteristics, mechanisms, and toxicological response. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127716. [PMID: 34799166 DOI: 10.1016/j.jhazmat.2021.127716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) can pose a potential toxic threat to human beings and the environment. P. ostreatus, as one of the typical white-rot fungi, can effectively degrade various refractory pollutants. The biodegradable characteristics of DBDPE by P. ostreatus, as well as the mechanisms, and toxicological response were investigated in this study. The removal rate reached 47.73% and 43.20%, respectively, for 5 and 20 mg/L DBDPE after 120-h degradation by P. ostreatus. As a coexisting substance, Pb could inhibit the biodegradation. It is found that both the intracellular enzyme (P450) and extracellular enzymes (manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase (Lac)) played a very important role in the biodegradation of DBDPE, of which Lac dominated the degradation. The toxic response was monitored during the degradation. The activities of SOD and CAT were enhanced to eliminate excess ROS in P. ostreatus triggered by DBDPE. In addition, debromination, hydroxylation, and oxidation were inferred as the main degradation pathways preliminarily. The findings provide a theoretical basis for the application of microbial degradation of DBDPE contamination.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wanlun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Harbin Institute of Technology, 73, Huanghe Rd, Nangang Dist, Harbin 150090, China.
| | - Lu Liu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, 23, Youzheng St., Nangang Dist, Harbin 150001, China.
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Harbin Institute of Technology, 73, Huanghe Rd, Nangang Dist, Harbin 150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Harbin Institute of Technology, 73, Huanghe Rd, Nangang Dist, Harbin 150090, China.
| |
Collapse
|
25
|
He H, Li Y, Shen R, Shim H, Zeng Y, Zhao S, Lu Q, Mai B, Wang S. Environmental occurrence and remediation of emerging organohalides: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118060. [PMID: 34479159 DOI: 10.1016/j.envpol.2021.118060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
As replacements for "old" organohalides, such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), "new" organohalides have been developed, including decabromodiphenyl ethane (DBDPE), short-chain chlorinated paraffins (SCCPs), and perfluorobutyrate (PFBA). In the past decade, these emerging organohalides (EOHs) have been extensively produced as industrial and consumer products, resulting in their widespread environmental distribution. This review comprehensively summarizes the environmental occurrence and remediation methods for typical EOHs. Based on the data collected from 2015 to 2021, these EOHs are widespread in both abiotic (e.g., dust, air, soil, sediment, and water) and biotic (e.g., bird, fish, and human serum) matrices. A significant positive correlation was found between the estimated annual production amounts of EOHs and their environmental contamination levels, suggesting the prohibition of both production and usage of EOHs as a critical pollution-source control strategy. The strengths and weaknesses, as well as the future prospects of up-to-date remediation techniques, such as photodegradation, chemical oxidation, and biodegradation, are critically discussed. Of these remediation techniques, microbial reductive dehalogenation represents a promising in situ remediation method for removal of EOHs, such as perfluoroalkyl and polyfluoroalkyl substances (PFASs) and halogenated flame retardants (HFRs).
Collapse
Affiliation(s)
- Haozheng He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yiyang Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Siyan Zhao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
26
|
Feng M, Zhou J, Yu X, Wang H, Guo Y, Mao W. Bioremediation of triphenyl phosphate by Pycnoporus sanguineus: Metabolic pathway, proteomic mechanism and biotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125983. [PMID: 33975170 DOI: 10.1016/j.jhazmat.2021.125983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
So far, no information about the biodegradability of TPhP by white rot fungi has previously been made available, herein, Pycnoporus sanguineus was used as the representative to investigate the potential of white rot fungi in TPhP bioremediation. The results suggested that the biodegradation efficiency of 5 mg/L TPhP by P. sanguineus was 62.84% when pH was adjusted to 6 and initial glucose concentration was 5 g/L. Seven biodegradation products were identified, indicating that TPhP was biotransformed through oxidative cleavage, hydroxylation and methylation. The proteomic analysis revealed that cytochrome P450s, aromatic compound dioxygenase, oxidizing species-generating enzymes, methyltransferases and MFS general substrate transporters might occupy important roles in TPhP biotransformation. Carboxylesterase and glutathione S-transferase were induced to resist TPhP stress. The biotreatment by P. sanguineus contributed to a remarkable decrease of TPhP biotoxicity. Bioaugmentation with P. sanguineus could efficiently promote TPhP biodegradation in the water-sediment system due to the cooperation between P. sanguineus and some putative indigenous degraders, including Sphingobium, Burkholderia, Mycobacterium and Methylobacterium. Overall, this study provided the first insights into the degradation pathway, mechanism and security risk assessment of TPhP biodegradation by P. sanguineus and verified the feasibility of utilizing this fungus for TPhP bioremediation applications.
Collapse
Affiliation(s)
- Mi Feng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Jiahua Zhou
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Hao Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Yushuo Guo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Wei Mao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| |
Collapse
|
27
|
Li XY, Peng P, Wang WK, Wang SY, Feng L, Zhang YC, Xu J. Particle electrode materials dependent tetrabromobisphenol A degradation in three-dimensional biofilm electrode reactors. ENVIRONMENTAL RESEARCH 2021; 197:111089. [PMID: 33811867 DOI: 10.1016/j.envres.2021.111089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The completely biological degradation of Tetrabromobisphenol A (TBBPA) contaminant is challenging. Bio-electrochemical systems are efficient to promote electrons transfer between microbes and pollutants to improve the degradation of refractory contaminants. In particular, three-dimensional biofilm electrode reactors (3DBERs), integrating the biofilm with particle electrodes, represent a novel bio-electrochemical technology with superior treatment performances. In this study, the electroactive biofilm is cultured and acclimated on two types of particle electrodes, granular activated carbon (GAC) and granular zeolite (GZ), to degrade the target pollutant TBBPA in 3DBERs. Compared to GZ, GAC materials are more favorable for biofilm formation in terms of high specific surface area and good conductivity. The genus of Thauera is efficiently enriched on both GAC and GZ particles, whose growth is promoted by the electricity. By applying 5 V voltage, TBBPA can be removed by over 95% in 120 min whether packing GAC or GZ particle electrodes in 3DBERs. The synergy of electricity and biofilm in TBBPA degradation was more significant in GAC packed 3DBER, because the improved microbial activity by electrical stimulation accelerates debromination rate and hence the decomposition of TBBPA. Applying electricity also promotes TBBPA degradation in GZ packed 3DBER mainly due to the enhanced electrochemical effects. Roles of particle electrode materials in TBBPA removal are distinguished in this work, bringing new insights into refractory wastewater treatment by 3DBERs.
Collapse
Affiliation(s)
- Xiu-Yan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Pin Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei-Kang Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Si-Yuan Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Feng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yan-Chen Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), No.20 Cuiniao Road, Chenjiazhen, Shanghai, 202162, China.
| |
Collapse
|
28
|
Soares PRS, Birolli WG, Ferreira IM, Porto ALM. Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds. MARINE POLLUTION BULLETIN 2021; 166:112185. [PMID: 33640600 DOI: 10.1016/j.marpolbul.2021.112185] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/28/2020] [Accepted: 02/12/2021] [Indexed: 05/21/2023]
Abstract
The indiscriminate use of organophosphate pesticides causes serious environmental and human health problems. This study aims the biodegradation of chlorpyrifos, methyl parathion and profenofos with the proposal of new biodegradation pathways employing marine-derived fungi as biocatalysts. Firstly, a growth screening was carried out with seven fungi strains and Aspergillus sydowii CBMAI 935 was selected. For chlorpyrifos, 32% biodegradation was observed and the metabolites tetraethyl dithiodiphosphate, 3,5,6-trichloropyridin-2-ol, 2,3,5-trichloro-6-methoxypyridine, and 3,5,6-trichloro-1-methylpyridin-2(1H)-one were identified. Whereas 80% methyl parathion was biodegraded with the identification of isoparathion, methyl paraoxon, trimethyl phosphate, O,O,O-trimethyl phosphorothioate, O,O,S-trimethyl phosphorothioate, 1-methoxy-4-nitrobenzene, and 4-nitrophenol. For profenofos, 52% biodegradation was determined and the identified metabolites were 4-bromo-2-chlorophenol, 4-bromo-2-chloro-1-methoxybenzene and O,O-diethyl S-propylphosphorothioate. Moreover, A. sydowii CBMAI 935 methylated different phenolic substrates (phenol, 2-chlorophenol, 6-chloropyridin-3-ol, and pentachlorophenol). Therefore, the knowledge about the fate of these compounds in the sea was expanded, and the marine-derived fungus A. sydowii CBMAI 935 showed potential for biotransformation reactions.
Collapse
Affiliation(s)
- Paulo Roberto S Soares
- São Carlos Institute of Chemistry, University of São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120 São Carlos, SP, Brazil
| | - Willian G Birolli
- São Carlos Institute of Chemistry, University of São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120 São Carlos, SP, Brazil; Chemistry Department, Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, km 235, 13565-905 São Carlos, SP, Brazil
| | - Irlon M Ferreira
- Federal University of Amapá, Campus Ground Zero of Ecuador, Rod. Juscelino Kubitschek Km 02, Bairro Zerão, 68902-280 Macapá, AP, Brazil
| | - André Luiz M Porto
- São Carlos Institute of Chemistry, University of São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
29
|
Chen J, Wu J, Fan L, Jia R. Studies on the characteristics and mechanism of aerobic biodegradation of tetrabromobisphenol A by Irpex lacteus F17. J Basic Microbiol 2021; 61:419-429. [PMID: 33721360 DOI: 10.1002/jobm.202000732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
The study investigated the characteristics of aerobic degradation of tetrabromobisphenol A (TBBPA) by Irpex lacteus F17 (I. lacteus F17) under four different cometabolic substrates (phenol, glucose, sodium pyruvate, and sodium citrate). The biodegradation of TBBPA by I. lacteus F17 could be enhanced via cometabolism, and glucose (8 g/L) was confirmed to be the optimum carbon source. For different initial solution pH ranging from 3.0 to 8.0, the results showed that I. lacteus F17 could be applied to biodegrade TBBPA in a wide pH range of 4.0-8.0, and the degradation rate could reach the maximum 75.31%, while the debromination rate reached the maximum 12.40% under pH 5.0. In addition, it has been confirmed that Mn2+ (50 μmol/L) could promote the secretion of manganese peroxidase and TBBPA biodegradation efficiency. Seven intermediates were identified by gas chromatography-mass spectrometry analysis, and the possible degradation pathways were proposed, which indicated the biodegradation of TBBPA might be subjected to debromination, β-scission, hydroxylation, deprotonation, and oxidation reactions.
Collapse
Affiliation(s)
- Jie Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Juan Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Luosheng Fan
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Rong Jia
- School of Life Science, Anhui University, Hefei, Anhui, China
| |
Collapse
|
30
|
Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front Bioeng Biotechnol 2021; 9:632059. [PMID: 33644024 PMCID: PMC7902726 DOI: 10.3389/fbioe.2021.632059] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Global environmental contamination with a complex mixture of xenobiotics has become a major environmental issue worldwide. Many xenobiotic compounds severely impact the environment due to their high toxicity, prolonged persistence, and limited biodegradability. Microbial-assisted degradation of xenobiotic compounds is considered to be the most effective and beneficial approach. Microorganisms have remarkable catabolic potential, with genes, enzymes, and degradation pathways implicated in the process of biodegradation. A number of microbes, including Alcaligenes, Cellulosimicrobium, Microbacterium, Micrococcus, Methanospirillum, Aeromonas, Sphingobium, Flavobacterium, Rhodococcus, Aspergillus, Penecillium, Trichoderma, Streptomyces, Rhodotorula, Candida, and Aureobasidium, have been isolated and characterized, and have shown exceptional biodegradation potential for a variety of xenobiotic contaminants from soil/water environments. Microorganisms potentially utilize xenobiotic contaminants as carbon or nitrogen sources to sustain their growth and metabolic activities. Diverse microbial populations survive in harsh contaminated environments, exhibiting a significant biodegradation potential to degrade and transform pollutants. However, the study of such microbial populations requires a more advanced and multifaceted approach. Currently, multiple advanced approaches, including metagenomics, proteomics, transcriptomics, and metabolomics, are successfully employed for the characterization of pollutant-degrading microorganisms, their metabolic machinery, novel proteins, and catabolic genes involved in the degradation process. These technologies are highly sophisticated, and efficient for obtaining information about the genetic diversity and community structures of microorganisms. Advanced molecular technologies used for the characterization of complex microbial communities give an in-depth understanding of their structural and functional aspects, and help to resolve issues related to the biodegradation potential of microorganisms. This review article discusses the biodegradation potential of microorganisms and provides insights into recent advances and omics approaches employed for the specific characterization of xenobiotic-degrading microorganisms from contaminated environments.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
31
|
Huang W, Yin H, Yu Y, Lu G, Dang Z, Chen Z. Co-metabolic degradation of tetrabromobisphenol A by Pseudomonas aeruginosa and its auto-poisoning effect caused during degradation process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110919. [PMID: 32800254 DOI: 10.1016/j.ecoenv.2020.110919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, Pseudomonas aeruginosa was applied to degrade tetrabromobisphenol A (TBBPA) with glucose as a co-metabolic substrate. Influencing factors of co-metabolic degradation such as pH, TBBPA and glucose concentration were examined and the degradation efficiency under optimal condition reached about 50% on the 7th day. The study also proved that the extracellular action, rather than intracellular one, played a leading role in TBBPA degradation. Five metabolites including debromination and beta-scission products were identified in this study. The extracellular active substance pyocyanin was considered as the origin of H2O2 and OH·. The variation of concentrations of H2O2 and OH· shared the same trend, they increased in the early days and then declined gradually. On the 1st day, the OD600 of P.aeruginosa in the co-metabolic group was 6.0 times higher than the initial value while total organic carbon (TOC) decreased about 78%, which might lead to the occurrence of pyocyanin auto-poisoning. Flow cytometry was applied to detect the cellular state of P.aeruginosa during degradation. The increasing intracellular ROS showed that cells were suffering from oxidative stress and the change of membrane potential revealed that cellular dysfunction had occurred since the 1st day. This research indicated that the toxic effect on P.aeruginosa was probably not directly correlated with TBBPA, but was caused by pyocyanin auto-poisoning.
Collapse
Affiliation(s)
- Wantang Huang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhanghong Chen
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
32
|
Zhang X, Chen Y, Shang Q, Guo Y. Copper doping and organic sensitization enhance photocatalytic activity of titanium dioxide: Efficient degradation of phenol and tetrabromobisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137144. [PMID: 32059292 DOI: 10.1016/j.scitotenv.2020.137144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
A novel photocatalyst (Cu-TiO2@HQ) had been synthesized by combining Cu-doped TiO2 nanoparticles with 8-Hydroxyquinoline (HQ) via hydrothermal method. The photocatalytic activities of Cu-TiO2@HQ were investigated by using phenol and tetrabromobisphenol A (TBBPA) as target pollutants, respectively. The results indicated that the degradation efficiencies of phenol and TBBPA by Cu-TiO2@HQ were 99.2% (in 30 min) and 99.4% (in 10 min) under visible light irradiation. Both of them were much better than that of pure TiO2 (8.63% in 30 min) and Cu-TiO2 (14.74% in 30 min). When phenol or TBBPA were degraded together with the reduction of Cr (VI), the reaction rate of each pollutant was significantly increased, and the cyclic stability of photocatalyst Cu-TiO2@HQ was greatly improved. Based on the spectroscopic and photoelectric characteristic analysis we found that in the mixture of phenol-Cr (VI) or TBBPA-Cr (VI) both photo-generated electrons and holes can be consumed simultaneously, thus preventing their recombination. The possible degradation products of phenol and TBBPA including its degradation path way were also analyzed by high resolution liquid chromatography-mass spectrometry-mass spectrometry.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yunning Chen
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qingkun Shang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yingna Guo
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
33
|
Yang Y, Yin H, Peng H, Lu G, Dang Z. Biodegradation of triphenyl phosphate using an efficient bacterial consortium GYY: Degradation characteristics, metabolic pathway and 16S rRNA genes analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136598. [PMID: 31955097 DOI: 10.1016/j.scitotenv.2020.136598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Triphenyl phosphate (TPHP) was frequently detected in various environment, which has caused wide attention out of its adverse effects on organisms. Hence, an effective and reasonable method is in urgent demand for removing TPHP. In this study, microbial consortium GYY with efficient capacity to degrade TPHP has been isolated, which could degrade 92.2% of TPHP within 4 h under the optimal conditions (pH 7, inoculum size 1 g/L wet weight, 30 °C, TPHP initial concentration 3 μmol/L). Some intermediate products such as diphenyl phosphate (DPHP), phenyl phosphate (PHP), OH-TPHP, and methoxylation products were identified, suggesting that TPHP was metabolized by hydrolysis, methoxylation after hydrolysis, and methoxylation after hydroxylation pathways. The sequencing analysis demonstrated that Pseudarthrobacter and Sphingopyxis were the dominant genera in consortium GYY during the process of TPHP biodegradation. Also, Sphingopyxis (GY-1) that degraded 98.9% of TPHP (3 μmol/L) within 7 days was further isolated and identified. Overall, this study provides a new insight on TPHP metabolic transformation by consortium and theoretical basis of developing bioremediation technology for TPHP contamination.
Collapse
Affiliation(s)
- Yuanyu Yang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
34
|
Yu Y, Yin H, Peng H, Lu G, Dang Z. Proteomic mechanism of decabromodiphenyl ether (BDE-209) biodegradation by Microbacterium Y2 and its potential in remediation of BDE-209 contaminated water-sediment system. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121708. [PMID: 31806441 DOI: 10.1016/j.jhazmat.2019.121708] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The investigation of BDE-209 degradation by Microbacterium Y2 under different condition was conducted. Cell membrane permeability, cell surface hydrophobicity (CSH), membrane potential (MP) and reactive oxygen species (ROS) production were altered under BDE-209 stress. Eleven debrominated congeners were identified, suggesting that BDE-209 biodegradation by Microbacterium Y2 was dominantly a successive debromination process. Proteome analysis showed that the overexpression of haloacid dehalogenases, glutathione S-transferases (GSTs) and ATP-binding cassette (ABC) transporters might occupy important roles in BDE-209 biotransformation. Meanwhile, heat shock proteins (HSPs), ribonuclease E, oligoribonuclease (Orn) and ribosomal protein were activated to counter the BDE-209 toxicity. The up-regulated pyruvate dehydrogenase E1 component beta subunit and dihydrolipoamide dehydrogenase suggested that the pyruvate metabolism pathway was activated. Bioaugmentation of BDE-209 polluted water-sediments system with Microbacterium Y2 could efficiently improve BDE-209 removal. The detection of total 16S rRNA genes in treatment system suggested that Microbacterium (25.6 %), Luteimonas (14.3 %), Methylovorus (12.6 %), Hyphomicrobium (9.2 %) were the dominant genera and PICRUSt results further revealed that the diminution of BDE-209 was owed to cooperation between the introduced bacteria and aboriginal ones.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
35
|
Liu F, Zhang Y, Zhang M, Luo Q, Cao X, Cui C, Lin K, Huang K. Toxicological assessment and underlying mechanisms of tetrabromobisphenol A exposure on the soil nematode Caenorhabditis elegans. CHEMOSPHERE 2020; 242:125078. [PMID: 31704520 DOI: 10.1016/j.chemosphere.2019.125078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 05/19/2023]
Abstract
The widespread use of tetrabromobisphenol A (TBBPA) in industries has resulted in its frequent detection in environmental matrices, and the mechanisms of its associated hazards need further investigation. In this study, the nematode Caenorhabditis elegans (C. elegans) was exposed to environmentally relevant concentrations of TBBPA (0, 0.1, 1, 10, 100, 200 μg/L) to determine its effects. At TBBPA concentrations above 1 μg/L, the number of head thrashes, as the most sensitive physiological indicator, decreased significantly. Using the Illumina HiSeq™ 2000 sequencer, differentially expressed genes (DEGs) were determined, and 52 were down regulated and 105 were up regulated in the 200 μg/L TBBPA treatment group versus the control group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database analysis demonstrated that dorso-ventral axis formation is related to neurotoxicity; metabolism of xenobiotics by Cytochrome P450 (CYP450) and glutathione-S-transferase (GST) was found to be the vital metabolic mechanisms and were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). GST was ascribed to the augmentation because mutations in cyp-13A7 were constrained under TBBPA exposure. Additionally, oxidative stress indicators accumulated in a dose-dependent relationship. These results will help understand the molecular basis for TBBPA-induced toxicity in C. elegans and open novel avenues for facilitating the exploration of more efficient strategies against TBBPA toxicity.
Collapse
Affiliation(s)
- Fuwen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qishi Luo
- Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai, 200051, China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
36
|
Liang Z, Li G, Mai B, An T. Biodegradation of typical BFRs 2,4,6-tribromophenol by an indigenous strain Bacillus sp. GZT isolated from e-waste dismantling area through functional heterologous expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134159. [PMID: 31491624 DOI: 10.1016/j.scitotenv.2019.134159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Legacy wastewater contaminants from e-waste dismantling process such as 2,4,6-tribromophenol (TBP), one of the most widely used brominated flame retardants (BFRs), have raised concern owing to their toxicity and recalcitrance. Our previously isolated Bacillus sp. GZT from river sludge in e-waste dismantling area is a good candidate for bioremediation of BFRs contaminated sites considering its remarkable degradability of TBP and its intermediates. However, there exists a new challenge because bio-degrader cannot produce enough biomass or metabolic activity to cleanup TBP in practice complex environment. Here, we heterologously expressed and functionally characterized the genes and enzymes responsible for TBP degradation to examine the feasibility of enhancing the ability of this microorganism to detoxify TBP. Results demonstrated that five recombinant strains containing functional genes, designated tbpA, tbpB, tbpC, tbpD, and tbpE, become more tolerant toward a wide range of brominated compounds than the nontransgenic strain. Cytochrome P450 reductase encoded by tbpA gene could greatly increase efficiency to remove TBP (98.8%), as compared to wild-type strain GZT (93.2%). Its debromination intermediates 2,4-dibromophenol, 2,6-dibromo-4-methylphenol and 2-bromophenol were significantly metabolized by halophenol dehalogenases encoded by tbpB, tbpC, and tbpD, respectively. Finally, under the function of tbpE gene encoding enzyme, further debrominated product (phenol) was dramatically detoxified. To reduce the risk of these xenobiotics, the expression of these genes can be induced and significantly up-regulated during exposure to them. These results open broad scope for future study in developing genetic engineering technologies for more efficient remediation wastewater of e-waste recycling sites contaminated with TBP, which would certainly be important steps to lower TBP exposures and prevent potential health effects.
Collapse
Affiliation(s)
- Zhishu Liang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
37
|
Gu C, Wang J, Zhao Z, Han Y, Du M, Zan S, Wang F. Aerobic cometabolism of tetrabromobisphenol A by marine bacterial consortia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23832-23841. [PMID: 31209756 DOI: 10.1007/s11356-019-05660-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The coastal environments worldwide are subjected to increasing TBBPA contamination, but current knowledge on aerobic biodegradability of this compound by marine microbes is lacking. The aerobic removal of TBBPA using marine consortia under eight different cometabolic conditions was investigated here. Results showed that the composition and diversity of the TBBPA-degrading consortia had diverged after 120-day incubation. Pseudoalteromonas, Alteromonas, Glaciecola, Thalassomonas, and Limnobacter were the dominant genera in enrichment cultures. Furthermore, a combination of beef extract- and peptone-enriched marine consortia exhibited higher TBBPA removal efficiency (approximately 60%) than the other substrate amendments. Additionally, Alteromonas macleodii strain GCW was isolated from a culture of TBBPA-degrading consortium. This strain exhibited about 90% of degradation efficiency toward TBBPA (10 mg L-1) after 10 days of incubation under aerobic cometabolic conditions. The intermediates in the degradation of TBBPA by A. macleodii strain GCW were analyzed and the degradation pathways were proposed, involving β-scission, debromination, and nitration routes.
Collapse
Affiliation(s)
- Chen Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Zelong Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ying Han
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fenbo Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
38
|
Yu Y, Yin H, Peng H, Lu G, Dang Z. Biodegradation of decabromodiphenyl ether (BDE-209) using a novel microbial consortium GY1: Cells viability, pathway, toxicity assessment, and microbial function prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:958-965. [PMID: 31018474 DOI: 10.1016/j.scitotenv.2019.03.078] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
GY1, a novel microbial consortium with efficient ability to degrade decabromodiphenyl ether (BDE-209) has been isolated and the sequencing analysis has been conducted. The results revealed that Hyphomicrobium, Pseudomonas, Aminobacter, Sphingopyxis, Chryseobacterium, Bacillus, Pseudaminobacter, Stenotrophomonas, Sphingobacterium and Microbacterium were the dominant genera, and the function genes involved in BDE-209 conversion were predicted by PICRUSt. When BDE-209 concentration increased from 0.5 to 10mg/L, its degradation efficiency declined from 57.2% to 22.3%. Various kinds of debrominated metabolites were detected during the biodegradation process, including BDE-208, BDE-207, BDE-206, BDE-205, BDE-190, BDE-181, BDE-155, BDE-154, BDE-99, BDE-47, BDE-17 and BDE-7. Also, the proportion of necrotic cells was observed during GY1 mediated degradation of BDE-209 to reveal the changes of cells viability under BDE-209 stress. Subsequent analysis showed that the reaction of BDE-209 with GY1 was a detoxification process and bioaugmentation with GY1 effectively enhanced BDE-209 degradation in actual water and water-sediment system.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|