1
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
2
|
Yu L, Liu X, Hua Z, Chu K. Intense Turbulent Bursts Promote the Release of Perfluoroalkyl Acids from Sediments at High Flow Velocity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11737-11747. [PMID: 38889003 DOI: 10.1021/acs.est.4c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Despite frequent detection of high levels of perfluoroalkyl acids (PFAAs) in sediments, research on the environmental fate of PFAAs in sediments, particularly under hydrodynamic conditions, is rather limited, challenging effective management of PFAA loadings. Therefore, this study investigated the release and transport of 15 PFAAs in sediments under environmentally relevant flow velocities using recirculating flumes and revealed the underlying release mechanisms by identifying related momentum transfer. An increased velocity enhanced the release magnitude of total PFAAs by a factor of 3.09. The release capacity of short-chain PFAAs was notably higher than that of long-chain PFAAs, and this pattern was further amplified by flow velocity. Pore-water drainage was the major pathway for PFAA release, with the release amount predominantly determined by flow velocity-induced release intensity and depth, as well as affected by the perfluorocarbon chain length and sediment size. The weak anion exchanger-diffusion gradients in the thin-film technique confirmed that the release depth of PFAAs increased with flow velocity. Quadrant analysis revealed that the rise in the frequency and intensity of turbulent bursts driven by sweeps and ejections at high flow velocity was the underlying cause of the increased release magnitude and depth of PFAAs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Kejian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| |
Collapse
|
3
|
Qie M, Jia X, Li X, Li Y, Wu X, Shi Y, Cai Y. Spatial distribution, source, and fate of per- and polyfluoroalkyl substances in the surrounding environment of closed and converted fluorochemical factories in Fujian, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172766. [PMID: 38670387 DOI: 10.1016/j.scitotenv.2024.172766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Following the closure of perfluorooctanesulfonic acid (PFOS) production to comply with the Stockholm Convention regulations or restrictions, manufacturers have shifted to developing short-chain alternatives like perfluorobutane sulfonic acid (PFBS). However, limited research has been conducted to evaluate the impact of this transition on the surrounding environment. This study focused on the spatial distribution, source, and fate of 18 per- and polyfluoroalkyl substances (PFAS) in the surrounding environment of the closure and transformation of two PFAS manufacturing plants in Fujian, China. The total concentrations of PFAS in surface water, sediment, and fish were within the range of 48.9-72,400 ng/L, 0.930-57.6 ng/g dw, and 3.33-1245 ng/g dw, respectively. The predominant compounds were PFBS, PFOS, and perfluorooctanoic acid (PFOA) among the three matrices. Principal component analysis highlighted significant differences in PFAS profiles across different regions of the Futun River, suggesting diverse sources of PFAS. Source apportionment indicated that despite being closed or converted for almost three years, the two factories still significantly impacted the surrounding environment. The shutdown factory mainly released PFAS characterized by perfluoroalkyl sulfonic acids. In contrast, the PFAS were released from conversion plant with the fingerprint being PFBS and perfluoroalkyl carboxylic acids. The conversion of the factories has resulted in the coexistence of long-chain and short-chain PFAS, which has complicated the composition of PFAS in the environment. As sewage treatment plant could not effectively remove PFBS and perfluorobutanoic acid (PFBA) in wastewater, and due to their strong migration ability, these chemicals had a wider impact range, increasing the difficulty of environmental restoration and management. Risk assessment showed that PFAS downstream of the two factories posed high or moderate ecological risks. Specifically, PFBS, PFOS, and PFOA displayed the highest risk quotients and should be paid further attention.
Collapse
Affiliation(s)
- Mengjie Qie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaotong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Li
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province and Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Xiaodong Wu
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province and Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang J, Shen C, Zhang J, Lou G, Shan S, Zhao Y, Man YB, Li Y. Per- and polyfluoroalkyl substances (PFASs) in Chinese surface water: Temporal trends and geographical distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170127. [PMID: 38242487 DOI: 10.1016/j.scitotenv.2024.170127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
PFAS, recognized as persistent organic pollutants, present risks to both the ecological environment and human health. Studying PFASs in surface water yields insights into pollution dynamics. However, existing research on PFASs surface water pollution in China often focuses on specific regions, lacking comprehensive nationwide analyses. This study examined 48 research papers covering PFAS pollution in Chinese surface water, involving 49 regions and 1338 sampling sites. The results indicate widespread PFAS contamination, even in regions like Tibet. Predominant PFAS types include PFOA and PFOS, and pollution is associated with the relocation of industries from developed to developing countries post-2010. The shift from long-chain to short-chain PFASs aligns with recent environmental policy proposals. Geographic concentration of PFAS pollution correlates with industry distribution and economic development levels. Addressing point source pollution, especially from wastewater plant tailwater, is crucial for combating PFAS contamination. Greater emphasis should be placed on addressing short-chain PFASs.
Collapse
Affiliation(s)
- Jie Wang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Guangyu Lou
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Yuliang Li
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an 710064, PR China.
| |
Collapse
|
5
|
Xing Y, Zhou Y, Zhang X, Lin X, Li J, Liu P, Lee HK, Huang Z. The sources and bioaccumulation of per- and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167313. [PMID: 37742961 DOI: 10.1016/j.scitotenv.2023.167313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have attracted increasing attention due to their environmental persistence and potential toxicity. Diet is one of the main routes of human exposure to PFAS, particularly through the consumption of animal-derived foods (e.g., aquatic products, livestock and poultry, and products derived from them). This review summarizes the source, bioaccumulation, and distribution of PFAS in animal-derived foods and key influential factors. In most environmental media, perfluorooctanoic acid and perfluorooctane sulfonate are the dominant PFAS, with the levels of short-chain PFAS such as perfluorobutyric acid and perfluorohexane sulfonate surpassing them in some watersheds and coastal areas. The presence of PFAS in environmental media is mainly influenced by suspended particulate matter, microbial communities as well as temporal and spatial factors, such as season and location. Linear PFAS with long carbon chains (C ≥ 7) and sulfonic groups tend to accumulate in organisms and contribute significantly to the contamination of animal-derived foods. Furthermore, PFAS, due to their protein affinity, are prone to accumulate in the blood and protein-rich tissues such as the liver and kidney. Species differences in PFAS bioaccumulation are determined by diet, variances in protein content in the blood and tissues and species-specific activity of transport proteins. Carnivorous fish usually show higher PFAS accumulation than omnivorous fish. Poultry typically metabolize PFAS more rapidly than mammals. PFAS exposures in the processing of animal-derived foods are also attributable to the migration of PFAS from food contact materials, especially those in higher-fat content foods. The human health risk assessment of PFAS exposure from animal-derived foods suggests that frequent consumption of aquatic products potentially engender greater risks to women and minors than to adult males. The information and perspectives from this review would help to further identify the toxicity and migration mechanism of PFAS in animal-derived foods and provide information for food safety management.
Collapse
Affiliation(s)
- Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xia Lin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
6
|
Wu H, Zhang W, Huang X, Gu P, Li Q, Luo X, Zheng Z. Phosphorus conditions change the cellular responses of Microcystis aeruginosa to perfluorooctanoic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166707. [PMID: 37660808 DOI: 10.1016/j.scitotenv.2023.166707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Perfluorooctanoic acid (PFOA), a widespread and emerging organic contaminant of aquatic environments, has high bioaccumulation potential and high toxicity. Consequently, major concerns have been raised worldwide regarding the management of this pollutant in aquatic ecosystems. To thoroughly understand PFOA's toxic effects on aquatic organisms, systematic investigations were conducted on the cellular responses of Microcystis aeruginosa to the environmental concentrations of PFOA under various concentrations as well as phosphorus (P) conditions (concentrations and forms). The results showed that P conditions remarkably affected cyanobacterial growth as well as photosynthetic pigment content, triggered oxidative stress to disrupt the function and structure of the cell membrane, and caused changes in the extracellular and intracellular contents of microcystin-LR (MC-LR). Furthermore, PFOA (100 μg/L) was absorbed by cyanobacterial cells through the stimulation of the secretion of extracellular polymeric substances (EPS) by M. aeruginosa. After entering the cyanobacterial cells, PFOA inhibited photosynthesis, reduced P absorption, induced oxidative damage, lead to a loss of cell integrity evident in scanning electron microscope images, and increased mcyA gene expression to promote MC-LR production. Moreover, the limited P concentration and forms conditions led to increased PFOA absorption by cyanobacterial cells, which further upregulated mcyA gene expression and increased the risk of MC-LR diffusion into the aquatic environment. Our present study provided a theoretical basis and new ideas for understanding and addressing safety issues related to the presence of PFOA in aquatic environments with varying nutritional statuses.
Collapse
Affiliation(s)
- Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Weizheng Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xuhui Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
7
|
Chen M, Jin X, Guo C, Liu Y, Zhang H, Wang J, Dong G, Liu N, Guo W, Giesy JP, Wu F, Xu J. Micropollutants but high risks: Human multiple stressors increase risks of freshwater ecosystems at the megacity-scale. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132497. [PMID: 37688870 DOI: 10.1016/j.jhazmat.2023.132497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Micropollutants in water environments have attracted widespread attention, but how human and natural stressors influence the risks of micropollutants has not been comprehensively revealed. A megacity-scale study of the ecological risks of micropollutants in the surface water of Beijing, China is presented to illustrate the magnitudes of the influences of multiple anthropogenic and natural stressors. A total of 133 micropollutants representing typical land use patterns in Beijing, were quantified with the mean concentration range of ND (not detected) to 272 ng·L-1. The micropollutant concentrations in the south were obviously higher than those detected in the northern areas, and neonicotinoid pesticides showed the highest mean concentration of 311 ng·L-1. The chronic and acute risks of micropollutants to algae, invertebrates, and fishes were determined, and herbicides, organophosphorus esters, and insecticides account for the primary risks to algae, invertebrates, and fishes, respectively. The cropland and impervious cover cause the differences in the pollution and risks of micropollutants. The land use in riparian zones greater than 2 km shows a great influence on the chronic chemical risks (CCRs) for the three groups of species, indicating that too local scale does not explain the local pollution status. Climate conditions and human land use are important drivers explaining the CCRs to which various trophic levels of species are exposed. Results demonstrate that multiple categories of micropollutants pose adverse risks to freshwater in the megacity of Beijing, while climate conditions, pollution discharge, and human land use induce the chemical risk of micropollutants to aquatic organisms, and the land use in different riparian zones show different effects on the risks.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junxia Wang
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Guihua Dong
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Guo
- Beijing Hydrological Center, Beijing 100089, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Integrative Biology, Michigan State University, East Lansing, MI 48895, USA; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Liu X, Zhang L, Liu J, Zaya G, Wang Y, Xiang Q, Li J, Wu Y. 6:2 Chlorinated Polyfluoroalkyl Ether Sulfonates Exert Stronger Thyroid Homeostasis Disruptive Effects in Newborns than Perfluorooctanesulfonate: Evidence Based on Bayesian Benchmark Dose Values from a Population Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11489-11498. [PMID: 37490343 DOI: 10.1021/acs.est.3c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Growing toxicologic evidence suggests that emerging perfluoroalkyl substances (PFASs), like chlorinated polyfluoroalkyl ether sulfonate (Cl-PFESA), may be as toxic or more toxic than perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA). However, further investigations are needed in terms of the human health risk assessment. This study examined the effects of emerging and legacy PFAS exposure on newborn thyroid homeostasis and compared the thyroid disruption caused by 6:2 Cl-PFESA and PFOS using a benchmark dose approach. The health effects of mixture and individual exposure were estimated using the partial least-squares (PLS) model and linear regression, respectively. A Bayesian benchmark dose (BMD) analysis determined the BMD value for adverse effect comparison between 6:2 Cl-PFESA and PFOS. The median (interquartile range) concentrations of 6:2 Cl-PFESA (0.573 [0.351-0.872] ng/mL), PFOS (0.674 [0.462-1.007] ng/mL), and PFOA (1.457 [1.034, 2.405] ng/mL) were found to be similar. The PLS model ranked the PFAS variables' importance in projection (VIP) scores as follows: 6:2 Cl-PFESA > PFOS > PFOA. Linear regression showed that 6:2 Cl-PFESA had a positive association with free triiodothyronine (FT3, P = 0.006) and triiodothyronine (T3, P = 0.014), while PFOS had a marginally significant positive association with FT3 alone (P = 0.042). The BMD analysis indicated that the estimated BMD10 for 6:2 Cl-PFESA (1.01 ng/mL) was lower than that for PFOS (1.66 ng/mL) in relation to a 10% increase in FT3. These findings suggest that 6:2 Cl-PFESA, an alternative to PFOS, has a more pronounced impact on newborns' thyroid homeostasis compared to PFOS and other legacy PFASs.
Collapse
Affiliation(s)
- Xin Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100021, China
| | - Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100021, China
| | - Jiaying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Gerili Zaya
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuxin Wang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100021, China
| | - Qian Xiang
- Healthcare-associated Infection Control Center, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100021, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100021, China
| |
Collapse
|
9
|
Novak PA, Hoeksema SD, Thompson SN, Trayler KM. Per- and polyfluoroalkyl substances (PFAS) contamination in a microtidal urban estuary: Sources and sinks. MARINE POLLUTION BULLETIN 2023; 193:115215. [PMID: 37392593 DOI: 10.1016/j.marpolbul.2023.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
This study evaluates PFAS contamination and determines the major drainage sources to a temperate microtidal estuary, the Swan Canning Estuary, in Perth Western Australia. We describe how variability in these sources influences PFAS concentrations within this urban estuary. Surface water samples were collected from 20 estuary sites and 32 catchment sites in June and December from 2016 to 2018. Modelled catchment discharge was used to estimate PFAS load over the study period. Three major catchment sources of elevated PFAS were identified with contamination likely resulting from historical AFFF use on a commercial airport and defence base. Estuary PFAS concentration and composition varied significantly with season and spatially with the two different estuary arms responding differently to winter and summer conditions. This study has found that the influence of multiple PFAS sources on an estuary depend on the historical usage timeframe, groundwater interactions and surface water discharge.
Collapse
Affiliation(s)
- P A Novak
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia.
| | - S D Hoeksema
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - S N Thompson
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - K M Trayler
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| |
Collapse
|
10
|
Li X, Wang Y, Qian C, Zheng Z, Shi Y, Cui J, Cai Y. Perfluoroalkyl acids (PFAAs) in urban surface water of Shijiazhuang, China: Occurrence, distribution, sources and ecological risks. J Environ Sci (China) 2023; 125:185-193. [PMID: 36375904 DOI: 10.1016/j.jes.2022.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/16/2023]
Abstract
It is extremely important to analyze the contaminative behaviors of Perfluoroalkyl acids (PFAAs) due to their serious threats to urban environments which are closely related to humans. Current study aimed to explore the distribution, source apportionment and ecological risk assessment of PFAAs in surface water from Shijiazhuang, China. The concentrations of ∑PFAAs ranged from 19.5 to 125.9 ng/L in the investigation area. Perfluorobutanesulfonic acid (PFBS) and perfluoropentanoic acid (PFPeA) were the predominant contaminants (mean value: 14.3 ng/L and 16.6 ng/L, respectively). The distribution of PFAAs according to geospatial analysis and hierarchical clustering analysis (HCA) showed that higher levels of ∑PFAAs were detected in the southern surface water of Shijiazhuang and there was a stepwise decrease from the wet season to the dry season. Furthermore, based on source apportionment, the dominant potential sources were found to be wastewater treatment plant (WWTP) effluents and industrial discharge. The risk quotients (RQs) revealed low ecological risks of all PFAAs for aquatic organisms in Shijiazhuang surface water. Collectively, this study provided basic data for regulatory strategies for controlling PFAA pollutions in urban surface water.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yuan Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Chengjing Qian
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Zhixin Zheng
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
11
|
Liu M, Zhang G, Meng L, Han X, Li Y, Shi Y, Li A, Turyk ME, Zhang Q, Jiang G. Associations between Novel and Legacy Per- and Polyfluoroalkyl Substances in Human Serum and Thyroid Cancer: A Case and Healthy Population in Shandong Province, East China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6144-6151. [PMID: 34618433 DOI: 10.1021/acs.est.1c02850] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely detected in the environment and may cause adverse human health effects after exposure. Studies on the effect of PFASs on some health end points, including cancer, are still limited and show inconsistent results. In this research, 319 participants were recruited from Shandong Province, East China, consisting of patients with thyroid cancer and healthy controls. Seven novel and legacy PFASs were frequently detected (detection rate > 75%) in the serum samples of the participants. The concentrations of perfluorooctanoic acid (PFOA) were the highest in the case and control groups. Males showed significantly higher concentrations of PFASs than females. Exposure to PFASs was inversely associated with the risk of thyroid cancer. In the control group, we identified significant positive associations between PFASs and free thyroxine (FT4) as well as between PFOA and thyroid stimulating hormone (TSH) in females. A significant negative association between perfluorononanoic acid (PFNA) and triiodothyronine (T3) was observed in males. Our results suggest that exposure to certain PFASs could interfere with thyroid function. To our knowledge, this is the first case-control study demonstrating associations between novel and legacy PFASs in human and thyroid cancer.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lan Zhou, Gansu 730070, China
| | - Lingling Meng
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong Province China
| | - Xu Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Mary E Turyk
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
12
|
Perfluoroalkyl Substances (PFASs) in Rivers and Drinking Waters from Qingdao, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095722. [PMID: 35565116 PMCID: PMC9104605 DOI: 10.3390/ijerph19095722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023]
Abstract
Perfluoroalkyl substances (PFASs) in rivers; drinking water sources (reservoirs and groundwater); and various types of drinking waters (tap waters, barreled pure waters, and bottled mineral waters) in Qingdao, Eastern China were quantified by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The total concentrations of PFASs (ΣPFASs) in the river waters ranged from 28.3 to 292.2 ng/L, averaging 108 ± 70.7 ng/L. PFBS was the most abundant compound, with a maximum concentration of 256.8 ng/L, followed by PFOA (maximum concentration: 72.4 ng/L) and PFBA (maximum concentration: 41.6 ng/L). High levels of PFASs were found in rivers in the suburban and rural areas. The estimated annual mass loading of the total PFASs to Jiaozhou Bay (JZB) was 5.9 tons. The PFASs in the drinking water reservoirs were relatively low. The ΣPFASs in the tap water ranged from 20.5 ng/L to 29.9 ng/L. Differences in the PFAS levels and composition profiles were found among barreled water at different market sites and for different brands of mineral water products. The sequence of the contamination levels of the waters related to drinking water was reservoir water > tap water > barrel water > groundwater > bottled mineral water. The PFASs in drinking water may not pose a serious risk to the drinking water consumers of Qingdao City.
Collapse
|
13
|
Lalonde B, Garron C. Perfluoroalkyl Substances (PFASs) in the Canadian Freshwater Environment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:581-591. [PMID: 35347351 PMCID: PMC9079020 DOI: 10.1007/s00244-022-00922-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/02/2022] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are anthropogenic substances that are very stable in the receiving environment. Legacy perfluoroalkane sulfonates (PFSAs) and perfluoroalkyl carboxylic acids (PFCAs) are especially persistent and resistant to typical environmental degradation processes and therefore are distributed across all trophic levels and environmental compartments (soil, air, water). Since most uses of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and LC-long-chain PFCAs are banned in Canada, alternative PFASs have been in use for a number of years. Twenty-nine sites across Canada were sampled for PFASs to determine concentrations and trends. Overall, 13 PFASs were measured in 566 Canadian freshwater samples from 2013 to 2020 with a range from below the detection limit (LOD range: 0.4-1.6 ng/L) of the laboratory to a maximum of 138 ng/L (for PFBS). While PFOS and PFOA concentrations are declining significantly over time, other compounds such as PFPeA and PFBA have increased significantly over 2013-2020. Overall, the range of concentrations found in this study was similar to that of other Canadian and international studies. However, this study also found a higher frequency of detections of the replacement PFASs than that of the other, older, Canadian studies.
Collapse
Affiliation(s)
- Benoit Lalonde
- Water Quality Monitoring and Surveillance Division, Water Science and Technology, Environment and Climate Change Canada, 45 Alderney Drive, Dartmouth, NS, B2Y 2N6, Canada.
| | - Christine Garron
- Water Quality Monitoring and Surveillance Division, Water Science and Technology, Environment and Climate Change Canada, 45 Alderney Drive, Dartmouth, NS, B2Y 2N6, Canada
| |
Collapse
|
14
|
He Y, Lv D, Li C, Liu X, Liu W, Han W. Human exposure to F-53B in China and the evaluation of its potential toxicity: An overview. ENVIRONMENT INTERNATIONAL 2022; 161:107108. [PMID: 35121495 DOI: 10.1016/j.envint.2022.107108] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Chlorinated polyfluoroalkyl ether sulfonic acid (Cl-PFESAs, trade name F-53B), an alternative to perfluorooctane sulfonate (PFOS), has been widely used as a mist suppressant in the Chinese electroplating industry since the 1970 s. Due to greater restrictions on PFOS globally in recent years, the production and use of F-53B correspondingly increased, consequently causing more emissions into the environment. In China, an increasing number of studies report frequent detection and broad exposure to F-53B in the natural environment, various wildlife and the human body. In human blood, the detection rate of F-53B is almost 80%, accounting for 8.69 to 28% of ∑per- and polyfluoroalkyl substances (PFASs). F-53B is the most biopersistent PFAS in humans to date, with a half-life of 15.3 years. In addition, F-53B displays protein binding affinity and high human placental permeability. Recently, some epidemiological studies have reported the health risks associated with F-53B in humans, including abnormal serum lipid metabolism, vascular dysfunction, endocrine disorders and even adverse birth outcomes. Various in vivo and in vitro studies have demonstrated the toxicity of F-53B, such as hepatotoxicity, interference effects on the endocrine system, as well as reproductive and developmental toxicity. Our aims are to review studies on human F-53B exposure levels, trends and associated health effects; evaluate the potential toxicity; and predict directions for future research.
Collapse
Affiliation(s)
- Yanxia He
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China; Graduate School of Dalian Medical University, Dalian 116000, China
| | - Di Lv
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiuqin Liu
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China
| | - Wendong Liu
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China
| | - Wenchao Han
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China.
| |
Collapse
|
15
|
Yu L, Liu X, Hua Z, Zhang Y, Xue H. Spatial and temporal trends of perfluoroalkyl acids in water bodies: A case study in Taihu Lake, China (2009-2021). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118575. [PMID: 34838873 DOI: 10.1016/j.envpol.2021.118575] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been ubiquitously detected in water bodies and are a cause of great public concern due to their adverse effects. This study investigated the long-term temporal-spatial trends of PFAAs in the water bodies of the entire Taihu Lake, and predicted PFAA concentrations for 2024. A field investigation conducted in 2021 and previous data allowed to derive trends over a broad temporal-spatial scale, which is often not feasible in short-term studies. In the 2009-2021 period, the most quantifiable PFAAs increased, among which perfluorooctanoic acid and perfluorohexanoic acid were predominant. As of 2021, the mean total concentration of ten PFAAs (∑10PFAA) showed a distinct spatial decreasing trend, moving from north to south within the lake, and similar spatial distribution patterns were also noted in other years. The main PFAA input and most serious contamination were concentrated in the northern region, due to the riverine inputs and clustering of PFAA-related industries. The ∑10PFAA concentration in the wet season was greater and presented a more uniform distribution pattern than that in the dry season, possibly due to the combined effects of the degradation of PFAA precursors, water inflow, rainfall, shipping activities, and a shallow water column. From 2009 to 2021 the ∑10PFAA concentration of the entire lake showed an increasing trend, but the rate of increase was significantly reduced. In addition, a grey model predicted that the mean ∑10PFAA concentration in the entire Taihu Lake will reach 431 ng/L in 2024, and the northern region will be affected by a more serious PFAA pollution in the future because it exhibited a high mean ∑10PFAA concentration of 426 ng/L in 2021. These findings provide novel insights into the temporal-spatial distribution of PFAAs in Taihu Lake, and could help regulators to formulate policy decisions in response to PFAA pollution.
Collapse
Affiliation(s)
- Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| |
Collapse
|
16
|
Wang Y, Li X, Zheng Z, Shi Y, Cai Y. Chlorinated polyfluoroalkyl ether sulfonic acids in fish, dust, drinking water and human serum: From external exposure to internal doses. ENVIRONMENT INTERNATIONAL 2021; 157:106820. [PMID: 34391985 DOI: 10.1016/j.envint.2021.106820] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFASs) has raised significant public health concerns due to their persistence and toxicity in the human body. Here, we aimed to investigate the characteristics of exposure to chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) and legacy PFASs and the relative contribution from different external pathways to human exposure. Three Cl-PFESAs and fourteen legacy PFASs were detected in human serum, fish, indoor dust and drinking water collected from Shijiazhuang, China. Results showed that 6:2 Cl-PFESA was the third most predominant compound, with an average concentration of 2.70 ng/mL in serum, which was lower than those of perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA) (14.79 and 4.91 ng/mL). The estimated daily intake of 6:2 Cl-PFESA via dust ingestion (mean: 0.008 ng/kg bw/day) was found to be highest among all detected PFASs, while the highest value via fish and drinking water was found for PFOS and PFOA (0.438-9.799 and 0.034-0.155 ng/kg bw/day), respectively. The similar composition of PFASs between serum and fish suggests that fish consumption is a major contributor to human exposure to PFASs. However, the increasing ratios of EDIindoor dust/EDIfish for PFOS, PFOA and 6:2 Cl-PFESA indicated that the contribution of dust ingestion for PFASs, especially 6:2 Cl-PFESA, could not be ignored. The modeled serum concentrations of 6:2 Cl-PFESA higher than its observed levels hint at its gradually increasing exposure levels in the general population. Combined with the lower modeled levels of PFOS than the observed levels, the substituent with 6:2 Cl-PFESA for PFOS is obvious in China. Therefore, further studies on contributions from more detailed external sources and risk assessments of Cl-PFESAs are recommended, especially for some vulnerable subpopulations, considering their widespread exposure and similar environmental behaviors compared with those of their predecessors.
Collapse
Affiliation(s)
- Yuan Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaotong Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Zheng
- Foreign Environmental Cooperation Center of Ministry of Ecology and Environment, Beijing 100035, China
| | - Yali Shi
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Yaqi Cai
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Chambers WS, Hopkins JG, Richards SM. A Review of Per- and Polyfluorinated Alkyl Substance Impairment of Reproduction. FRONTIERS IN TOXICOLOGY 2021; 3:732436. [PMID: 35295153 PMCID: PMC8915888 DOI: 10.3389/ftox.2021.732436] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023] Open
Abstract
In this review article, we compiled peer-reviewed literature describing PFAS exposure and reproductive effects in animals and humans. The aim was to compare environmental occurrence and effects of the most prominent long-chain PFAS compounds and their short-chain replacements. Long-chain PFAS compounds are known to persist in the environment due to their chemical stability, and also known to bioaccumulate; hence, these compounds are being replaced globally. Indeed, PFOA and PFOS are considered long-chain "forever pollutants," and thus the potential reproductive risk may continue for decades. Much less is known about their short-chain replacements despite the fact that they becoming more widespread in the environment. Short-chain PFAS are generally less bioaccumulative than long-chain, but they are more mobile and persistent in aquatic ecosystems. The three most prominent of these are commonly referred to as GenX, ADONA and F53B. The short-chain PFAS have similar physical and chemical properties as their predecessors; however, because they are relatively new, much less is known about the potential to disrupt reproduction. Indeed, high-quality epidemiological studies are needed to determine associations between short-chain PFAS exposure and effects on reproductive health. However, epidemiological evidence is mounting that long-chain PFAS exposure is associated with reproductive effects (i.e., decrease in fertility, reduced fetal growth and birth weight, pregnancy-induced hypertension and preeclampsia, thyroid hormone disruption during pregnancy, and preterm birth). Evidence from animal models and human cell lines indicates that short-chain PFAS similarly affect reproductive endpoints; however, epidemiological studies are scarce and inconsistent. Although short-chain PFAS have been quantified in drinking water and sediment worldwide, most of these studies did not focus on quantitation of GenX, ADONA, and F53B. There are also many other short-chain PFAS byproducts of manufacturing that have yet to be identified and studied. When sum total concentration of long- and short-chain PFAS are considered, the concentration rises by an order or magnitude or greater, as will the risk of exposure and subsequent reproductive effects.
Collapse
Affiliation(s)
- Weston S. Chambers
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Jaida G. Hopkins
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Sean M. Richards
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
- Department of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine, University of Tennessee College of Medicine, Chattanooga, TN, United States
| |
Collapse
|
18
|
Chen R, Zhuang Y, Yu Y, Shi B. Enhanced perfluorooctanoic acid (PFOA) accumulation by combination with in-situ formed Mn oxides under drinking water conditions. WATER RESEARCH 2021; 190:116660. [PMID: 33279743 DOI: 10.1016/j.watres.2020.116660] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Particulate manganese oxide (MnOx) deposition in drinking water distribution systems (DWDS) gives rise to the risk of water discoloration at the consumers' tap; however, its role in the fate and transport of trace organic pollutants in DWDS is not clear. Perfluorooctanoic acid (PFOA), a persistent organic pollutant frequently detected in natural water, was selected to investigate the potential effect of MnOx on its transportation behavior under DWDS conditions through laboratory batch experiments. The results show that PFOA can be greatly combined with MnOx formed in-situ through a Mn(II) oxidation process by free chlorine. However, the accumulation of PFOA by preformed MnOx was negligible. It was found that 1 mg/L Mn captured over 50% of PFOA with an initial concentration of 50 ng/L during oxidation. The water compositions of actual water could contribute to the effect of PFOA accumulation to a certain extent. Characterization of the solid products revealed that PFOA is homogenously embedded into MnOx. The combination of PFOA with MnOx occurs through a bridging effect of Mn(II) between the surface hydroxyls of MnOx and the -COOH group of PFOA. The resulting MnOx-PFOA particles were more inclined to agglomerate, enabling possibly easy deposition onto the pipe wall than ordinary MnOx particles. This study provides insights into the co-occurrence of metal deposits with PFOA and the potential risks posed by PFOA accumulation to consumers through the water distribution process.
Collapse
Affiliation(s)
- Ruya Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhuang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ying Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Jiang JJ, Okvitasari AR, Huang FY, Tsai CS. Characteristics, pollution patterns and risks of Perfluoroalkyl substances in drinking water sources of Taiwan. CHEMOSPHERE 2021; 264:128579. [PMID: 33065326 DOI: 10.1016/j.chemosphere.2020.128579] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFASs) are found globally in the environment, but for Taiwan there is a lack of studies on PFAS occurrence, source apportionment, and health risks in drinking water sources. We collected surface water samples from the Baoshan Reservoir of Taiwan and used Positive Matrix Factorization to attribute PFAS contaminants to possible sources. The health index (HI) was used to evaluate the health risk, which was then compared to various international advisory level guidelines. PFOA and PFOS were found to be the most predominant compounds, with concentrations averaging 20.2 ng/L and 16.7 ng/L, respectively. The joint contribution of domestic and commercial waste totaled 61.2% as the predominant source of pollution, followed by urban activities as a secondary source contributing 38.8%. Using the USEPA reference dose, a health risk analysis of Baoshan Reservoir drinking water did not reflect a formal high health risk (HI < 1.0), however potential risks to human health may be present since the sum of PFOA and PFOS (130 ng/L) exceeded the USEPA Lifetime Health Advisory level (70 ng/L). This investigation provides information and reference points for further reviews of PFAS presence in public water supplies.
Collapse
Affiliation(s)
- Jheng-Jie Jiang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Advanced Environmental Ultra Research Laboratory, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Center for Environmental Risk Management (CERM), Chung Yuan Christian University, Taoyuan, 320314, Taiwan.
| | - Astri Rino Okvitasari
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Advanced Environmental Ultra Research Laboratory, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Fang-Yu Huang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Chin-Sheng Tsai
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| |
Collapse
|
20
|
Bai X, Son Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141622. [PMID: 32871315 DOI: 10.1016/j.scitotenv.2020.141622] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 05/12/2023]
Abstract
This study measured 17 perfluoroalkyl substances (PFAS) in surface water and sediments collected from six locations along the Las Vegas Wash and Lake Mead and eight locations along the Truckee River, Lake Tahoe, and Pyramid Lake in Nevada, United States. Of the 17 PFAS analyzed, 12 were detected in the surface water (n = 18) and 14 were detected in the sediments (n = 21) of the two watersheds. The total concentration of PFAS in the Truckee River water was 441.7 ng/L and the PFAS detected in the Las Vegas Wash water was 2234.3 ng/L. The predominant PFAS species found in the water were perfluorohexanoic acid (PFHxA) (1.5-187.0 ng/L), followed by perfluoropentanoic acid (PFPeA) (below detection limit [BDL] to 169.9 ng/L), perfluorooctanoic acid (PFOA) (BDL to 65.5 ng/L), and perfluorobutane sulfonic acid (PFBS) (BDL to 44.7 ng/L). The total PFAS in the sediments was 272.9 μg/kg (dry weight) for the Truckee River and 345.7 μg/kg for the Las Vegas Wash. The predominant species in the sediments were perfluorodecane sulfonic acid (PFDS) (BDL to 88.2 μg/kg), PFHxA (BDL to 20.3 μg/kg), PFBS (BDL to 29.1 μg/Kg), and perfluoroundecanoic acid (PFUA) (BDL to 22.9 μg/kg). The results demonstrated that short-chain PFAS (C ≤ 8) were more prevalent in water, whereas long-chain PFAS (C > 8) were more detectable in sediments. The Las Vegas Wash water had much higher PFAS levels compared with the Truckee River water. The PFAS concentrations and detection frequencies also significantly decreased in summer compared with winter along the Las Vegas Wash.
Collapse
Affiliation(s)
- Xuelian Bai
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV 89119, USA.
| | - Yeongkwon Son
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA.
| |
Collapse
|
21
|
Jin Q, Shi Y, Cai Y. Occurrence and risk of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) in seafood from markets in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138538. [PMID: 32315852 DOI: 10.1016/j.scitotenv.2020.138538] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
In recent years, chlorinated polyfluoroalkyl ether sulfonic acid (Cl-PFESA, trade name: F-53B), one of the alternatives to perfluorooctane sulfonate (PFOS), has been widely detected in environmental matrices and organisms in China. However, sufficient information regarding its presence in seafood is not available. Therefore, we investigated the levels of Cl-PFESAs and legacy per- and polyfluoroalkyl substances (PFASs) in 276 seafood samples collected from markets in Beijing and assessed the human exposure risks of Cl-PFESAs through seafood intake. C8 Cl-PFESA was the dominant congener with significantly higher concentrations (<LOD-1.27 ng/g) than those of C10 Cl-PFESA (<LOD-0.109 ng/g) and C12 Cl-PFESA (<LOD-0.141 ng/g). The mean concentrations of ∑Cl-PFESAs (0.013-0.412 ng/g) contributed to 0.6-11.4% for ∑PFASs in different seafood species. Generally, the concentrations of C8 Cl-PFESA were lower than those of PFOS. However, their concentration trends in four categories of seafood were consistent, with the highest mean concentrations being in shrimps (0.279 and 0.749 ng/g), followed by crabs (0.275 and 0.714 ng/g), fish (0.141 and 0.317 ng/g), and mollusks (0.032 and 0.135 ng/g). A significantly positive correlation was observed between the concentrations of C8 Cl-PFESA and PFOS in all seafood samples (p < 0.001), indicating that they have similar sources and undergo similar environmental processes. The average daily intake of C8 Cl-PFESA (0.067 ng/kg-bw/day) for residents in Beijing via the consumption of seafood was lower than that of PFOS (0.167 ng/kg-bw/day) and far below the most stringent health-based reference dose of PFOS (1.86 ng/kg-bw/day), which implies a low risk for Beijing residents exposed to C8 Cl-PFESA by ingestion of seafood. However, considering the omnipresence of Cl-PFESAs and their stronger bioaccumulation than PFOS, further study on the potential environmental and human exposure risks of Cl-PFESAs is required.
Collapse
Affiliation(s)
- Qi Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| |
Collapse
|
22
|
Ji B, Kang P, Wei T, Zhao Y. Challenges of aqueous per- and polyfluoroalkyl substances (PFASs) and their foreseeable removal strategies. CHEMOSPHERE 2020; 250:126316. [PMID: 32120153 DOI: 10.1016/j.chemosphere.2020.126316] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are artificial refractory organic pollutants which are widely presented in aqueous environment. Due to the unquiet strength of the highly polarized carbon-fluorine bond (C-F) and their hydrophobic/lipophobic feature as well as biological persistence properties, the remediation and treatment of PFASs is a big challenge. Preliminary studies indicate that a few kinds of technical approaches could remove or transfer PFASs, but the effectiveness is not high as expected or limited while most of the techniques are only tested at laboratory scale. A review of existing treatment technologies was thus conducted for the purpose to outlook these technologies, and more importantly, to propose the foreseeable technique. As such, a constructed wetland-microbial fuel cell (CW-MFC) technology was recommended, which is a newly emerged technology by integrating physical, chemical and enhanced biological processes plus the wetland plants function with strong eco-friendly feature for a comprehensive removal of PFASs. It is expected that the review can strengthen our understanding on PFASs' research and thus can help selecting reasonable technical means of aqueous PFASs control.
Collapse
Affiliation(s)
- Bin Ji
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China.
| |
Collapse
|
23
|
Xin Y, Wan B, Yu B, Fan Y, Chen D, Guo LH. Chlorinated Polyfluoroalkylether Sulfonic Acids Exhibit Stronger Estrogenic Effects than Perfluorooctane Sulfonate by Activating Nuclear Estrogen Receptor Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3455-3464. [PMID: 31927955 DOI: 10.1021/acs.est.9b07708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chlorinated polyfluoroalkylether sulfonic acids (Cl-PFESAs) have been shown to have potential thyroid hormone (TH) disruption effects. Here, we further investigated their estrogenic effects and underlying mechanisms. In vivo results revealed that exposure of zebrafish to Cl-PFESAs induced disorder of sex hormones during the early embryonic stages and caused histopathological lesions in the gonads of adult zebrafish relative to control groups. To find out whether the estrogen receptor is the molecular target of Cl-PFESAs, the binding interaction between Cl-PFESAs and ERs was investigated using a series of in vitro assays. We found that all tested chemicals could bind directly to ERs and exhibit relatively weak agonistic activity toward ERs, suggesting that the ER-mediated signaling pathway is directly involved in the estrogenic effects of Cl-PFESAs. The internal dose of 8:2 Cl-PFESA was significantly higher than the others, which explained why it obviously displayed an ER agonistic effect despite its weak ER binding affinity. Taken together, these results uncover that, in addition to the TH disruption effect, Cl-PFESAs might also cause estrogenic effects by activating ER pathways.
Collapse
Affiliation(s)
- Yan Xin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bolan Yu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yong Fan
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - De Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
24
|
Navarro I, de la Torre A, Sanz P, Martínez MDLÁ. Perfluoroalkyl acids (PFAAs): Distribution, trends and aquatic ecological risk assessment in surface water from Tagus River basin (Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113511. [PMID: 31706767 DOI: 10.1016/j.envpol.2019.113511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 05/12/2023]
Abstract
Rivers can receive the input of treated or untreated sewage effluents from wastewater treatment plants, urban and industrial discharges and agricultural run-off, becoming an important pathway for the transport and mobilization of pollutants to the oceans. In the present study, the occurrence of 20 PFAAs was determined in the water of Tagus River basin (Spain). PFAAs were detected in 76 out of 92 water samples collected during 5 years (2013-2018), being perfluorooctanesulfonic acid (PFOS) the predominant compound (<0.01-34 ng/L). The annual average PFOS concentrations (2.9-11 ng/L) detected in Tagus River were above the annual average environmental quality standards (AA-EQS) established in the Directive, 2013/39/EU (0.65 ng/L for inland surface waters) but below the maximum allowable concentration (MAC-EQS; 36000 ng/L). The levels of PFAAs detected in urban and industrial areas were statistically higher (p < 0.01) than those at background or remote areas. The mass flow rates amounted to <0.01-46 kg/y for PFOS and <0.01-22 kg/y for perfluorooctanoic acid (PFOA). A quantitative ecotoxicological risk assessment was conducted to evaluate the environmental potential risk related to PFAAs in the aquatic ecosystem. Risk characterization ratios (RCRwater, RCRsed and RCRoral, fish) were below 1 in all cases.
Collapse
Affiliation(s)
- Irene Navarro
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain.
| | - Adrián de la Torre
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| | - Paloma Sanz
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| | - María de Los Ángeles Martínez
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| |
Collapse
|
25
|
Meng J, Zhou Y, Liu S, Chen S, Wang T. Increasing perfluoroalkyl substances and ecological process from the Yongding Watershed to the Guanting Reservoir in the Olympic host cities, China. ENVIRONMENT INTERNATIONAL 2019; 133:105224. [PMID: 31665680 DOI: 10.1016/j.envint.2019.105224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Perfluoroalkyl substances (PFASs) have raised great attention, particularly in regions of rapid urbanization. Zhangjiakou and Beijing will jointly host the Winter Olympic Games in 2022, which will likely increase local PFASs pollution and their associated risks over the coming period. In this study, we identified ecological process of PFASs, including sources, environmental fate, and risks, from the Yongding Watershed to the Guanting Reservoir. The concentrations of total 12 PFASs in water of the Guanting Reservoir were higher than that from the Yongding Watershed, with mean of 48.9 and 33.7 ng/L, respectively. The concentrations of PFASs in sediment of the Yongding Watershed and the Guanting Reservoir were similar, with mean of 1.01 and 0.827 ng/g dry weight, respectively. Detected levels of PFASs in the Guanting Reservoir significantly increased during the past eight years, possibly due to an improving economy and a rapidly developed service industry. Moderate PFASs levels in fish of the Guanting Reservoir were detected relative to other lakes and reservoirs. The daily intake of PFASs via fish and water ranged from 4.96 to 15.0 ng/kg bw/day, with higher levels found in children relative to adults. In total, approximately 9.06 kg of PFASs from riverine flow and atmospheric deposition annually entered the Guanting Reservoir. PFASs from the Yongding River significantly contributed to the pollution of Guanting Reservoir, with predominance of perfluorobutanoic acid (PFBA) in water, and long-chain perfluorinated carboxylic acids (PFCAs) and perfluorooctane sulfonate (PFOS) in sediment in both the Yongding Watershed and the Guanting Reservoir. Most of the PFASs (23.5 kg) were stored in water of the Guanting Reservoir, while the annual storage of PFASs in sediment and fish was only 4.68 × 10-2 kg and 4.36 × 10-2 kg via deposition and accumulation, respectively. The results suggest that water quality management of the Yongding Watershed is necessary for effective control on PFASs pollution in the Guanting Reservoir.
Collapse
Affiliation(s)
- Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sifan Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuqin Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|