1
|
Xie Z, Pan L, Nie M, Cai G, Liang H, Tang J, Zhao X. Deciphering the inhibitory mechanisms of didecyldimethylammonium chloride on microalgal removal of fluoxetine: Insights from the alterations in cell surface properties and the physio-biochemical and molecular toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177841. [PMID: 39644638 DOI: 10.1016/j.scitotenv.2024.177841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
The COVID-19 pandemic has increased the co-occurrence of quaternary ammonium compounds (QACs) and antidepressants in aquatic environments. Microalgae are sustainable and cost-effective candidates for removing emerging pollutants. QACs have a robust ability to adsorb on cell surface and alter membrane permeability, but little is known about the influence of QACs on microalgal bioremediation of co-existing pollutants like antidepressants. In this study, the influence mechanisms of didecyldimethylammonium chloride (DDAC) on the removal of fluoxetine (FLX) by C. pyrenoidosa were explored. The results showed that C. pyrenoidosa exhibited high removal efficiency of single FLX (75.23 %-88.65 %) mainly through biodegradation (57.12 %-67.19 %). However, the coexisting medium and high concentrations of DDAC considerably decreased the biodegradation amount (10.50 %-33.30 %) and removal efficiency (29.47 %-52.89 %) of FLX by C. pyrenoidosa. In contrast, the presence of DDAC increased extracellular and intracellular FLX concentrations due to the enhanced extracellular polymeric substance content, cell surface hydrophobicity, and cell membrane permeability. Meanwhile, DDAC showed synergistic effects with FLX on microalgal growth through exacerbated oxidative damage and photosynthesis inhibition. Moreover, transcriptomics revealed that the dysregulations of key genes involved in the DNA replication and repair, ribosome biogenesis, photosynthesis-antenna proteins, peroxisomes, and glutathione metabolism pathways were important molecular mechanisms underlying the synergistic toxicity. Furthermore, the principal component analysis suggested that the enhancement of extracellular and intracellular FLX concentrations induced by the coexistence of DDAC increased the mixture's toxicity, resulting in the decreased biodegradation amount and ultimately a reduction in the removal efficiency of FLX. Our results highlight the significance of recognizing the influence of QACs on microalgal remediation and ecological risks of antidepressants.
Collapse
Affiliation(s)
- Zhengxin Xie
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lin Pan
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Meng Nie
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guiyuan Cai
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Hebin Liang
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Roux C, Madru C, Millan Navarro D, Jan G, Mazzella N, Moreira A, Vedrenne J, Carassou L, Morin S. Impact of urban pollution on freshwater biofilms: Oxidative stress, photosynthesis and lipid responses. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134523. [PMID: 38723485 DOI: 10.1016/j.jhazmat.2024.134523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Urban ecosystems are subjected to multiple anthropogenic stresses, which impact aquatic communities. Artificial light at night (ALAN) for instance can significantly alter the composition of algal communities as well as the photosynthetic cycles of autotrophic organisms, possibly leading to cellular oxidative stress. The combined effects of ALAN and chemical contamination could increase oxidative impacts in aquatic primary producers, although such combined effects remain insufficiently explored. To address this knowledge gap, a one-month experimental approach was implemented under controlled conditions to elucidate effects of ALAN and dodecylbenzyldimethylammonium chloride (DDBAC) on aquatic biofilms. DDBAC is a biocide commonly used in virucidal products, and is found in urban aquatic ecosystems. The bioaccumulation of DDBAC in biofilms exposed or not to ALAN was analyzed. The responses of taxonomic composition, photosynthetic activity, and fatty acid composition of biofilms were examined. The results indicate that ALAN negatively affects photosynthetic yield and chlorophyll production of biofilms. Additionally, exposure to DDBAC at environmental concentrations induces lipid peroxidation, with an increase of oxylipins. This experimental study provides first insights on the consequences of ALAN and DDBAC for aquatic ecosystems. It also opens avenues for the identification of new biomarkers that could be used to monitor urban pollution impacts in natural environments.
Collapse
Affiliation(s)
- Caroline Roux
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France.
| | - Cassandre Madru
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | | | - Gwilherm Jan
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Nicolas Mazzella
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon 33140, France
| | - Aurélie Moreira
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon 33140, France
| | - Jacky Vedrenne
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Laure Carassou
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Soizic Morin
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| |
Collapse
|
3
|
Buhani, Istikomah, Suharso, Sumadi, Sutarto, Alghamdi HM, Elwakeel KZ. Cationic Surfactant-Modified Tetraselmis sp. for the Removal of Organic Dyes from Aqueous Solution. Molecules 2023; 28:7839. [PMID: 38067566 PMCID: PMC10708098 DOI: 10.3390/molecules28237839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 06/29/2024] Open
Abstract
The modification of the Tetraselmis sp. algae material (Tetra-Alg) with surfactant Cethyltrimethylammonium Bromide (CTAB) yielded adsorbent Tetra-Alg-CTAB as an adsorbent of methyl orange (MO) and methylene blue (MB) solutions. The characterization of the adsorbent used an infrared (IR) spectrometer to identify functional groups and Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX FEI Inspect-S50, Midland, ON, Canada) to determine the surface morphology and elemental composition. Methyl orange and methylene blue adsorption on the adsorbent Tetra-Alg, Tetraselmis sp. algae-modified Na+ ions (Tetra-Alg-Na), and Tetra-Alg-CTAB were studied, including variations in pH, contact time, concentration, and reuse of adsorbents. The adsorption of MO and MB by Tetra-Alg-CTAB at pH 10, during a contact time of 90 min, and at a concentration of 250 mg L-1 resulted in MO and MB being absorbed in the amounts of 128.369 and 51.013 mg g-1, respectively. The adsorption kinetics and adsorption isotherms of MO and MB and Tetra-Alg, Tetra-Alg-Na, and Tetra-Alg-CTAB tend to follow pseudo-second-order kinetics models and Freundlich adsorption isotherms with each correlation coefficient value (R2) approaching 1. Due to the modification with the cationic surfactant CTAB, anionic dyes can be strongly sorbed in alkaline pH due to strong electrostatic attraction, while MB is more likely to involve cation exchange and hydrogen bonding. The reuse of Tetra-Alg-CTAB was carried out four times with adsorption percent > 70%, and the adsorbent was very effective in the adsorption of anionic dyes such as MO.
Collapse
Affiliation(s)
- Buhani
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, University of Lampung, Jl. Soemantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia; (B.); (I.); (S.)
| | - Istikomah
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, University of Lampung, Jl. Soemantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia; (B.); (I.); (S.)
| | - Suharso
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, University of Lampung, Jl. Soemantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia; (B.); (I.); (S.)
| | - Sumadi
- Department of Electrical Engineering, Faculty of Engineering, University of Lampung, Jl. Soemantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia;
| | - Sutarto
- Department of Medicine, Faculty of Medicine, University of Lampung, Bandar Lampung 35141, Indonesia
| | - Huda M. Alghamdi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 80327, Saudi Arabia;
| | - Khalid Z. Elwakeel
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 80327, Saudi Arabia;
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said 42522, Egypt
| |
Collapse
|
4
|
Liu C, Goh SG, You L, Yuan Q, Mohapatra S, Gin KYH, Chen B. Low concentration quaternary ammonium compounds promoted antibiotic resistance gene transfer via plasmid conjugation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:163781. [PMID: 37149193 PMCID: PMC10158037 DOI: 10.1016/j.scitotenv.2023.163781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
During the pandemic of COVID-19, the amounts of quaternary ammonium compounds (QACs) used to inactivate the virus in public facilities, hospitals and households increased, which raised concerns about the evolution and transmission of antimicrobial resistance (AMR). Although QACs may play an important role in the propagation of antibiotic resistance gene (ARGs), the potential contribution and mechanism remains unclear. Here, the results showed that benzyl dodecyl dimethyl ammonium chloride (DDBAC) and didecyl dimethyl ammonium chloride (DDAC) significantly promoted plasmid RP4-mediated ARGs transfer within and across genera at environmental relevant concentrations (0.0004-0.4 mg/L). Low concentrations of QACs did not contribute to the permeability of the cell plasma membrane, but significantly increased the permeability of the cell outer membrane due to the decrease in content of lipopolysaccharides. QACs altered the composition and content of extracellular polymeric substances (EPS) and were positively correlated with the conjugation frequency. Furthermore, transcriptional expression levels of genes encode for mating pairing formation (trbB), DNA replication and translocation (trfA), and global regulators (korA, korB, trbA) are regulated by QACs. And we demonstrate for the first time that QACs decreased the concentration of extracellular AI-2 signals, which was verified to be involved in regulating conjugative transfer genes (trbB, trfA). Collectively, our findings underscore the risk of increased disinfectant concentrations of QACs on the ARGs transfer and provide new mechanisms of plasmid conjugation.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Shin Giek Goh
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Luhua You
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Qiyi Yuan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Sanjeeb Mohapatra
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
5
|
Shi X, Ling Q, Jiang Z, Pei F, Xin M, Tan W, Chen X, Liu K, Ma J, Yu F, Li Y. Insight into the roles of soluble, loosely bound and tightly bound extracellular polymeric substances produced by Enterobacter sp. in the Cd 2+ and Pb 2+ biosorption process: Characterization and mechanism. Colloids Surf B Biointerfaces 2023; 227:113348. [PMID: 37201449 DOI: 10.1016/j.colsurfb.2023.113348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Extracellular polymeric substances (EPSs) are macromolecular polymers formed by metabolic secretion, and they have great potential for removing heavy metal (HM) ions from the aquatic phase. In this study, the contributions of soluble EPSs (S-EPSs), loosely bound EPSs (LB-EPSs) and tightly bound EPSs (TB-EPSs) secreted by Enterobacter sp. to Cd2+ and Pb2+ adsorption were analyzed. The results indicated that in a solution containing both Cd2+ and Pb2+, pH= 6.0 was best suited for the adsorption process, and adsorption equilibrium was reached in approximately 120 min. Moreover, the mechanism for adsorption of Cd2+ and Pb2+ by the different layers of EPSs involved spontaneous chemical processes. However, Cd2+ adsorption by the three layers of the EPSs was an exothermic process (∆H0 <0), but Pb2+ adsorption by the three layers of the EPSs was an endothermic process (∆H0 >0). The variations in zeta potentials indicated that ion exchange occurred during Cd2+ and Pb2+ adsorption. FT-IR, XPS and 3D-EEM analyses indicated that the functional groups of the EPSs involved in adsorption were mainly the CO, C-O and C-O-C groups of the polysaccharides; furthermore, fulvic acid-like substances, humic-like substances and tyrosine-like proteins played important roles in the adsorption of Cd2+ and Pb2+ by the different EPS layers.
Collapse
Affiliation(s)
- Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Qiujie Ling
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Zhiling Jiang
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Fengmei Pei
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Meifen Xin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Weilan Tan
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Xuan Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004 Guilin, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004 Guilin, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China.
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China.
| |
Collapse
|
6
|
Wang Q, Wang J, Chen H, Zhang Y. Toxicity effects of microplastics and nanoplastics with cadmium on the alga Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17360-17373. [PMID: 36194332 DOI: 10.1007/s11356-022-23278-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The extensive spread of microplastics (MPs) and nanoplastics (NPs) in the aquatic environment has attracted widespread attention. The toxicity of cadmium (Cd) combined with microplastics (MPs) and nanoplastics (NPs) toward freshwater algae Microcystis aeruginosa (M. aeruginosa) was investigated to evaluate the environmental behavior of the Cd complexation in fresh water. Cd alone has the highest toxicity to algae. Both MPs and NPs also have a negative effect on the growth of algae as individual components due to their adsorption of nutrients and disruption of the alga's activity in a single MPs/NPs system. Compared with the single system, the toxicity of compound pollution including MPs + Cd and NPs + Cd becomes stronger, which presents a synergistic effect. In the presence of NPs, more extracellular polymeric substances (EPS) appeared, which helped to reduce the toxic effect on the algal cells. Moreover, MPs/NPs + Cd stimulate the production of microcystin-LR (MC-LR) under different treatments. Overall, the aquatic environmental assessment shows potentially elevated risks associated with combined MPs/NPs with Cd, which should be considered.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, Anhui, China.
| | - Jinxiaoxue Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Huijuan Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Yangyang Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, Anhui, China
| |
Collapse
|
7
|
Chu Y, Zhang C, Chen X, Li X, Ren N, Ho SH. Multistage defense response of microalgae exposed to pharmaceuticals in wastewater. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Li Y, Shi X, Ling Q, Li S, Wei J, Xin M, Xie D, Chen X, Liu K, Yu F. Bacterial extracellular polymeric substances: Impact on soil microbial community composition and their potential role in heavy metal-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113701. [PMID: 35636237 DOI: 10.1016/j.ecoenv.2022.113701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, six different treatments involving extracellular polymeric substances (EPS) from Enterobacter sp. FM-1 (FM-1) (no EPS (control), original bacterial cells (FM-1), FM-1 cells with EPS artificially removed (EPS-free cells, EPS-R), different forms of EPS (soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS)) obtained from FM-1) and three types of soils (non-contaminated soil (NC soil), high-contamination soil (HC soil) and low-contamination soil (LC soil)) were used to investigate the impact of different EPS treatments on soil microbial community composition and their potential role in the remediation of heavy metal (HM)-contaminated soil. The results indicate that the EPS secreted by FM-1 played a vital role in changing soil pH and helped increase soil bio- HMs. In addition, EPS secretion by FM-1 helped increase the soil EPS-polysaccharide and EPS-nucleic acid contents; even in HC soil, where the HM content was relatively high, LB-EPS addition still increased the EPS-polysaccharide and EPS-nucleic acid contents in the soil by 1.18- and 15.54-fold, respectively. FM-1, LB-EPS and TB-EPS addition increased the soil invertase, urease and alkaline phosphatase activities and increased the soil organic matter (SOM), NH4+-N and available phosphorus (AP) contents, which helped regulate soil nutrient reserves. Moreover, the addition of different EPS fractions modified the soil microbial community composition to help microbes adapt to an HM-contaminated environment. In the HC and LC soils, where the HM content was relatively high, the soil bacteria were dominated by Protobacteria, while fungi in the soil were dominated by Ascomycota. Among the soil physicochemical properties, the soil SOM and NH4+-N contents and invertase activity significantly impacted the diversity and community composition of both bacteria and fungi in the soil.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Xinwei Shi
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Qiujie Ling
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Songying Li
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Jiayu Wei
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Meifen Xin
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Dongyu Xie
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Xuan Chen
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004 Guilin, China.
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China.
| |
Collapse
|
9
|
Goswami RK, Agrawal K, Verma P. An exploration of natural synergy using microalgae for the remediation of pharmaceuticals and xenobiotics in wastewater. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Improved Adsorption Capacity of Nannochloropsis sp. through Modification with Cetyltrimethylammonium Bromide on the Removal of Methyl Orange in Solution. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/1641074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this research, biomass modification of Nannochloropsis sp. with surfactant cetyltrimethylammonium bromide (CTAB) through a cation exchange reaction to produce adsorbent Nannochloropsis sp.-cetyltrimethylammonium bromide (AlgN-CTAB) has been carried out. Biomass modification of Nannochloropsis sp. by CTAB has been successfully carried out through confirmation from the analysis data produced by Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX). AlgN-CTAB adsorbent has been tested for its adsorption ability against anionic dye of methyl orange (MO) in solution by way of a sequence of experiments by the batch method. The optimum conditions for MO removal from the solution occurred at an adsorbent quantity of 0.1 g, pH of 5, and an interaction time of 60 min. MO adsorption kinetic data by AlgN and AlgN-CTAB tended to take the kinetic model of pseudo-second-order (PSO) with PSO rate constant (
) values of 0.56 and 2.17 g mg-1 min-1, serially. The MO adsorption isotherm pattern by AlgN tends to take the Freundlich adsorption isotherm, whereas in AlgN-CTAB it follows the Langmuir and Dubinin-Radushkevich adsorption isotherms. The results of the adsorption-desorption of MO by AlgN-CTAB with 4 repetition cycles resulted in % removal of
. The AlgN-CTAB adsorbent can be used repeatedly and is very effective in absorbing MO in water.
Collapse
|
11
|
Achar JC, Na J, Im H, Jung J. Role of extracellular polymeric substances in leaching and bioconcentration of benzophenone-3 from microplastic fragments. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125832. [PMID: 33887569 DOI: 10.1016/j.jhazmat.2021.125832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Adverse effects of microplastics (MPs) are exacerbated by plastic additives such as benzophenone-3 (BP-3). The aim of the present study was to evaluate the role of extracellular polymeric substances (EPS) of Chlorella vulgaris in leaching BP-3 additive (3.0 ± 0.2% wt/wt) from polyethylene MP fragments (99.8 ± 4.1 µm) and subsequent bioconcentration in Daphnia magna. BP-3 leaching in M4 medium was higher at pH 8 than at pH 6, because of the higher solubility of BP-3 (pKa=7.07) at pH 8. However, EPS reduced BP-3 leaching in M4 medium, possibly because of repulsive interactions between the negatively charged EPS and anionic BP-3. Thus, BP-3 leaching was greater at lower pH (6 >8) and EPS concentration (20 >50 mg L-1 as total organic carbon), which was well related to BP-3 sorption capacity of EPS. Although BP-3 uptake in D. magna was decreased at pH 8 by increasing EPS concentration, the bioconcentration of BP-3 in D. magna was increased, possibly because of reduced BP-3 elimination. These findings suggest the important role of EPS in the bioconcentration of anionic plastic additives, which should be further evaluated to understand the underlying toxicokinetic mechanisms.
Collapse
Affiliation(s)
- Jerry Collince Achar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyungjoon Im
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Qu R, Xie Q, Tian J, Zhou M, Ge F. Metabolomics reveals the inhibition on phosphorus assimilation in Chlorella vulgaris F1068 exposed to AgNPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145362. [PMID: 33736381 DOI: 10.1016/j.scitotenv.2021.145362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus removal by algae-based biotechnology can be achieved through algal assimilation, surface adsorption, or abiotic precipitation. However, there are still unavailable how these phosphorus removal processes were affected by nanoparticles in wastewater. Here, we employed a non-targeted metabolomic approach to reveal the impact of silver nanoparticles (AgNPs) on the phosphorus assimilation by a unicellular green alga Chlorella vulgaris F1068 (C. vulgaris F1068). Results showed that AgNPs mostly inhibited total phosphorus (TP) removal by the algal assimilation, with TP removal efficiency being reduced by 66.2% (with 0.20 mg/L AgNPs) of the control (without AgNPs). Metabolomics analysis also indicated that AgNPs disturbed metabolic responses related to phosphorus assimilation. AgNPs inhibited phospholipid metabolism which included inositol phosphate metabolism and phosphatidylinositol signaling system (downregulation of glycerol-3-phosphate and myo-inositol, as well as upregulation of serine). Metabolites related to phosphorus assimilation products were impacted through downregulation of guanine, glutamine, alanine, and aspartic acid, as well as upregulation of succinic acid, thereby impeding the algal assimilation of phosphorus. Moreover, perturbation of glutathione metabolism induced by oxidative stress stimulated the alteration of membrane state (upregulation of glycine). These findings contribute to a molecular-scale perspective of nanoparticles on algae-based biotechnology in phosphorus removal.
Collapse
Affiliation(s)
- Ruohua Qu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Qiting Xie
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jiang Tian
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Min Zhou
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
13
|
Chen S, Li J, Feng W, Yuan M, Zhang W, Xu H, Zheng X, Wang L. Biochemical responses of the freshwater microalga Dictyosphaerium sp. upon exposure to three sulfonamides. J Environ Sci (China) 2020; 97:141-148. [PMID: 32933729 DOI: 10.1016/j.jes.2020.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Sulfonamides (SAs) are common antimicrobial drugs, which are frequently detected in surface water systems, and are difficult to degrade, posing a potential threat to the aquatic environment. However, little is known about the potential adverse effects of SAs on non-target organisms (e.g., microalgae) in the aquatic ecosystem. In this study, the effect of SAs (sulfadiazine (SD), sulfamerazine (SM1), and sulfamethazine (SM2) at 1, 5, 20, and 50 mg/L concentrations, respectively) on the freshwater microalga Dictyosphaerium sp. was investigated, with respect to changes of biomass and chlorophyll a content and induction of extracellular polymer substances (EPS), including protein and polysaccharide contents. At the same time, the residue of SAs was determined. The results showed that Dictyosphaerium sp. was tolerant to the three SAs, and the chlorophyll a content in Dictyosphaerium sp. significantly decreased on day 7, followed by a "compensation phenomena". The increase in protein and polysaccharide contents played a defensive role in Dictyosphaerium sp. against antibiotic stress, and there was a strong positive correlation between polysaccharide contents and antibiotic concentrations. Dictyosphaerium sp. exhibited 35%-45%, 30%-42%, and 26%-51% removal of SD, SM1, and SM2, respectively. This study is helpful to understand the changes of EPS in the defense process of microalgae under the action of antibiotics, and provides a new insight for the ecological removal of antibiotic pollution in natural surface water system.
Collapse
Affiliation(s)
- Shan Chen
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiayuan Li
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbo Feng
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingzhe Yuan
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Zhang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Houtao Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyan Zheng
- Shanghai Aquatic Environmental Engineering Co., Ltd, Shanghai 200090, China
| | - Liqing Wang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
14
|
Cheng Q, Jiang Y, Jin Z, Hui C, Xu L, Zhou Q, Zhao Y, Du L, Jiang H. Enhanced excretion of extracellular polymeric substances associated with nonylphenol tolerance in Dictyosphaerium sp. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122644. [PMID: 32315798 DOI: 10.1016/j.jhazmat.2020.122644] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Dictyosphaerium sp. is tolerant to nonylphenol (NP); however, knowledge regarding the mechanisms involved in NP tolerance is limited. In this study, a batch of algal culture experiments were carried out to elucidate the underlying mechanisms by investigating the production and composition of extracellular polymeric substances (EPS) in algae exposed to NP. The excretion of EPS was significantly enhanced (P < 0.001) in algae exposed to 4 and 8 mg/L of NP. The polysaccharides in soluble EPS and the proteins in bound EPS were specifically overproduced. The three-dimensional excitation and emission matrix fluorescence spectra analyses indicated that tyrosine- and tryptophan-like substances were the main functional compositions in the proteins of EPS. In addition, enhanced EPS secretion significantly alleviated the toxicity of NP to the algae by the reduction of cell internalization, as indicated by the higher IC50, biomass, and cell growth rate in the algae with EPS. These discoveries along with the characterizations by algal cell surface hydrophobicity analysis, scanning electron microscopy, and Fourier transform infrared spectra spectroscopy demonstrated the vital role of EPS in the algal resistance to NP.
Collapse
Affiliation(s)
- Qilu Cheng
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhuo Jin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai Hui
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ligen Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qifa Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhua Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linna Du
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China.
| | - Hui Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Xie Q, Liu N, Lin D, Qu R, Zhou Q, Ge F. The complexation with proteins in extracellular polymeric substances alleviates the toxicity of Cd (II) to Chlorella vulgaris. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114102. [PMID: 32203844 DOI: 10.1016/j.envpol.2020.114102] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 05/27/2023]
Abstract
The complexation with extracellular polymeric substances (EPS) greatly reduces the toxicity of heavy metals towards organisms in the environment. However, the molecular mechanism of EPS-metal complexation remains unclear owing to the limitation of precise analysis for key fractions and functionalities in EPS that associate with metals. Herein, we explored the EPS-Cd (II) complexation by fluorescence excitation emission matrix coupled with parallel factor (EEM-PARAFAC), two-dimensional Fourier transform infrared correlation spectroscopy (2D-FTIR-COS) and X-ray photoelectron spectroscopy (XPS), attempting to explain the mechanisms of EPS in alleviating Cd (II) toxicity toward a green alga Chlorella vulgaris (C. vulgaris). When the algal EPS were removed, the cell internalizations of Cd (II), growth inhibition rate and chlorophyll autofluorescence increased, but the surface adsorption and esterase activities decreased, indicating that the sorption of Cd (II) by EPS was crucial in alleviating the algal toxicity. Moreover, the complexation with proteins in EPS controlled the sorption of Cd (II) to algal EPS, resulting in the chemical static quenching of the proteins fluorescence by 47.69 ± 2.37%. Additionally, the complexing capability of the main functionalities, COO- and C-OH in proteins with Cd (II) was stronger than that of C-O(H) and C-O-C in polysaccharides or C-OH in the humus-related substances. Oxygen atom in protein carboxyl C-O might be the key site of EPS-Cd (II) complexation, supported by the modified Ryan-Weber complexation model and the obvious shift of oxygen valence-electron signal. These findings provide deep insights into understanding the interaction of EPS with heavy metals in aquatic environment.
Collapse
Affiliation(s)
- Qiting Xie
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Department of Environment Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environment Science, Zhejiang University, Hangzhou 310058, China
| | - Ruohua Qu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Qiongzhi Zhou
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
16
|
Achar JC, Kim DY, Kwon JH, Jung J. Toxicokinetic modeling of octylphenol bioconcentration in Chlorella vulgaris and its trophic transfer to Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110379. [PMID: 32143104 DOI: 10.1016/j.ecoenv.2020.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Bioconcentration of 4-tert-Octylphenol (OP) in freshwater algae Chlorella vulgaris was investigated by considering the effects of algal growth and exudate excretion. The OP uptake in algae was approximately 113 mg kg-1 after 24 h, and the uptake rate constant was estimated as 2.4 × 104 L kg-1 d-1. The OP sorption onto exudates reduced OP bioavailability to C. vulgaris to 11% after 24 h, with a sorption coefficient of 9.7 × 103 L kg-1. The elimination of OP by algae growth (0.80 d-1) was dominant over real elimination (0.60 d-1). The calculated bioconcentration factor of OP in C. vulgaris following uptake and elimination rate constants was 4.0 × 104 L kg-1. Further, bioaccumulation of OP in Daphnia magna was investigated by considering both aqueous and dietary (C. vulgaris) exposures. Uptake and elimination rates of OP via water were 1.6 × 104 L kg-1 d-1 and 0.95 d-1, respectively, while ingestion rate and assimilation efficiency via diet were 0.41 d-1 and 58%, respectively. The OP accumulation in D. magna predominantly occurred via water (63%) relative to diet (37%), resulting in a bioaccumulation factor of 2.7 × 104 L kg-1. The estimated trophic transfer factor was 0.25, suggesting that OP biomagnification was unlikely in the C. vulgaris-D. magna trophic relationship.
Collapse
Affiliation(s)
- Jerry Collince Achar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Du Yung Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|