1
|
Wang Z, Wang G, Li Y, Zhang Z. Determinants of carbon sequestration in thinned forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175540. [PMID: 39151612 DOI: 10.1016/j.scitotenv.2024.175540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Given global climate change and the projected increases in the greenhouse effect, enhancing the carbon storage capacity of forest ecosystems is especially critical. To fully realize the potential carbon sequestration, it is imperative to understand the drivers affecting carbon storage in forest ecosystems, particularly with disturbances that disrupt existing balance. In this study, we explored the effects of stem-only harvest at various thinning intensities on forest structure and carbon density in middle-aged natural secondary forests, located in the northern temperate zone. Carbon density included aboveground carbon density (ACD), soil organic carbon stocks (SOCD), and total carbon density (TCD), which was the sum of ACD and SOCD. We employed the random forest analysis method to identify significant variables influencing changes in carbon density. Structural equation modelling (SEM) was then used to determine the drivers of changes in forest carbon density. The results showed that moderate thinning (20 %-35 % trees removed), is an effective management practice for increasing the TCD in forests. Although heavy thinning (35.1 %-59.9 % trees removed) accelerated individual growth, it did not fully offset the carbon removed due to thinning. It is noteworthy that light thinning (0-19.9 % trees removed) not only reduced the species richness but also caused a significant number of tree deaths. Large live trees were an important direct determining factor of ACD, but not the only one. In addition, thinning indirectly influenced ACD by reducing canopy density and deformed tree density. The increase in dead tree density had an adverse impact on SOCD, and this phenomenon increased with the passage of recovery time. Conversely, greater thinning intensity enhanced SOCD. Moreover, TCD was directly influenced by tree height, large live trees, and stand density. Furthermore, thinning altered the conifer ratio, thereby influencing tree growth and indirectly controlling the TCD. We believe that this knowledge will be highly beneficial for successful forest management and enhancing the carbon sequestration capacity of forest ecosystems.
Collapse
Affiliation(s)
- Zichun Wang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | - Guangyu Wang
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | - Yaoxiang Li
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Zheyu Zhang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Fernández-Triana I, Rubilar O, Parada J, Fincheira P, Benavides-Mendoza A, Durán P, Fernández-Baldo M, Seabra AB, Tortella GR. Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173494. [PMID: 38810746 DOI: 10.1016/j.scitotenv.2024.173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The soil is a vital resource that hosts many microorganisms crucial in biogeochemical cycles and ecosystem health. However, human activities such as the use of metal nanoparticles (MNPs), pesticides and the impacts of global climate change (GCCh) can significantly affect soil microbial communities (SMC). For many years, pesticides and, more recently, nanoparticles have contributed to sustainable agriculture to ensure continuous food production to sustain the significant growth of the world population and, therefore, the demand for food. Pesticides have a recognized pest control capacity. On the other hand, nanoparticles have demonstrated a high ability to improve water and nutrient retention, promote plant growth, and control pests. However, it has been reported that their accumulation in agricultural soils can also adversely affect the environment and soil microbial health. In addition, climate change, with its variations in temperature and extreme water conditions, can lead to drought and increased soil salinity, modifying both soil conditions and the composition and function of microbial communities. Abiotic stressors can interact and synergistically or additively affect soil microorganisms, significantly impacting soil functioning and the capacity to provide ecosystem services. Therefore, this work reviewed the current scientific literature to understand how multiple stressors interact and affect the SMC. In addition, the importance of molecular tools such as metagenomics, metatranscriptomics, proteomics, or metabolomics in the study of the responses of SMC to exposure to multiple abiotic stressors was examined. Future research directions were also proposed, focusing on exploring the complex interactions between stressors and their long-term effects and developing strategies for sustainable soil management. These efforts will contribute to the preservation of soil health and the promotion of sustainable agricultural practices.
Collapse
Affiliation(s)
- I Fernández-Triana
- Doctoral Program in Science of Natural Resources, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - P Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
| | - P Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | - Martín Fernández-Baldo
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86047-970 Londrina, PR, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
3
|
Hu Y, Zhang X, Chen H, Jiang Y, Zhang J. Effects of forest age and season on soil microbial communities in Chinese fir plantations. Microbiol Spectr 2024; 12:e0407523. [PMID: 38980023 PMCID: PMC11302042 DOI: 10.1128/spectrum.04075-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Understanding changes in the distribution patterns and diversity of soil microbial communities from the perspectives of age-related changes, seasonal variations, and the interaction between the two factors can facilitate the management of plantations. In Chinese fir plantations, we collected soils from different depths in over-mature forests, mature forests, near-mature forests, middle-aged forests, and young forests in summer, autumn, and winter in China's subtropical regions. As the forests developed, bacterial and fungal communities' diversity changed, reached a minimum value at near-mature forests, and then increased in mature forests or over-mature forests. Near-mature forests had the lowest topological properties. The Shannon index of microbial communities varied with seasonal changes (P < 0.05). Bacterial and fungal community composition at genus level was more closely related to temperature indicators (including daily average temperature, daily maximum temperature, and daily minimum temperature) (P < 0.01, 0.5554 < R2 <0.8185) than daily average precipitation (P > 0.05, 0.0321 < R2 <0.6773). Bacteria were clustered by season and fungi were clustered by forest age. We suggested that extending the tree cultivation time of plantations could promote microbial community recovery. In addition, we found some species worthy of attention, including Bacteroidetes in autumn in over-mature forests, and Firmicutes in summer in young forests.IMPORTANCEChinese fir [Cunninghamia lanceolata (Lamb.) Hook] is an important fast-growing species with the largest artificial forest area in China, with the outstanding problems of low quality in soil. Soil microorganisms play a crucial role in soil fertility by decomposing organic matter, optimizing soil structure, and releasing essential nutrients for plant growth. In order to maintain healthy soil quality and prevent nutrient depletion and land degradation, it is crucial to understand the changes of soil microbial composition and diversity. Our study determined to reveal the change of soil microbial community from stand age, season, and the interaction between the two aspects, which is helpful to understand how interannual changes in different years and seasonal changes in one year affect soil fertility restoration and sustainable forest plantation management. It is a meaningful exploration of soil microbial communities and provides new information for further research.
Collapse
Affiliation(s)
- Yuxin Hu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiongqing Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hanyue Chen
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yihang Jiang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
4
|
Picariello E, De Nicola F. Recover of Soil Microbial Community Functions in Beech and Turkey Oak Forests After Coppicing Interventions. MICROBIAL ECOLOGY 2024; 87:86. [PMID: 38940921 PMCID: PMC11213729 DOI: 10.1007/s00248-024-02402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Forest management influences the occurrence of tree species, the organic matter input to the soil decomposer system, and hence, it can alter soil microbial community and key ecosystem functions it performs. In this study, we compared the potential effect of different forest management, coppice and high forest, on soil microbial functional diversity, enzyme activities and chemical-physical soil properties in two forests, turkey oak and beech, during summer and autumn. We hypothesized that coppicing influences soil microbial functional diversity with an overall decrease. Contrary to our hypothesis, in summer, the functional diversity of soil microbial community was higher in both coppice forests, suggesting a resilience response of the microbial communities in the soil after tree cutting, which occurred 15-20 years ago. In beech forest under coppice management, a higher content of soil organic matter (but also of soil recalcitrant and stable organic carbon) compared to high forest can explain the higher soil microbial functional diversity and metabolic activity. In turkey oak forest, although differences in functional diversity of soil microbial community between management were observed, for the other investigated parameters, the differences were mainly linked to seasonality. The findings highlight that the soil organic matter preservation depends on the type of forest, but the soil microbial community was able to recover after about 15 years from coppice intervention in both forest ecosystems. Thus, the type of management implemented in these forest ecosystems, not negatively affecting soil organic matter pool, preserving microbial community and potentially soil ecological functions, is sustainable in a scenario of climate change.
Collapse
Affiliation(s)
- Enrica Picariello
- Department of Sciences and Technologies, University of Sannio, 82100, Benevento, Italy.
| | - Flavia De Nicola
- Department of Sciences and Technologies, University of Sannio, 82100, Benevento, Italy
| |
Collapse
|
5
|
Li J, Deng L, Peñuelas J, Wu J, Shangguan Z, Sardans J, Peng C, Kuzyakov Y. C:N:P stoichiometry of plants, soils, and microorganisms: Response to altered precipitation. GLOBAL CHANGE BIOLOGY 2023; 29:7051-7071. [PMID: 37787740 DOI: 10.1111/gcb.16959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
Precipitation changes modify C, N, and P cycles, which regulate the functions and structure of terrestrial ecosystems. Although altered precipitation affects above- and belowground C:N:P stoichiometry, considerable uncertainties remain regarding plant-microbial nutrient allocation strategies under increased (IPPT) and decreased (DPPT) precipitation. We meta-analyzed 827 observations from 235 field studies to investigate the effects of IPPT and DPPT on the C:N:P stoichiometry of plants, soils, and microorganisms. DPPT reduced leaf C:N ratio, but increased the leaf and root N:P ratios reflecting stronger decrease of P compared with N mobility in soil under drought. IPPT increased microbial biomass C (+13%), N (+15%), P (26%), and the C:N ratio, whereas DPPT decreased microbial biomass N (-12%) and the N:P ratio. The C:N and N:P ratios of plant leaves were more sensitive to medium DPPT than to IPPT because drought increased plant N content, particularly in humid areas. The responses of plant and soil C:N:P stoichiometry to altered precipitation did not fit the double asymmetry model with a positive asymmetry under IPPT and a negative asymmetry under extreme DPPT. Soil microorganisms were more sensitive to IPPT than to DPPT, but they were more sensitive to extreme DPPT than extreme IPPT, consistent with the double asymmetry model. Soil microorganisms maintained stoichiometric homeostasis, whereas N:P ratios of plants follow that of the soils under altered precipitation. In conclusion, specific N allocation strategies of plants and microbial communities as well as N and P availability in soil critically mediate C:N:P stoichiometry by altered precipitation that need to be considered by prediction of ecosystem functions and C cycling under future climate change scenarios.
Collapse
Affiliation(s)
- Jiwei Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Jianzhao Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jordi Sardans
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Changhui Peng
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, Quebec, Canada
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Goettingen, Göttingen, Germany
- Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
6
|
Durodola B, Blumenstein K, Akinbobola A, Kolehmainen A, Chano V, Gailing O, Terhonen E. Beyond the surface: exploring the mycobiome of Norway spruce under drought stress and with Heterobasidion parviporum. BMC Microbiol 2023; 23:350. [PMID: 37978432 PMCID: PMC10655427 DOI: 10.1186/s12866-023-03099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The mycobiome, comprising fungi inhabiting plants, potentially plays a crucial role in tree health and survival amidst environmental stressors like climate change and pathogenic fungi. Understanding the intricate relationships between trees and their microbial communities is essential for developing effective strategies to bolster the resilience and well-being of forest ecosystems as we adopt more sustainable forest management practices. The mycobiome can be considered an integral aspect of a tree's biology, closely linked to its genotype. To explore the influence of host genetics and environmental factors on fungal composition, we examined the mycobiome associated with phloem and roots of Norway spruce (Picea abies (L.) Karst.) cuttings under varying watering conditions. To test the "mycobiome-associated-fitness" hypothesis, we compared seedlings artificially inoculated with Heterobasidion parviporum and control plants to evaluate mycobiome interaction on necrosis development. We aimed to 1) identify specific mycobiome species for the Norway spruce genotypes/families within the phloem and root tissues and their interactions with H. parviporum and 2) assess stability in the mycobiome species composition under abiotic disturbances (reduced water availability). The mycobiome was analyzed by sequencing the ribosomal ITS2 region. Our results revealed significant variations in the diversity and prevalence of the phloem mycobiome among different Norway spruce genotypes, highlighting the considerable impact of genetic variation on the composition and diversity of the phloem mycobiome. Additionally, specific mycobiome genera in the phloem showed variations in response to water availability, indicating the influence of environmental conditions on the relative proportion of certain fungal genera in Norway spruce trees. In the root mycobiome, key fungi such as Phialocephala fortinii and Paraphaeosphaeria neglecta were identified as conferring inhibitory effects against H. parviporum growth in Norway spruce genotypes. Furthermore, certain endophytes demonstrated greater stability in root ecosystems under low water conditions than ectomycorrhizal fungi. This knowledge can contribute to developing sustainable forest management practices that enhance the well-being of trees and their ecosystems, ultimately bolstering forest resilience.
Collapse
Affiliation(s)
- Blessing Durodola
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Kathrin Blumenstein
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Chair of Pathology of Trees, Institute of Forestry, Faculty of Environment and Natural Resources, University of Freiburg, Bertoldstr. 17, 79098, Freiburg, Germany
| | - Adedolapo Akinbobola
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Kolehmainen
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Department of Cell Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Victor Chano
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Eeva Terhonen
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity, Latokartanonkaari 9, 00790, Helsinki, Finland
| |
Collapse
|
7
|
Kooch Y, Nouraei A, Haghverdi K, Kolb S, Francaviglia R. Landfill leachate has multiple negative impacts on soil health indicators in Hyrcanian forest, northern Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166341. [PMID: 37597542 DOI: 10.1016/j.scitotenv.2023.166341] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
The storage of municipal solid wastes in unengineered landfills poses a severe threat to soil functions and health. Wastes seriously threaten human health and the terrestrial ecosystem, especially due to heavy metals. There is a general knowledge gap about the long-term impacts of storage wastes on the soil health indicators which are effective on soil functions. This investigation focuses on the examination of landfill leachate on soil health indicators from different years in the Hyrcanian forest region in northern Iran. For this purpose, soil sampling was done in the summer of 2012 and 2022 (from three depths of 0-10, 10-20, and 20-30 cm and on a surface of 30 cm × 30 cm). Soil samples were randomly collected from a polluted forest used as waste storage and a nearby unpolluted protected forest. In addition to the general soil physical, chemical and biological parameters, the amounts of cadmium (Cd) and lead (Pb) in the soil were also measured. Simultaneously with soil sampling, earthworms (from a depth of 0-30 cm) were collected and identified. Also, the concentration of Cd and Pb in the earthworm's biomass were measured in the laboratory. We found that unpolluted sites had maximum values of N, K, P, and Ca than the polluted sites. In addition, a decrease of soil aggregates stability, nutrient contents, microbial and enzyme activities, and also fauna and microflora abundance were found in the polluted sites in the period 2012-2022. Soil Cd and Pb contents were more in the polluted site in 2022 compared to the unpolluted site. Lumbricus rubellus and Lumbricus terrestris earthworms had significantly higher population in the polluted sites and higher accumulation of Cd and Pb in biomass. According to our results, soil health decreased in the order unpolluted site 2022 > unpolluted site 2012 > polluted site 2012 > polluted site 2022, which corresponds with the reduction of soil health during the release of landfill leachate. This investigation contributes to understand landfill pollution derived from leachate and its effects on soil physical, chemical and biological parameters to help managing landfill leachate. Therefore, the main issue is choosing a landfill system that minimizes the risk of pollution, installing a leachate collection system and constructing a landfill with engineering principles that can reduce the effects of urban waste pollution on soil health. We emphasize that landfilling is dangerous for the environment, so the government should implement sanitary landfilling to prevent further contamination of surface and underground waters, as well as soil in the precious Hyrcanian forest.
Collapse
Affiliation(s)
- Yahya Kooch
- Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran.
| | - Azam Nouraei
- Department of Sciences and Forest Engineering, Sari Agricultural Sciences and Natural Resources University, Mazandaran, Iran.
| | - Katayoun Haghverdi
- Department of Wood and Paper Science and Technology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | - Steffen Kolb
- Microbial Biogeochemistry, RA Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany.
| | - Rosa Francaviglia
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, 00184 Rome, Italy.
| |
Collapse
|
8
|
Zhang Z, Hao M, Yu Q, Dun X, Xu J, Gao P. The effect of thinning intensity on the soil carbon pool mediated by soil microbial communities and necromass carbon in coastal zone protected forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163492. [PMID: 37062318 DOI: 10.1016/j.scitotenv.2023.163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Thinning is a common forest management measure that can effectively maintain the ecological service function of protected forests. However, the effect of thinning on the soil carbon (C) pool remains uncertain. In particular, we lack an understanding of the complete link between thinning and microbial communities, microbial necromass C, and consequently, soil C pools in coastal zone protected forests. In this study, three thinning intensities, i.e., a control treatment (CT, i.e., no thinning), light thinning (LT) and heavy thinning (HT), were established in three types of forests (Quercus acutissima Carruth, Pinus thunbergii Parl and mixed Quercus acutissima Carruth and Pinus thunbergii Parl, i.e., QAC, PTP and QP, respectively). Two years after the completion of thinning, we investigated the changes in the soil organic carbon (SOC) fractions, soil microbial community and soil microbial necromass C in the surface layer (0-20 cm) and thoroughly evaluated the relationship between the potential change in SOC and the microbial community. Compared with CT, there was no change in the SOC content under LT and HT, but thinning conducted in QAC increased the proportion of mineral-associated organic C (MAOC) in SOC. Moreover, both LT and HT reduced the soil carbon lability (CL) in the QAC and QP forests. Different thinning intensities changed the soil microbial community structure, and most of the variation was explained by thinning and the soil physicochemical properties. The proportion of soil bacterial and fungal necromass C to SOC increased with increasing thinning intensity. The content of soil bacterial and fungal necromass C was mainly controlled by the relative abundance of the core phylum (relative abundance>10 %). Thinning affected the soil C pool by affecting the content of soil bacterial and fungal necromass C, but their accumulation pathways was different. The results showed that thinning was beneficial to the stability of SOC. The microbial C pool, total organic C pool and even bacterial and fungal C pools should be distinguished when studying the soil C pool, which can effectively deepen our understanding of the mechanism by which soil microorganisms affect the soil C pool.
Collapse
Affiliation(s)
- Zixu Zhang
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ming Hao
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qinghui Yu
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xingjian Dun
- Shandong Academy of Forestry, Ji'nan, Shandong 250014, China.
| | - Jingwei Xu
- Shandong Academy of Forestry, Ji'nan, Shandong 250014, China
| | - Peng Gao
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement of Ministry of Agriculture, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
9
|
Martín-Pinto P, Dejene T, Benucci GMN, Mediavilla O, Hernández-Rodríguez M, Geml J, Baldrian P, Sanz-Benito I, Olaizola J, Bonito G, Oria-de-Rueda JA. Co-responses of bacterial and fungal communities to fire management treatments in Mediterranean pyrophytic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162676. [PMID: 36894081 DOI: 10.1016/j.scitotenv.2023.162676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Cistus scrublands are pyrophytic ecosystems and occur widely across Mediterranean regions. Management of these scrublands is critical to prevent major disturbances, such as recurring wildfires. This is because management appears to compromise the synergies necessary for forest health and the provision of ecosystem services. Furthermore, it supports high microbial diversity, opening questions of how forest management practices impact belowground associated diversity as research related to this issue is scarce. This study aims to investigate the effects of different fire prevention treatments and site history on bacterial and fungi co-response and co-occurrence patterns over a fire-risky scrubland ecosystem. Two different site histories were studied by applying three different fire prevention treatments and samples were analyzed by amplification and sequencing of ITS2 and 16S rDNA for fungi and bacteria, respectively. The data revealed that site history, especially regarding fire occurrence, strongly influenced the microbial community. Young burnt areas tended to have a more homogeneous and lower microbial diversity, suggesting environmental filtering to a heat-resistant community. In comparison, young clearing history also showed a significant impact on the fungal community but not on the bacteria. Some bacteria genera were efficient predictors of fungal diversity and richness. For instance, Ktedonobacter and Desertibacter were a predictor of the presence of the edible mycorrhizal bolete Boletus edulis. These results demonstrate fungal and bacterial community co-response to fire prevention treatments and provide new tools for forecasting forest management impacts on microbial communities.
Collapse
Affiliation(s)
- Pablo Martín-Pinto
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain.
| | - Tatek Dejene
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain; Ethiopian Environment and Forest Research Institute (EEFRI), P. O. Box 30708 Code 1000, Addis Ababa, Ethiopia
| | - Gian Maria Niccolò Benucci
- Michigan State University, Department of Plant, Soil and Microbial Sciences, East Lansing, MI 48824, United States of America.
| | - Olaya Mediavilla
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain; IDForest - Biotecnología Forestal Aplicada, Calle Curtidores, 17, 34004 Palencia, Spain.
| | - María Hernández-Rodríguez
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain; IDForest - Biotecnología Forestal Aplicada, Calle Curtidores, 17, 34004 Palencia, Spain.
| | - József Geml
- MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, Leányka u. 6, 3300 Eger, Hungary.
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14200 Praha 4, Czech Republic.
| | - Ignacio Sanz-Benito
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain.
| | - Jaime Olaizola
- IDForest - Biotecnología Forestal Aplicada, Calle Curtidores, 17, 34004 Palencia, Spain.
| | - Gregory Bonito
- Michigan State University, Department of Plant, Soil and Microbial Sciences, East Lansing, MI 48824, United States of America.
| | - Juan Andrés Oria-de-Rueda
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain.
| |
Collapse
|
10
|
Baldrian P, López-Mondéjar R, Kohout P. Forest microbiome and global change. Nat Rev Microbiol 2023:10.1038/s41579-023-00876-4. [PMID: 36941408 DOI: 10.1038/s41579-023-00876-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Forests influence climate and mitigate global change through the storage of carbon in soils. In turn, these complex ecosystems face important challenges, including increases in carbon dioxide, warming, drought and fire, pest outbreaks and nitrogen deposition. The response of forests to these changes is largely mediated by microorganisms, especially fungi and bacteria. The effects of global change differ among boreal, temperate and tropical forests. The future of forests depends mostly on the performance and balance of fungal symbiotic guilds, saprotrophic fungi and bacteria, and fungal plant pathogens. Drought severely weakens forest resilience, as it triggers adverse processes such as pathogen outbreaks and fires that impact the microbial and forest performance for carbon storage and nutrient turnover. Nitrogen deposition also substantially affects forest microbial processes, with a pronounced effect in the temperate zone. Considering plant-microorganism interactions would help predict the future of forests and identify management strategies to increase ecosystem stability and alleviate climate change effects. In this Review, we describe the impact of global change on the forest ecosystem and its microbiome across different climatic zones. We propose potential approaches to control the adverse effects of global change on forest stability, and present future research directions to understand the changes ahead.
Collapse
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Rubén López-Mondéjar
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Gender Effects of Dioecious Plant Populus cathayana on Fungal Community and Mycorrhizal Distribution at Different Arid Zones in Qinghai, China. Microorganisms 2023; 11:microorganisms11020270. [PMID: 36838235 PMCID: PMC9961886 DOI: 10.3390/microorganisms11020270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Dioecious plants have a wide distribution in nature and gender effect may cause significant alterations in rhizosphere fungal community and soil properties. However, little is known regarding changes in response to dioecious plants. This study aimed to investigate the effects that the dioecious plant, Populus cathayana, and regions of different arid levels have on the fungal community, mycorrhizal distribution, soil enzymatic activities, and nutrient contents. This study characterized fungal and soil factors from the rhizosphere of the dioecious plant Populus cathayana located in the semi-humid regions (Chengguan), semi-arid regions (Sining, Haiyan) and arid regions (Ulan, Chaka). Rhizosphere soil was collected from each site and gender, and the total fungal genomic DNA was extracted. DNA amplicons from fungal ITS region were generated and subjected to Illumina Miseq sequencing. A total of 5 phyla, 28 classes, 92 orders, 170 families, and 380 genuses were observed. AMF distribution peaked at Chaka, which did not conform to the trend. Gender had significant effects on fungal communities: there were obvious differences in fungal OTUs between genders. Alpha diversity raised at first and then decreased. RDA results showed available P, available K, pH, ALP activity, ammonium N, EC, water content and catalase activity were the key contributors in sample areas. Our results suggested potential interaction effects between plant gender and fungal community.
Collapse
|
12
|
Wang J, Gao J, Zhang H, Tang M. Changes in Rhizosphere Soil Fungal Communities of Pinus tabuliformis Plantations at Different Development Stages on the Loess Plateau. Int J Mol Sci 2022; 23:ijms23126753. [PMID: 35743198 PMCID: PMC9223801 DOI: 10.3390/ijms23126753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
The soil fungal community is an important factor in the forest ecosystems, and a better understanding of its composition and dynamic changes will contribute to the maintenance, preservation, and sustainable development of the forest ecosystems. Pinus tabuliformis has been widely planted for local ecological restoration on the Loess Plateau in China in recent decades. However, these plantations have been degraded to different degrees with increasing stand age. Hence, we tried to find the possible causes for the plantation degradation by analyzing soil environmental changes and soil fungal community composition at different stand ages. We collected rhizosphere soil samples from young (10-year-old), middle-aged (20-year-old), and near-mature (30-year-old) P. tabuliformis plantations in this region and characterized their soil properties and soil fungal community diversity and composition. Our results showed that with increasing stand age, the contents of organic carbon, ammonium nitrogen (AN) and nitrate nitrogen (NN) in the soil increased significantly, while the content of available phosphorus (AP) decreased significantly. The main factors affecting the composition of the soil fungal community were the contents of AP, AN, and NN in the soil. In addition, the genus Suillus was the dominant ectomycorrhizal (ECM) fungus in all periods of P. tabuliformis plantations in this region. The results of structural equation modeling showed that the community composition of ECM fungi was significantly correlated with stand age, soil NN, and AP contents, and that of pathogenic (PAG) fungi was significantly correlated with soil AN and AP contents. The decrease in the relative abundance of ECM fungi and the increase in the relative abundance of PAG fungi would exacerbate the degradation of P. tabulaeformis plantation. Our results illustrated that the content of soil AP is not only an important factor limiting the development of plantations, but it also significantly affects the community composition of soil fungi in the rhizosphere of the P. tabuliformis plantation. This study provides a novel insight into the degradation of P. tabuliformis plantations and builds a solid foundation for their subsequent management, restoration, and sustainable development on the Loess Plateau of China.
Collapse
Affiliation(s)
- Jiaxing Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.G.); (H.Z.)
| | - Jing Gao
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.G.); (H.Z.)
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.G.); (H.Z.)
| | - Ming Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- Correspondence:
| |
Collapse
|
13
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A, Kumar S. Multifarious Responses of Forest Soil Microbial Community Toward Climate Change. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02051-3. [PMID: 35657425 DOI: 10.1007/s00248-022-02051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Adhishree Nagda
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tushar Mehta
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, School of Biological Science, Central University of Punjab, Bhatinda, Punjab, 151401, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
14
|
Effects of Thinning Intensity on Forest Floor and Soil Biochemical Properties in an Aleppo Pine Plantation after 13 Years: Quantity but Also Quality Matters. FORESTS 2022. [DOI: 10.3390/f13020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to quantify the impacts of silvicultural treatments in semiarid forests, it is necessary to know how they affect key aboveground processes and also properties characterizing the forest floor and mineral soil compartments. The general objective of this work is to study the mid-term effects of thinning intensity on forest floor and soil properties after 13 years following the intervention. The experimental design consisted of a randomized block design with four thinning treatments (3 thinning intensity plots plus a control or unmanaged plot) and three blocks or replicates. Several determinations, such as total organic carbon, dissolved organic carbon, or basal respiration, were performed for characterizing forest floor and mineral soil by considering three random sampling points per experimental plot. Thirteen years after thinning, total organic content, the different organic carbon fractions studied, and basal respiration were higher in the forest floor of the unmanaged plot. These results, however, were contrasted to those obtained for the mineral soil, where significant differences between the treatments were only observed in basal respiration and C/N ratio, while the different organic carbon fractions were not affected by thinning intensity. Our results suggest better soil quality where biological activity is enhanced as a consequence of improved environmental conditions and also litterfall input. The latter is especially important in forests with tree leaves of low biodegradability, where new understorey species promoted by thinning can provide higher nutrient availability for the remaining trees and, therefore, better forest resilience.
Collapse
|
15
|
Cheng H, Wang S, Wei M, Yu Y, Wang C. Alien invasive plant Amaranthus spinosus mainly altered the community structure instead of the α diversity of soil N-fixing bacteria under drought. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2021.103788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Differential Responses of Soil Bacterial and Fungal Community to Short-Term Crop Tree Management in a Larix gmelinii Plantation. FORESTS 2021. [DOI: 10.3390/f12101411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crop tree management (CTM) is a widely applicable silviculture technology that is used to improve the performance of individual trees. However, only little information is available about the effects of the CTM regime on the soil microbial community structure. We conducted a study to explore the effects of short-term (five years) CTM on the soil bacterial and fungal diversity, community composition, and structure in the 0–10 cm soil layer in a Larix gmelinii (Rupr.) Kuzen. plantation. We set out to investigate the differential response of bacterial and fungal communities to variations in soil properties mediated by short-term CTM. Compared with the control plots, the soil microbial biomass carbon and microbial biomass nitrogen in CTM increased significantly by 64.2% and 32.3%, respectively. CTM significantly promoted the content of soil organic carbon, dissolved organic carbon, and nitrate nitrogen, and reduced the content of dissolved organic nitrogen. CTM changed the Shannon and Simpson indices of soil fungi to a remarkable extent but had little effect on the α diversity of bacterial communities. The bacterial β diversity was more sensitive to CTM than fungi. The relative abundance of Verrucomicrobiae (the dominant class of soil bacteria) in CTM was significantly increased by 78.2%, while the relative abundance of Agaricomycetes (dominant class for soil fungi) was reduced by 43.3%. We observed a significantly increased number of unique OTUs for soil fungi in the CTM plots. Redundancy analysis showed that dissolved organic carbon, soil moisture, and total phosphorus content significantly affected the composition of bacterial communities, while soil dissolved organic nitrogen, C/N, and total phosphorus drove the high variation in fungal community composition. Overall, our results emphasize the divergent response of soil bacterial and fungal communities in Larix gmelinii plantations to short-term CTM. We must pay more attention to the functional role of soil microbiota in future forest management.
Collapse
|
17
|
Madsen AM, Crook B. Occupational exposure to fungi on recyclable paper pots and growing media and associated health effects - A review of the literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147832. [PMID: 34034170 DOI: 10.1016/j.scitotenv.2021.147832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Different types of pots and growing and casing media, including biodegradable materials, are used for plant and mushroom production. The fungus Peziza ostracoderma has gained attention for its visible growth on growing media for plants and casing media for mushrooms. Through a review of the literature we aim to evaluate whether exposure to fungi from recyclable pots and different growing and casing media occurs and causes occupational health effects. Based on the published papers, specific fungal species were not related to a specific medium. Thus P. ostracoderma has been found on paper pots, peat, sterilized soil, vermiculite, and rockwool with plants, and on peat, pumice, and paper casing for mushrooms. It has been found in high concentrations in the air in mushroom farms. Also Acremonium spp., Aspergillus niger, A. fumigatus, Athelia turficola, Aureobasidium pullulans, Chaetomium globosum, Chrysonilia sitophila, Cladosporium spp., Cryptostroma corticale, Lecanicillium aphanocladii, Sporothrix schenckii, Stachybotrys chartarum, and Trichoderma spp. have been found on different types of growing or casing media. Most of the fungi have also been found in the air in greenhouses, but the knowledge about airborne fungal species in mushroom farms is very limited. Eight publications describe cases of health effects associated directly with exposure to fungi from pots or growing or casing media. These include cases of hypersensitivity pneumonitis caused by exposure to: A. fumigatus, A. niger, Au. pullulans, Cr. corticale, P. ostracoderma, and a mixture of fungi growing on different media. Different approaches have been used to avoid growth of saprophytes including: chemical fungicides, the formulation of biodegradable pots and growing media and types of peat. To increase the sustainability of growing media different types of media are tested for their use and with the present study we highlight the importance of also considering the occupational health of the growers who may be exposed to fungi from the media and pots.
Collapse
Affiliation(s)
- Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Brian Crook
- Health and Safety Executive, Science and Research Centre, Buxton SK17 9JN, UK
| |
Collapse
|
18
|
Osburn ED, Badgley BD, Aylward FO, Barrett JE. Historical forest disturbance mediates soil microbial community responses to drought. Environ Microbiol 2021; 23:6405-6419. [PMID: 34347364 DOI: 10.1111/1462-2920.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
Despite the abundance of studies demonstrating the effects of drought on soil microbial communities, the role of land use legacies in mediating these drought effects is unclear. To assess historical land use influences on microbial drought responses, we conducted a drought-rewetting experiment in soils from two adjacent and currently forested watersheds with distinct land use histories: an undisturbed 'reference' site and a 'disturbed' site that was clear-cut and converted to agriculture ~60 years prior. We incubated intact soil cores at either constant moisture or under a drought-rewet treatment and characterized bacterial and fungal communities using amplicon sequencing throughout the experiment. Bacterial alpha diversity decreased following drought-rewetting while fungal diversity increased. Bacterial beta diversity also changed markedly following drought-rewetting, especially in historically disturbed soils, while fungal beta diversity exhibited little response. Additionally, bacterial beta diversity in disturbed soils recovered less from drought-rewetting compared with reference soils. Disturbed soil communities also exhibited notable reductions in nitrifying taxa, increases in putative r-selected bacteria, and reductions in network connectivity following drought-rewetting. Overall, our study reveals historical land use to be important in mediating responses of soil bacterial communities to drought, which will influence the ecosystem-scale trajectories of these environments under ongoing and future climate change.
Collapse
Affiliation(s)
- Ernest D Osburn
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J E Barrett
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
19
|
Osburn ED, Simpson JS, Strahm BD, Barrett JE. Land Use History Mediates Soil Biogeochemical Responses to Drought in Temperate Forest Ecosystems. Ecosystems 2021. [DOI: 10.1007/s10021-021-00641-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Reis F, Magalhães AP, Tavares RM, Baptista P, Lino-Neto T. Bacteria could help ectomycorrhizae establishment under climate variations. MYCORRHIZA 2021; 31:395-401. [PMID: 33782833 DOI: 10.1007/s00572-021-01027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Rhizosphere microbiome is one of the main sources of plant protection against drought. Beneficial symbiotic microorganisms, such as ectomycorrhizal fungi (ECMF) and mycorrhiza helper bacteria (MHB), interact with each other for increasing or maintaining host plant fitness. This mutual support benefits all three partners and comprises a natural system for drought acclimation in plants. Cork oak (Quercus suber L.) tolerance to drought scenarios is widely known, but adaptation to climate changes has been a challenge for forest sustainability protection. In this work, ECMF and MHB communities from cork oak forests were cross-linked and correlated with climates. Cenococcum, Russula and Tuber were the most abundant ECMF capable of interacting with MHB (ECMF~MHB) genera in cork oak stands, while Bacillus, Burkholderia and Streptomyces were the most conspicuous MHB. Integrating all microbial data, two consortia Lactarius/Bacillaceae and Russula/Burkholderaceae have singled out but revealed a negative interaction with each other. Russula/Burkholderaceae might have an important role for cork oak forest sustainability in arid environments, which will be complemented by the lower drought adaptation of competitive Lactarius/Bacillaceae. These microbial consortia could play an essential role on cork oak forest resilience to upcoming climatic changes.
Collapse
Affiliation(s)
- Francisca Reis
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alexandre P Magalhães
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Rui M Tavares
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Braganca, Portugal
| | - Teresa Lino-Neto
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
21
|
Song Y, Zhai J, Zhang J, Qiao L, Wang G, Ma L, Xue S. Forest management practices of Pinus tabulaeformis plantations alter soil organic carbon stability by adjusting microbial characteristics on the Loess Plateau of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144209. [PMID: 33418253 DOI: 10.1016/j.scitotenv.2020.144209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Sustainable management practices can enhance the capacity and potential for soil carbon (C) sequestration, significantly contributing towards mitigating regional climate change. Here, we investigated how the microbial characteristics of a Pinus tabulaeformis plantation responded to different management practices to identify the role of microbial characteristics in influencing the stability of soil organic carbon (SOC). We chose a Pinus tabulaeformis plantation on the Loess Plateau where forest management practices had been conducted since 1999. Five forest management practices were implemented: two at the forest level (P. tabulaeformis with and without ground litter), and three using different vegetation restoration approaches after clear-cutting (P. tabulaeformis seedlings, abandoned grassland, and natural shrub regeneration). Microbial biomass, soil respiration, microbial community structure, microbial metabolic function, and soil oxidizable organic carbon (OC) fractions were evaluated. Forest management practices changed SOC stability by adjusting the microbial characteristics (e.g. soil microbial community diversity and microbial metabolic function diversity). The result of path analysis was that the direct path coefficient of microbial biomass on soil oxidizable OC fractions was the largest, which was 1.499. Path analysis and redundancy analysis showed that microbial biomass had the largest direct influence on soil oxidizable OC fractions. Compared with other forest management practices, natural shrub regeneration increased the nonlabile carbon fraction by increasing soil microbial characteristics, and contributed the most towards stabilizing SOC, which enhanced the stability of the soil ecosystem on the plateau. In conclusion, microbial biomass was the biggest influence factor of SOC stability. In contrast, the stability of SOC may be most stable in the area of natural shrub regeneration.
Collapse
Affiliation(s)
- Yahui Song
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, PR China; College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiaying Zhai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiaoyang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Leilei Qiao
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, PR China
| | - Guoliang Wang
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, PR China
| | - Lihui Ma
- Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, PR China.
| | - Sha Xue
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
22
|
Exploring the Use of Sentinel-2 Data to Monitor Heterogeneous Effects of Contextual Drought and Heatwaves on Mediterranean Forests. LAND 2020. [DOI: 10.3390/land9090325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The use of satellite data to detect forest areas impacted by extreme events, such as droughts, heatwaves, or fires is largely documented, however, the use of these data to identify the heterogeneity of the forests’ response to determine fine scale spatially irregular damage is less explored. This paper evaluates the health status of forests in southern Italy affected by adverse climate conditions during the hot and dry summer of 2017, using Sentinel-2 images (10m) and in situ data. Our analysis shows that the post-event—NDVI (Normalized Difference Vegetation Index) decrease, observed in five experimental sites, well accounts for the heterogeneity of the local response to the climate event evaluated in situ through the Mannerucci and the Raunkiaer methods. As a result, Sentinel-2 data can be effectively integrated with biological information from field surveys to introduce continuity in the estimation of climate change impacts even in very heterogeneous areas whose details could not be captured by lower resolution observations. This integration appears to be a successful strategy in the study of the relationships between the climate and forests from a dynamical perspective.
Collapse
|