1
|
Mkhonza NP, Muchaonyerwa P. Sugarcane cultivation reduces charcoal C and Al/Fe-bound OC in selected Ferralsols. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:491. [PMID: 40164955 PMCID: PMC11958378 DOI: 10.1007/s10661-025-13924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Long-term sugarcane cultivation, with pre-harvest burning, may add recalcitrant charcoal carbon (C) to soil organic carbon (OC) in Ferralsols, whereas aluminium/iron-organic matter (Al/Fe-OM) complexes may dominate the mineral-associated OC in these soils. Therefore, the objective of this study was to examine the effect of sugarcane cultivation relative to wattle forest on soil OC in charcoal C form and Al/Fe-OM complexes on two selected Ferralsols. Total C, charcoal C, and Al/Fe-OC were analysed in samples collected from the two sites under forest and sugarcane cultivation to a depth of 100 cm, and the data were subjected to a two-way analysis of variance. At both sites, sugarcane cultivation reduced charcoal C and Al/Fe-bound OC when compared to forest. The Al/Fe-bound OC in sugarcane soils accounted for 48.7 and 72.2% of the total OC at Eston and Wartburg sites, respectively. In forest soils, the Al/Fe-bound OC accounted for 45.6 and 44.4% of the total OC at Eston and Wartburg, respectively. Charcoal C accounted for 8.42 and 4.07% of the total OC in sugarcane soils, at Eston and Wartburg, respectively. Overall, charcoal C concentration decreased with increase in soil depth, while its stocks only decreased with depth in soil under sugarcane. The Al/Fe-bound OC decreased with an increase in soil depth for both land uses, while Alp and Alp + Fep concentrations were not affected by sampling depth. These findings demonstrate that OC in Al/Fe-OC complexes and charcoal C contribute to the high OC concentrations, with Al/Fe-bound OC fraction being the primary mechanism of OC stabilisation in these Ferralsols, while sugarcane cultivation reduces these concentrations.
Collapse
Affiliation(s)
- Nontokozo Pertunia Mkhonza
- Soil Science Discipline, School of Agricultural, Earth and Environmental Sciences, University of Kwazulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3201, South Africa.
| | - Pardon Muchaonyerwa
- Soil Science Discipline, School of Agricultural, Earth and Environmental Sciences, University of Kwazulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
2
|
Bhuiyan MKA, Godoy O, González-Ortegón E, Billah MM, Rodil IF. Salt marsh macrofauna: An overview of functions and services. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106975. [PMID: 39889616 DOI: 10.1016/j.marenvres.2025.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Salt marshes are globally important blue carbon ecosystems, providing essential services such as coastal protection, carbon sequestration, nutrient cycling, and biodiversity support. Among their key inhabitants, macrofauna play critical roles in sustaining ecosystem health and resilience through processes like bioturbation, nutrient cycling, organic matter turnover, and trophic interactions, which in turn support ecosystem services such as fisheries and coastal community livelihoods. Despite their contributions, no comprehensive review has yet focused exclusively on the diverse roles and services of salt marsh macrofauna. This review aims to address this gap by synthesizing current research, supported by a bibliometric analysis revealing significant growth in studies since the year 2000, especially those addressing ecosystem services and climate resilience. We provide an in-depth assessment of macrofaunal functions in bioturbation, nutrient cycling, organic matter dynamics, greenhouse gas regulation, primary and secondary production, and food web interactions. Additionally, we examine the ecosystem services provided, such as provisioning, regulating, and cultural services, and explore the impact of environmental stressors on macrofaunal communities. Finally, this review identifies significant knowledge gaps, offering strategic insights for future research and serving as a vital reference for advancing coastal management and salt marsh conservation strategies.
Collapse
Affiliation(s)
- Md Khurshid Alam Bhuiyan
- Department of Biology (INMAR), University of Cadiz (UCA), Puerto Real Campus, Puerto Real, Spain.
| | - Oscar Godoy
- Department of Biology (INMAR), University of Cadiz (UCA), Puerto Real Campus, Puerto Real, Spain; Doñana Biological Station (EBD), Spanish National Research Council (CSIC), Sevilla, Spain
| | - Enrique González-Ortegón
- Institute of Marine Sciences of Andalusia (ICMAN), Spanish National Research Council (CSIC), Puerto Real, Spain
| | - Md Masum Billah
- Middle East Technical University (METU), Institute of Marine Sciences (IMS), Erdemli, Mersin, Turkey
| | - Iván Franco Rodil
- Department of Biology (INMAR), University of Cadiz (UCA), Puerto Real Campus, Puerto Real, Spain
| |
Collapse
|
3
|
Thomson T, Pilditch CA, Fusi M, Prinz N, Lundquist CJ, Ellis JI. Vulnerability of Labile Organic Matter to Eutrophication and Warming in Temperate Mangrove Ecosystems. GLOBAL CHANGE BIOLOGY 2025; 31:e70087. [PMID: 39950498 PMCID: PMC11826976 DOI: 10.1111/gcb.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
The sediments in mangrove forests play an important role in the global carbon cycle due to high inputs of organic matter (OM) and low decomposition rates, making them highly efficient at sequestering carbon. The balance between OM sequestration and decomposition in these systems is influenced by a complex interplay of environmental factors. However, there is a large amount of uncertainty surrounding decomposition rates from mangrove forests, particularly at regional scales. We used standardized decomposition assays of a labile and recalcitrant substrate in 30 estuaries, spanning a gradient in human land use intensity, to identify dominant drivers of OM decomposition in temperate mangrove forests. Our results reveal that, while labile OM decomposition is strongly driven by eutrophication, recalcitrant OM decomposition is primarily influenced by increases in the minimum sediment temperature. Furthermore, we demonstrate that nutrient enrichment from human land use, in combination with increased sediment temperature, synergistically accelerates the decomposition of labile OM, thereby threatening the carbon sequestration potential of these ecosystems. This suggests that coastal eutrophication can exacerbate the effects of warming on decomposition, leading to heightened vulnerability of carbon storage and potential feedbacks between local and global stressors.
Collapse
Affiliation(s)
| | - Conrad A. Pilditch
- School of ScienceUniversity of WaikatoTaurangaNew Zealand
- Insitute of Marine SciencesUniversity of Auckland, Science CentreAucklandNew Zealand
- School of EnvironmentUniversity of Auckland, Science CentreAucklandNew Zealand
| | - Marco Fusi
- Dove Marine Laboratory School of Natural and Environmental SciencesNewcastle UniversityNewcastleUK
| | - Natalie Prinz
- School of ScienceUniversity of WaikatoTaurangaNew Zealand
| | - Carolyn J. Lundquist
- School of EnvironmentUniversity of Auckland, Science CentreAucklandNew Zealand
- National Institute of Water & Atmospheric ResearchHamiltonNew Zealand
| | | |
Collapse
|
4
|
Xu H, Wang C, Ge M, Sardans J, Peñuelas J, Tong C, Wang W. Salinity increases under sea level rise strengthens the chemical protection of SOC in subtropical tidal marshes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176512. [PMID: 39368506 DOI: 10.1016/j.scitotenv.2024.176512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
The rise in sea levels due to global warming could significantly impact the soil organic carbon (SOC) pool in coastal tidal marshes by altering soil salinity and flooding conditions. However, the effects of these factors on SOC protection in coastal tidal marshes are not fully understood. In this study, we employed a space-for-time approach to investigate the variations in soil active carbon components and mineral-associated organic carbon under different salinity gradients (freshwater and brackish) and flooding frequencies (high and low tidal flats). The soil organic carbon (SOC) and easily oxidizable organic carbon (EOC) contents at the low-flooding frequency sites were higher than those at the high-flooding frequency sites. The dissolved organic carbon (DOC) content was higher at the high-salinity sites compared to the low-salinity sites, while the soil microbial biomass carbon (MBC) content was higher at the low-salinity sites than at the high-salinity sites. The EOC/SOC and DOC/SOC ratios were greater at the high-salinity sites than at the low-salinity sites, whereas the MBC/SOC ratios were higher at the low-salinity sites than at the high-salinity sites. Iron (Fe) and aluminum (Al) mineral-associated organic carbon [Fe(Al)-OC] and calcium-associated organic carbon (Ca-OC) contents were higher at the high-salinity sites compared to the low-salinity sites, and at the low-flooding frequency sites compared to the high-flooding frequency sites. Meanwhile, Fe(Al)-OC was the dominant fraction among mineral-associated organic carbon at all sites. The dominant phyla of bacterial community included Proteobacteria (49.31 %-66.36 %), Firmicutes (2.67 %-28.44 %), Chloroflexi (3.81 %-9.54 %), and Acidobacteria (4.28 %-7.02 %). In addition, Desulfobacca, a sulfate-reducing bacterium, promoted the formation of mineral-associated organic carbon. Random forest analysis showed that SOC and DOC were key factors in promoting mineral-associated organic carbon formation. Partial least squares path modeling (PLS-PM) indicated that sea level rise affects DOC content by altering soil physicochemical properties, promoting the formation of mineral-associated organic carbon. In summary, while soil organic carbon activity increases, the chemical association of minerals with organic carbon is becoming increasingly crucial for the protection of organic carbon under rising salinity conditions driven by sea level rise.
Collapse
Affiliation(s)
- Hongda Xu
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China
| | - Chun Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China.
| | - Maoquan Ge
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain.
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Chuan Tong
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
5
|
Maxwell TL, Spalding MD, Friess DA, Murray NJ, Rogers K, Rovai AS, Smart LS, Weilguny L, Adame MF, Adams JB, Austin WEN, Copertino MS, Cott GM, Duarte de Paula Costa M, Holmquist JR, Ladd CJT, Lovelock CE, Ludwig M, Moritsch MM, Navarro A, Raw JL, Ruiz-Fernández AC, Serrano O, Smeaton C, Van de Broek M, Windham-Myers L, Landis E, Worthington TA. Soil carbon in the world's tidal marshes. Nat Commun 2024; 15:10265. [PMID: 39592604 PMCID: PMC11599748 DOI: 10.1038/s41467-024-54572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Tidal marshes are threatened coastal ecosystems known for their capacity to store large amounts of carbon in their water-logged soils. Accurate quantification and mapping of global tidal marshes soil organic carbon (SOC) stocks is of considerable value to conservation efforts. Here, we used training data from 3710 unique locations, landscape-level environmental drivers and a global tidal marsh extent map to produce a global, spatially explicit map of SOC storage in tidal marshes at 30 m resolution. Here we show the total global SOC stock to 1 m to be 1.44 Pg C, with a third of this value stored in the United States of America. On average, SOC in tidal marshes' 0-30 and 30-100 cm soil layers are estimated at 83.1 Mg C ha-1 (average predicted error 44.8 Mg C ha-1) and 185.3 Mg C ha-1 (average predicted error 105.7 Mg C ha-1), respectively.
Collapse
Affiliation(s)
- Tania L Maxwell
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK.
- Biodiversity, Ecology and Conservation Research Group, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
| | - Mark D Spalding
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
- The Nature Conservancy, Siena, Italy
| | - Daniel A Friess
- Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA
| | - Nicholas J Murray
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Kerrylee Rogers
- Environmental Futures, School of Science, University of Wollongong, Wollongong, NSW, Australia
| | - Andre S Rovai
- U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Lindsey S Smart
- The Nature Conservancy, Arlington, VA, USA
- Department of Forestry and Environmental Resources, NC State University, Raleigh, NC, USA
| | - Lukas Weilguny
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Maria Fernanda Adame
- Australian Rivers Institute, Coastal and Marine Research Centre, Griffith University, Nathan, QLD, Australia
| | - Janine B Adams
- Department of Botany, Nelson Mandela University, Gqeberha, South Africa
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - William E N Austin
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
- Scottish Association of Marine Science, Oban, UK
| | - Margareth S Copertino
- Federal University of Rio Grande (FURG), Rio Grande, Brazil
- Brazilian Network of Climate Change Studies-Rede CLIMA, Rio Grande, Brazil
| | - Grace M Cott
- School of Biology and Environmental Science, University College Dublin, Belfield, Ireland
| | - Micheli Duarte de Paula Costa
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Warrnambool, VIC, Australia
| | | | - Cai J T Ladd
- Department of Geography, Swansea University, Swansea, UK
- School of Ocean Sciences, Bangor University, Menai Bridge, UK
| | | | - Marvin Ludwig
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | | | - Alejandro Navarro
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Jacqueline L Raw
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
- Anthesis South Africa, Cape Town, South Africa
| | - Ana-Carolina Ruiz-Fernández
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Mazatlán, Mexico
| | - Oscar Serrano
- Centro de Estudios Avanzados de Blanes (CEAB), Blanes, Spain
| | - Craig Smeaton
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
| | | | | | | | - Thomas A Worthington
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Liu J, Li Y, Zhang A, Zhong H, Jiang H, Tsui MTK, Li M, Pan K. Impact of geochemistry and microbes on the methylmercury production in mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135627. [PMID: 39217948 DOI: 10.1016/j.jhazmat.2024.135627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Unraveling the geochemical and microbial controls on methylmercury (MeHg) dynamics in mangrove sediments is important, as MeHg can potentially pose risks to marine biota and people that rely on these ecosystems. While the important role of sulfate-reducing bacteria in MeHg formation has been examined in this ecologically important habitat, the contribution of non-Hg methylating communities on MeHg production remains particularly unclear. Here, we collected sediment samples from 13 mangrove forests in south China and examined the geochemical parameters and microbial communities related to the Hg methylation. MeHg concentrations were significantly correlated to the OM-related parameters such as organic carbon content, total nitrogen, and dissolved organic carbon concentrations, suggesting the importance of OM in the MeHg production. Sulfate-reducing bacteria were the major Hg-methylators in mangrove sediments. Desulfobacteraceae and Desulfobulbaceae dominated the Hg-methylating microbes. Classification random forest analysis detected strong co-occurrence between Hg methylators and putative non-Hg methylators, thus suggesting that both types of microorganisms contribute to the MeHg dynamics in the sediments. Our study provides an overview of MeHg contamination in south China and advances our understanding of Hg methylation in mangrove ecosystems.
Collapse
Affiliation(s)
- Jingli Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Aijia Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210046, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Yang X, Zheng J, Yang D. Variation of soil organic carbon stability in restored mountain marsh wetlands. Sci Rep 2024; 14:23702. [PMID: 39390112 PMCID: PMC11467425 DOI: 10.1038/s41598-024-75473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
The replacement of farmland by native hygro-plants is increasingly common globally within the context of wetland ecosystem restoration. Understanding the long-term effects of this replacement on the abundance and persistence of soil organic carbon (SOC) in mountain marshes is important for soil carbon management. Here, the restored plateau mountain marshes of Duliu River Wetland Provincial Nature Reserve, China was selected. The properties, soil moisture content (SMC), pH, texture, free-form iron oxides ([Formula: see text]), amorphous iron oxides ([Formula: see text]), mineral-associated organic carbon (MAOC), and iron-bound organic carbon (Fe-OC) were analyzed in topsoil samples (0 ~ 20 cm) during the restoration of rice paddies to Sphagnum palustre L. wetlands for 0, 2, 10, and 20 years. Natural Sphagnum wetlands were also used as the control. We found that marsh restoration increased SMC, [Formula: see text], [Formula: see text], [Formula: see text]/[Formula: see text], SOC, MAOC, Fe-OC, Fe-OC/SOC, but decreased the MAOC/SOC ratio. MAOC/SOC ratio of marshes were expectedly lower than the proportion of labile SOC in total SOC during the restoration period. SMC, SOC, and MAOC were higher in the natural Sphagnum wetlands than in other habitats. Both SOC and Fe-OC/SOC were positively correlated with SMC, [Formula: see text], [Formula: see text], [Formula: see text]/[Formula: see text], and Fe-OC, but negatively correlated with soil pH. MAOC/SOC was negatively correlated with SMC, [Formula: see text] and [Formula: see text]/[Formula: see text]. These results emphasized the significance of reconverting rice paddies to marsh wetlands for increasing the sequestration of labile SOC and Fe-OC. Further studies are required to identify and quantify the organo-mineral stabilization mechanisms of SOC at the different SOC fractionations throughout the restoration period.
Collapse
Affiliation(s)
- Xin Yang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, 550025, China
| | - Jiao Zheng
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, 550025, China
| | - Dan Yang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Wu L, Song Z, Wu Y, Xia S, Kuzyakov Y, Hartley IP, Fang Y, Yu C, Wang Y, Chen J, Guo L, Li Z, Zhao X, Yang X, Zhang Z, Liu S, Wang W, Ran X, Liu CQ, Wang H. Organic matter composition and stability in estuarine wetlands depending on soil salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173861. [PMID: 38871323 DOI: 10.1016/j.scitotenv.2024.173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Coastal wetlands are key players in mitigating global climate change by sequestering soil organic matter. Soil organic matter consists of less stable particulate organic matter (POM) and more stable mineral-associated organic matter (MAOM). The distribution and drivers of MAOM and POM in coastal wetlands have received little attention, despite the processes and mechanisms differ from that in the upland soils. We explored the distribution of POM and MAOM, their contributions to SOM, and the controlling factors along a salinity gradient in an estuarine wetland. In the estuarine wetland, POM C and N were influenced by soil depth and vegetation type, whereas MAOM C and N were influenced only by vegetation type. In the estuarine wetland, SOM was predominantly in the form of MAOM (> 70 %) and increased with salinity (70 %-76 %), leading to long-term C sequestration. Both POM and MAOM increased with SOM, and the increase rate of POM was higher than that of MAOM. Aboveground plant biomass decreased with increasing salinity, resulted in a decrease in POM C (46 %-81 %) and N (52 %-82 %) pools. As the mineral amount and activity, and microbial biomass decreased, the MAOM C (2.5 %-64 %) and N pool (8.6 %-59 %) decreased with salinity. When evaluating POM, the most influential factors were microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Key parameters, including MBC, DOC, soil salinity, soil water content, aboveground plant biomass, mineral content and activity, and bulk density, were identified as influencing factors for both MAOM abundance. Soil water content not only directly controlled MAOM, but together with salinity also indirectly regulated POM and MAOM by controlling microbial biomass and aboveground plant biomass. Our findings have important implications for improving the accumulation and increased stability of soil organic matter in coastal wetlands, considering the global sea level rise and increased frequency of inundation.
Collapse
Affiliation(s)
- Lele Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, China.
| | - Yuntao Wu
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Shaopan Xia
- Institute of Resource, Ecosystem and Environment of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077 Göttingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia; Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Iain P Hartley
- Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| | - Yunying Fang
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan 4111, Australia
| | - Changxun Yu
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yidong Wang
- Tianjin Key Laboratory of Water Resources and Environment, School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Department of Agroecology, Aarhus University, 8830 Tjele, Denmark
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Zimin Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xiangwei Zhao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Xiaomin Yang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zhenqing Zhang
- Tianjin Key Laboratory of Water Resources and Environment, School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Shuyan Liu
- National Nature Reserve Management Center of Liujiang Basin Geological Relics, Qinhuangdao, China
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiangbin Ran
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
9
|
Dai Z, Zhang N, Wang F, Li Y, Peng J, Xiang T, Zhao X, Yang S, Cao W. Loss of microbial functional diversity following Spartina alterniflora invasion reduces the potential of carbon sequestration and nitrogen removal in mangrove sediments-from a gene perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121569. [PMID: 38914045 DOI: 10.1016/j.jenvman.2024.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Mangrove ecosystems play an important role in carbon (C) sequestration and nitrogen (N) removal. Although Spartina alterniflora has successively invaded native mangrove habitats during the preceding two decades, the effects of this invasion on the microbial functional potential involved in nutrient cycling remain unclear. In this study, metagenomic sequencing was used to investigate microbial C and N cycling in sediments derived from S. alterniflora and three native mangrove species (Kandelia obovata, Avicennia marina, and Aegiceras corniculatum). Greater differences in functional profiles of C and N cycling-related genes were observed between S. alterniflora and mangrove sediments than between different mangrove sediments. Functional diversity was lower in S. alterniflora sediments than in native mangrove sediments. The growth of Thaumarchaeota and Proteobacteria, was enhanced due to their resilience to diversity loss, while the growth of oligotrophs, such as Chloroflexi and Firmicutes, was inhibited in S. alterniflora sediments. Compared to mangrove sediments, the abundance of genes involved in C fixation and methane production was lower in S. alterniflora sediments. However, S. alterniflora significantly increased the gene abundance of pmo which controlled the oxidation process of CH4 to carbon dioxide. Additionally, genes involved in nitrification were enriched, whereas genes involved in N reduction processes, such as denitrification and dissimilatory nitrate reduction to ammonium, N immobilization, and N mineralization, were depleted in S. alterniflora sediments compared to mangrove sediments. Partial least squares regression models demonstrated that the decrease in soil organic C and increase in pH after S. alterniflora invasion induced the loss of microbial functional diversity, which was the main driver of changes in the abundances of genes involved in C and N cycling. Overall, our findings indicate that S. alterniflora invasion modifies the microbial functional profile of nutrient cycling in native mangrove ecosystems and potentially weakens the capacity of mangroves to sequester carbon and remove nitrogen.
Collapse
Affiliation(s)
- Zetao Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ning Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Feifei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yujie Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiarui Peng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tao Xiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoyu Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shengchang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
10
|
Yahaya N, Mohamed Rehan M, Hamdan NH, Nasaruddin SM. Metagenomic data of microbiota in mangrove soil from Lukut River, Malaysia. Data Brief 2024; 53:110155. [PMID: 38379885 PMCID: PMC10877682 DOI: 10.1016/j.dib.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
The mangrove ecosystem contains sediment microorganisms that play a crucial part in the decomposition of organic matter and the cycling of water and nutrients in the mangrove. Here we present the metagenomics whole genome shotgun (mWGS) sequence data analysis from three soil samples that were collected at the freshwater riverine mangrove at Lukut River, Negeri Sembilan, Malaysia. Data analysis shows different distributions of bacteria of the genera Bradyrhizobium, Methyloceanibacter and Desulfobacteaceae were detected in soil samples collected at freshwater riverine mangrove. In the data analysis, we report the existence of a large number of Carbohydrate-Active genes in metagenomes collected from mangrove soil. An in-depth exploration of functional annotation analysis based on the KEGG database also showed that the most abundant genes found in these three soils are those that function in carbon fixation pathways, followed by methane, nitrogen, sulfur metabolisms, atrazine and dioxin degradations.
Collapse
Affiliation(s)
- Nazariyah Yahaya
- Programme of Food Biotechnology, Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
- Institut Fatwa dan Halal (IFFAH), Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Maryam Mohamed Rehan
- Programme of Food Biotechnology, Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Nabila Huda Hamdan
- Programme of Food Biotechnology, Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Siti Munirah Nasaruddin
- Programme of Food Biotechnology, Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
11
|
Fu Q, Qiu Y, Zhao J, Li J, Xie S, Liao Q, Fu X, Huang Y, Yao Z, Dai Z, Qiu Y, Yang Y, Li F, Chen H. Monotonic trends of soil microbiomes, metagenomic and metabolomic functioning across ecosystems along water gradients in the Altai region, northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169351. [PMID: 38123079 DOI: 10.1016/j.scitotenv.2023.169351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
To investigate microbial communities and their contributions to carbon and nutrient cycling along water gradients can enhance our comprehension of climate change impacts on ecosystem services. Thus, we conducted an assessment of microbial communities, metagenomic functions, and metabolomic profiles within four ecosystems, i.e., desert grassland (DG), shrub-steppe (SS), forest (FO), and marsh (MA) in the Altai region of Xinjiang, China. Our results showed that soil total carbon (TC), total nitrogen, NH4+, and NO3- increased, but pH decreased with soil water gradients. Microbial abundances and richness also increased with soil moisture except the abundances of fungi and protists being lowest in MA. A shift in microbial community composition is evident along the soil moisture gradient, with Proteobacteria, Basidiomycota, and Evosea proliferating but a decline in Actinobacteria and Cercozoa. The β-diversity of microbiomes, metagenomic, and metabolomic functioning were correlated with soil moisture gradients and have significant associations with specific soil factors of TC, NH4+, and pH. Metagenomic functions associated with carbohydrate and DNA metabolisms, as well as phages, prophages, TE, plasmids functions diminished with moisture, whereas the genes involved in nitrogen and potassium metabolism, along with certain biological interactions and environmental information processing functions, demonstrated an augmentation. Additionally, MA harbored the most abundant metabolomics dominated by lipids and lipid-like molecules and organic oxygen compounds, except certain metabolites showing decline trends along water gradients, such as N'-Hydroxymethylnorcotinine and 5-Hydroxyenterolactone. Thus, our study suggests that future ecosystem succession facilitated by changes in rainfall patterns will significantly alter soil microbial taxa, functional potential, and metabolite fractions.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siqi Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiuchang Liao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Furong Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
12
|
Cui L, DeAngelis DL, Berger U, Cao M, Zhang Y, Zhang X, Jiang J. Global potential distribution of mangroves: Taking into account salt marsh interactions along latitudinal gradients. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119892. [PMID: 38176380 DOI: 10.1016/j.jenvman.2023.119892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Mangrove is one of the most productive and sensitive ecosystems in the world. Due to the complexity and specificity of mangrove habitat, the development of mangrove is regulated by several factors. Species distribution models (SDMs) are effective tools to identify the potential habitats for establishing and regenerating the ecosystem. Such models usually include exclusively environmental factors. Nevertheless, recent studies have challenged this notion and highlight the importance of including biotic interactions. Both factors are necessary for a mechanistic understanding of the mangrove distribution in order to promote the protection and restoration of mangroves. Thus, we present a novel approach of combining environmental factors and interactions with salt marsh for projecting mangrove distributions at the global level and within latitudinal zones. To test the salt marsh interaction, we fit the MaxEnt model with two predicting sets: (1) environments only and (2) environments + salt marsh interaction index (SII). We found that both sets of models had good predictive ability, although the SII improved model performance slightly. Potential distribution areas of mangrove decrease with latitudes, and are controlled by biotic and abiotic factors. Temperature, precipitation and wind speed are generally critical at both global scale and ecotones along latitudes. SII is important on global scale, with a contribution of 5.9%, ranking 6th, and is particularly critical in the 10-30°S and 20-30°N zone. Interactions with salt marsh, including facilitation and competition, are shown to affect the distribution of mangroves at the zone of coastal ecotone, especially in the latitudinal range from 10° - 30°. The contribution of SII to mangrove distribution increases with latitudes due to the difference in the adaptive capacity of salt marsh plants and mangroves to environments. Totally, this study identified and quantified the effects of salt marsh on mangrove distribution by establishing the SII. The results not only facilitate to establish a more accurate mangrove distribution map, but also improve the efficiency of mangrove restoration by considering the salt marsh interaction in the mangrove management projects. In addition, the method of incorporating biotic interaction into SDMs through establish the biotic interaction index has contributed to the development of SDMs.
Collapse
Affiliation(s)
- Lina Cui
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Donald L DeAngelis
- Wetland and Aquatic Research Center, U. S. Geological Survey, Davie, Florida, USA
| | - Uta Berger
- Department of Forest Biometry and Systems Analysis, Institute of Forest Growth and Forest Computer Sciences, Technische Universitaet Dresden, Dresden, Germany
| | - Minmin Cao
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Yaqi Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | | | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
13
|
Maxwell TL, Rovai AS, Adame MF, Adams JB, Álvarez-Rogel J, Austin WEN, Beasy K, Boscutti F, Böttcher ME, Bouma TJ, Bulmer RH, Burden A, Burke SA, Camacho S, Chaudhary DR, Chmura GL, Copertino M, Cott GM, Craft C, Day J, de Los Santos CB, Denis L, Ding W, Ellison JC, Ewers Lewis CJ, Giani L, Gispert M, Gontharet S, González-Pérez JA, González-Alcaraz MN, Gorham C, Graversen AEL, Grey A, Guerra R, He Q, Holmquist JR, Jones AR, Juanes JA, Kelleher BP, Kohfeld KE, Krause-Jensen D, Lafratta A, Lavery PS, Laws EA, Leiva-Dueñas C, Loh PS, Lovelock CE, Lundquist CJ, Macreadie PI, Mazarrasa I, Megonigal JP, Neto JM, Nogueira J, Osland MJ, Pagès JF, Perera N, Pfeiffer EM, Pollmann T, Raw JL, Recio M, Ruiz-Fernández AC, Russell SK, Rybczyk JM, Sammul M, Sanders C, Santos R, Serrano O, Siewert M, Smeaton C, Song Z, Trasar-Cepeda C, Twilley RR, Van de Broek M, Vitti S, Antisari LV, Voltz B, Wails CN, Ward RD, Ward M, Wolfe J, Yang R, Zubrzycki S, Landis E, Smart L, Spalding M, Worthington TA. Global dataset of soil organic carbon in tidal marshes. Sci Data 2023; 10:797. [PMID: 37952023 PMCID: PMC10640612 DOI: 10.1038/s41597-023-02633-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.
Collapse
Grants
- W912HZ2020070 United States Department of Defense | United States Army | US Army Corps of Engineers | Engineer Research and Development Center (U.S. Army Engineer Research and Development Center)
- 84375 NRF | South African Agency for Science and Technology Advancement (SAASTA)
- The Nature Conservancy through the Bezos Earth Fund and other donor support
- Nelson Mandela University
- State Research Agency of Spain (AEI; CGL2007-64915), the Mancomunidad de los Canales del Taibilla (MCT), and the Science and Technology Agency of the Murcia Region (Seneca Foundation; 00593/PI/04 & 08739/PI/08).
- Scottish Government and UK Natural Environment Research Council C-SIDE project (grant NE/R010846/1)
- COOLSTYLE/CARBOSTORE project
- New Zealand Ministry for Business, Innovation and Employment Contract #C01X2109
- Portuguese national funds from FCT - Foundation for Science and Technology through projects UIDB/04326/2020, UIDP/04326/2020, LA/P/0101/2020, and 2020.03825.CEECIND
- German Research Foundation (DFG project number: GI 171/25-1)
- State Research Agency of Spain (AEI; CGL2007-64915), the Mancomunidad de los Canales del Taibilla (MCT), the Science and Technology Agency of the Murcia Region (Seneca Foundation; 00593/PI/04 & 08739/PI/08), and a Ramón y Cajal contract from the Spanish Ministry of Science and Innovation (RYC2020-029322-I)
- Velux foundation (#28421, Blå Skove – Havets Skove som kulstofdræn)
- LIFE ADAPTA BLUES project Ref. LIFE18 CCA/ES/001160
- LIFE ADAPTA BLUES project Ref. LIFE18 CCA/ES/001160, support of national funds through Fundação para a Ciência e Tecnologia, I.P. (FCT), under the projects UIDB/04292/2020, UIDP/04292/2020, granted to MARE, and LA/P/0069/2020, granted to the Associate Laboratory ARNET
- Financial support provided by the Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network for Low Carbon, Energy and Environment; as well as the Spanish Ministry of Science and Innovation (project PID2020-113745RB-I00) and FEDER
- South African Department of Science and Innovation (DSI)—National Research Foundation (NRF) Research Chair in Shallow Water Ecosystems (UID: 84375), and the Nelson Mandela University
- I+D+i projects RYC2019-027073-I and PIE HOLOCENO 20213AT014 funded by MCIN/AEI/10.13039/501100011033 and FEDER
- Funding support from the Scottish Government and UK Natural Environment Research Council C-SIDE project (grant NE/R010846/1)
- Xunta de Galicia (GRC project IN607A 2021-06)
- U.S. Army Engineering, Research and Development Center (ACTIONS project, W912HZ2020070)
Collapse
Affiliation(s)
- Tania L Maxwell
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK.
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
| | - André S Rovai
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, 70803, USA.
- US Army Engineer Research and Development Center, Vicksburg, MS, 39183, USA.
| | - Maria Fernanda Adame
- Australian Rivers Institute, Centre for Marine and Coastal Research, Griffith University, Nathan, QLD, 4117, Australia
| | - Janine B Adams
- DSI-NRF Research Chair in Shallow Water Ecosystems, Institute for Coastal Marine Research, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa
| | - José Álvarez-Rogel
- Department of Agricultural Engineering of the E.T.S.I.A. and Soil Ecology and Biotechnology Unit of the I.B.V., Technical University of Cartagena, 30203, Cartagena, Spain
| | - William E N Austin
- School of Geography and Sustainable Development, University of St Andrews, KY16 9AL, St Andrews, UK
- Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
| | - Kim Beasy
- College of Arts, Law and Education, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Francesco Boscutti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, Udine, 33100, Italy
| | - Michael E Böttcher
- Geochemistry and Isotope Biogeochemistry Group, Department of Marine Geology, Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, D-18119, Warnemünde, Germany
- Marine Geochemistry, University of Greifswald, Friedrich-Ludwig-Jahn Str. 17a, D-17489, Greifswald, Germany
- Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Strase 21, D-18059, Rostock, Germany
| | - Tjeerd J Bouma
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), 4401 NT, Yerseke, The Netherlands
- Faculty of Geosciences, Department of Physical Geography, Utrecht University, 3508 TC, Utrecht, The Netherlands
- Delta Academy Applied Research Centre, HZ University of Applied Sciences, Postbus 364, 4380 AJ, Vlissingen, The Netherlands
| | | | | | - Shannon A Burke
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Dublin, Ireland
| | - Saritta Camacho
- CIMA - Centro de Investigação Marinha e Ambiental, Faro, Portugal
| | | | - Gail L Chmura
- McGill University Department of Geography, Montreal, Canada
| | - Margareth Copertino
- Institute of Oceanography - Federal University of Rio Grande, Rio Grande, Brazil
- Brazilian Network for Global Change Studies - Rede CLIMA, Rio Grande, Brazil
| | - Grace M Cott
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Dublin, Ireland
| | - Christopher Craft
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, USA
- University of Georgia Marine Institute, Sapelo Island, Georgia, USA
| | - John Day
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | - Lionel Denis
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, 32, Avenue Foch, F-62930, Wimereux, France
| | - Weixin Ding
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Joanna C Ellison
- School of Geography, Planning Spatial Sciences, University of Tasmania, Launceston, Tasmania, 7250, Australia
| | - Carolyn J Ewers Lewis
- Department of Environmental Sciences, University of Virginia, 221 McCormick Road, Charlottesville, Virginia, 22903, USA
| | - Luise Giani
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstrase 114-118, D-26129, Oldenburg, Germany
| | - Maria Gispert
- Department of Chemical Engineering, Agriculture and Food Technology, Universitat de Girona, 17003, Girona, Spain
| | - Swanne Gontharet
- LOCEAN UMR 7159 Sorbonne Université/CNRS/IRD/MNHN, 4 place Jussieu - boite 100, F-75252, Paris, France
| | | | - M Nazaret González-Alcaraz
- Department of Agricultural Engineering of the E.T.S.I.A. and Soil Ecology and Biotechnology Unit of the I.B.V., Technical University of Cartagena, 30203, Cartagena, Spain
| | - Connor Gorham
- School of Sciences Centre for Marine Ecosystems Research, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | | | - Anthony Grey
- School of Chemical Science, Dublin City University, Dublin, Ireland
| | - Roberta Guerra
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Qiang He
- Fudan University, Shanghai, China
| | | | - Alice R Jones
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- The Environment Institute, Adelaide, Australia
| | - José A Juanes
- IHCantabria, Instituto de Hidráulica Ambiental de la Universidad de Cantabria, PCTCAN, 39011, Santander, Spain
| | - Brian P Kelleher
- School of Chemical Science, Dublin City University, Dublin, Ireland
| | - Karen E Kohfeld
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, V5A 1S6, Canada
- School of Environmental Science, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | | | - Anna Lafratta
- School of Sciences Centre for Marine Ecosystems Research, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Paul S Lavery
- School of Sciences Centre for Marine Ecosystems Research, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centro de Estudios Avanzados de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), 17300, Blanes, Catalunya, Spain
| | - Edward A Laws
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, USA
| | | | | | | | - Carolyn J Lundquist
- National Institute of Water and Atmospheric Research (NIWA), Hamilton, 3251, New Zealand
- School of Environment, University of Auckland, New Zealand, Auckland, 1142, New Zealand
| | - Peter I Macreadie
- Deakin University, Centre for Marine Science, School of Life and Environmental Sciences, Burwood, Victoria, 3125, Australia
| | - Inés Mazarrasa
- IHCantabria, Instituto de Hidráulica Ambiental de la Universidad de Cantabria, PCTCAN, 39011, Santander, Spain
| | | | - Joao M Neto
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Juliana Nogueira
- LARAMG - Radioecology and Climate Change Laboratory, Department of Biophysics and Biometry, Rio de Janeiro State University, Rua São Francisco Xavier 524, 20550-013, Rio de Janeiro, RJ, Brazil
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Michael J Osland
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, Louisiana, 70506, USA
| | - Jordi F Pagès
- Centro de Estudios Avanzados de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), 17300, Blanes, Catalunya, Spain
| | - Nipuni Perera
- Department of Zoology and Environment Sciences, University of Colombo, Colombo, 03, Sri Lanka
| | | | - Thomas Pollmann
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstrase 114-118, D-26129, Oldenburg, Germany
| | - Jacqueline L Raw
- DSI-NRF Research Chair in Shallow Water Ecosystems, Institute for Coastal Marine Research, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa
| | - María Recio
- IHCantabria, Instituto de Hidráulica Ambiental de la Universidad de Cantabria, PCTCAN, 39011, Santander, Spain
| | - Ana Carolina Ruiz-Fernández
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sophie K Russell
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- The Environment Institute, Adelaide, Australia
| | | | - Marek Sammul
- Elva Gymnasium, Puiestee 2, Elva, 61505, Estonia
| | - Christian Sanders
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW, 2540, Australia
| | - Rui Santos
- Centre of Marine Sciences of Algarve, University of Algarve, Faro, Portugal
| | - Oscar Serrano
- School of Sciences Centre for Marine Ecosystems Research, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centro de Estudios Avanzados de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), 17300, Blanes, Catalunya, Spain
| | - Matthias Siewert
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Craig Smeaton
- School of Geography and Sustainable Development, University of St Andrews, KY16 9AL, St Andrews, UK
| | - Zhaoliang Song
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Carmen Trasar-Cepeda
- Departamento de Suelos, Biosistemas y Ecología Agroforestal, MBG sede Santiago (CSIC), Apartado 122, E-15780, Santiago de Compostela, Spain
| | - Robert R Twilley
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Marijn Van de Broek
- Department of Environmental Systems Science, ETH Zurich, 8092, Zürich, Switzerland
| | - Stefano Vitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, Udine, 33100, Italy
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Livia Vittori Antisari
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Viale G. Fanin, 40 - 40127, Bologna, Italy
| | - Baptiste Voltz
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, 32, Avenue Foch, F-62930, Wimereux, France
| | - Christy N Wails
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Raymond D Ward
- Centre For Aquatic Environments, University of Brighton, Moulsecoomb, Brighton, BN2 4GJ, UK
- Institute of Agriculture and Environmental Sciences, Estonia University of Life Sciences, Kreutzwaldi 5, EE-51014, Tartu, Estonia
| | - Melissa Ward
- University of Oxford, Oxford, UK
- San Diego State University, San Diego, USA
| | - Jaxine Wolfe
- Smithsonian Environmental Research Center, Edgewater, USA
| | - Renmin Yang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Sebastian Zubrzycki
- Center of Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
| | | | - Lindsey Smart
- The Nature Conservancy, Arlington, VA, USA
- Center for Geospatial Analytics, College of Natural Resources, North Carolina State University, 2800 Faucette Drive, Raleigh, NC, 27695, USA
| | - Mark Spalding
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
- The Nature Conservancy, Strada delle Tolfe, 14, Siena, 53100, Italy
| | - Thomas A Worthington
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Wang F, Guo R, Zhang N, Yang S, Cao W. Soil organic carbon storages and bacterial communities along a restored mangrove soil chronosequence in the Jiulong River Estuary: From tidal flats to mangrove afforestation. FUNDAMENTAL RESEARCH 2023; 3:880-889. [PMID: 38933017 PMCID: PMC11197722 DOI: 10.1016/j.fmre.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Among many ecological services provided by mangrove ecosystems, soil organic carbon (SOC) storages have recently received much attention owing to the increasing atmospheric partial pressure of dissolved CO2 (pCO2). Bacteria are fundamental to ecosystem functions and strongly influence the coupling of coastal carbon, nitrogen, and sulfur cycling in soils. The SOC storage and bacterial communities along a restored mangrove soil chronosequence in the Jiulong River Estuary were explored using the 16S rDNA sequencing technique. The results showed the SOC storage in the 100 cm soil profile was 103.31 ± 5.87 kg C m-2 and 93.10 ± 11.28 kg C m-2 for mangroves with afforestation ages of 36 and 60 years, respectively. The total nitrogen (TN) and total sulfur (TS) contents exhibited significant correlations with the SOC in the mangrove soils, but only TN and SOC showed significant correlation in tidal flat soils. Although the tidal flats and mangroves occupied the contiguous intertidal zone within several kilometers, the variations in the SOC storage along the restored mangrove soil chronosequence were notably higher. The Functional Annotation of Prokaryotic Taxa (FAPROTAX) database was used to annotate the metabolic functions of the bacteria in the soils. The annotation revealed that only four metabolic functions were enriched with a higher relative abundance of the corresponding bacteria, and these enriched functions were largely associated with sulfate reduction. In addition, the specifically critical bacterial taxa that were associated with the SOC accumulation and nutrient cycling, shaped the distinct metabolic functions, and consequently facilitated the SOC accumulation in the mangrove soils with various afforestation ages. The general homogenization of the microbial community and composition along the intertidal soil chronosequence was primarily driven by the reciprocating tidal flows and geographical contiguity.
Collapse
Affiliation(s)
- Feifei Wang
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Rui Guo
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Ning Zhang
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shengchang Yang
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
15
|
Wang J, Fu Z, Liu F, Qiao H, Bi Y. Effects of substrate improvement on winter nitrogen removal in riparian reed (Phragmites australis) wetlands: rhizospheric crosstalk between plants and microbes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95931-95944. [PMID: 37561302 DOI: 10.1007/s11356-023-29181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
With continued anthropogenic inputs of nitrogen (N) into the environment, non-point source N pollutants produced in winter cannot be ignored. As the water-soil interface zones, riparian wetlands play important roles in intercepting and buffering N pollutants. However, winter has the antagonistic effect on the N removal. Substrate improvement has been suggested as a strategy to optimize wetland performance and there remain many uncertainties about the inner mechanism. This study explores the effects of substrate improvement on N removal in winter and rhizospheric crosstalk between reed (Phragmites australis) and microbes in subtropical riparian reed wetlands. The rates of wetland N removal in winter, root metabolite profiles, and rhizosphere soil microbial community compositions were determined following the addition of different substrates (gravel, gravel + biochar, ceramsite + biochar, and modified ceramsite + biochar) to natural riparian soil. The results showed that the addition of different substrates to initial soil enhanced N removal from the microcosms in winter. Gravel addition increased NH4+-N removal by 8.3% (P < 0.05). Gravel + biochar addition increased both TN and NH4+-N removals by 8.9% (P < 0.05). The root metabolite characteristics and microbial community compositions showed some variations under different substrate additions compared to the initial soil. The three treatments involving biochar addition decreased lipid metabolites and enhanced the contents and variety of carbon sources in rhizosphere soil, while modified ceramsite + biochar addition treatment had a greater impact on the microbial community structure. There was evidence for a complex crosstalk between plants and microbes in the rhizosphere, and some rhizosphere metabolites were seen to be significantly correlated with the bacterial composition of the rhizospheric microbial community. These results highlighted the importance of rhizospheric crosstalk in regulating winter N removal in riparian reed wetland, provided a scientific reference for the protection and restoration of riparian reed areas and the prevention and control of non-point source pollution.
Collapse
Affiliation(s)
- Junli Wang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Zishi Fu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Fuxing Liu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China.
| | - Hongxia Qiao
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Yucui Bi
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| |
Collapse
|
16
|
Jiang M, Delgado-Baquerizo M, Yuan MM, Ding J, Yergeau E, Zhou J, Crowther TW, Liang Y. Home-based microbial solution to boost crop growth in low-fertility soil. THE NEW PHYTOLOGIST 2023. [PMID: 37149890 DOI: 10.1111/nph.18943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
Soil microbial inoculants are expected to boost crop productivity under climate change and soil degradation. However, the efficiency of native vs commercialized microbial inoculants in soils with different fertility and impacts on resident microbial communities remain unclear. We investigated the differential plant growth responses to native synthetic microbial community (SynCom) and commercial plant growth-promoting rhizobacteria (PGPR). We quantified the microbial colonization and dynamic of niche structure to emphasize the home-field advantages for native microbial inoculants. A native SynCom of 21 bacterial strains, originating from three typical agricultural soils, conferred a special advantage in promoting maize growth under low-fertility conditions. The root : shoot ratio of fresh weight increased by 78-121% with SynCom but only 23-86% with PGPRs. This phenotype correlated with the potential robust colonization of SynCom and positive interactions with the resident community. Niche breadth analysis revealed that SynCom inoculation induced a neutral disturbance to the niche structure. However, even PGPRs failed to colonize the natural soil, they decreased niche breadth and increased niche overlap by 59.2-62.4%, exacerbating competition. These results suggest that the home-field advantage of native microbes may serve as a basis for engineering crop microbiomes to support food production in widely distributed poor soils.
Collapse
Affiliation(s)
- Meitong Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Ave Reina Mercedes 10, E-41012, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Mengting Maggie Yuan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Jixian Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Etienne Yergeau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, H7V 1B7, Québec, Canada
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich, 8092, Switzerland
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Gu J, Wu J. Blue carbon effects of mangrove restoration in subtropics where Spartina alterniflora invaded. ECOLOGICAL ENGINEERING 2023; 186:106822. [DOI: 10.1016/j.ecoleng.2022.106822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
18
|
Yan Z, Meng H, Zhang Q, Bi Y, Gao X, Lei Y. Effects of cadmium and flooding on the formation of iron plaques, the rhizosphere bacterial community structure, and root exudates in Kandelia obovata seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158190. [PMID: 35995174 DOI: 10.1016/j.scitotenv.2022.158190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
In the rhizosphere, plant root exudates (REs) serve as a bridge between plant and soil functional microorganisms, which play a key role in the redox cycle of iron (Fe). This study examined the effects of periodic flooding and cadmium (Cd) on plant REs, the rhizosphere bacterial community structure, and the formation of root Fe plaques in the typical mangrove plant Kandelia obovata, as well as the relationship between REs and Fe redox cycling bacteria. Based on two-way analysis of variance, flooding and Cd had a considerable effect on the REs of K. obovata. DOC, NH4+-N, NO3--N, dissolved inorganic phosphorus, acetic acid, and malonic acid concentrations in REs of K. obovata increased considerably with the increase of Cd concentration under 5 and 10 h flooding conditions. Fe plaque development in the plant root was stimulated by flooding and Cd, although flooding was more effective. After Cd treatment, the ways in which Fe-oxidizing bacteria (FeOB) and Fe-reducing bacteria (FeRB) were enriched in the rhizosphere and rhizoplane of plants were different. Thiobacillus and Sideroxydans (dominant FeOB) were more abundant in the plant rhizosphere, whereas Acinetobacter (dominant FeRB) was more abundant in the rhizoplane. Cd considerably decreased the relative abundance of unclassified_f_Gallionellaceae in the rhizosphere and rhizoplane but dramatically enhanced the relative abundance of Thiobacillus, Shewanella, and unclassified_f_Geobacteraceae. Unclassified_f_Geobacteraceae and Thiobacillus exhibited substantial positive correlations with citric acid and DOC in REs in the rhizosphere and rhizoplane but strong negative correlations with Sideroxydans. The findings indicate that Cd and flooding treatments may play a role in the production and breakdown of Fe plaque in K. obovata roots by affecting the relative abundance of Fe redox cycling bacteria in the rhizosphere and rhizoplane.
Collapse
Affiliation(s)
- Zhongzheng Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.
| | - Huijie Meng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Qiqiong Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Yuxin Bi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Xiaoqing Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Ying Lei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
19
|
Xia S, Song Z, Van Zwieten L, Guo L, Yu C, Wang W, Li Q, Hartley IP, Yang Y, Liu H, Wang Y, Ran X, Liu CQ, Wang H. Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China. GLOBAL CHANGE BIOLOGY 2022; 28:6065-6085. [PMID: 35771205 DOI: 10.1111/gcb.16325] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Soil organic carbon (SOC) in coastal wetlands, also known as "blue C," is an essential component of the global C cycles. To gain a detailed insight into blue C storage and controlling factors, we studied 142 sites across ca. 5000 km of coastal wetlands, covering temperate, subtropical, and tropical climates in China. The wetlands represented six vegetation types (Phragmites australis, mixed of P. australis and Suaeda, single Suaeda, Spartina alterniflora, mangrove [Kandelia obovata and Avicennia marina], tidal flat) and three vegetation types invaded by S. alterniflora (P. australis, K. obovata, A. marina). Our results revealed large spatial heterogeneity in SOC density of the top 1-m ranging 40-200 Mg C ha-1 , with higher values in mid-latitude regions (25-30° N) compared with those in both low- (20°N) and high-latitude (38-40°N) regions. Vegetation type influenced SOC density, with P. australis and S. alterniflora having the largest SOC density, followed by mangrove, mixed P. australis and Suaeda, single Suaeda and tidal flat. SOC density increased by 6.25 Mg ha-1 following S. alterniflora invasion into P. australis community but decreased by 28.56 and 8.17 Mg ha-1 following invasion into K. obovata and A. marina communities. Based on field measurements and published literature, we calculated a total inventory of 57 × 106 Mg C in the top 1-m soil across China's coastal wetlands. Edaphic variables controlled SOC content, with soil chemical properties explaining the largest variance in SOC content. Climate did not control SOC content but had a strong interactive effect with edaphic variables. Plant biomass and quality traits were a minor contributor in regulating SOC content, highlighting the importance of quantity and quality of OC inputs and the balance between production and degradation within the coastal wetlands. These findings provide new insights into blue C stabilization mechanisms and sequestration capacity in coastal wetlands.
Collapse
Affiliation(s)
- Shaopan Xia
- Institute of Resource, Ecosystem and Environment of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Zhaoliang Song
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Lukas Van Zwieten
- Wollongbar Primary Industries Institute, NSW Department of Primary Industries, Wollongbar, NSW, Australia
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Changxun Yu
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Qiang Li
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Iain P Hartley
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hongyan Liu
- College of Urban and Environmental Sciences, Peking University, Peking, China
| | - Yidong Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, China
| | - Xiangbin Ran
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Cong-Qiang Liu
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Watson EB, Rahman FI, Woolfolk A, Meyer R, Maher N, Wigand C, Gray AB. High nutrient loads amplify carbon cycling across California and New York coastal wetlands but with ambiguous effects on marsh integrity and sustainability. PLoS One 2022; 17:e0273260. [PMID: 36084085 PMCID: PMC9462672 DOI: 10.1371/journal.pone.0273260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Eutrophic conditions in estuaries are a globally important stressor to coastal ecosystems and have been suggested as a driver of coastal salt marsh loss. Potential mechanisms in marshes include disturbance caused by macroalgae accumulations, enhanced soil sulfide levels linked to high labile carbon inputs, accelerated decomposition, and declines in belowground biomass that contribute to edge instability, erosion, and slumping. However, results of fertilization studies have been mixed, and it is unclear the extent to which local environmental conditions, such as soil composition and nutrient profiles, help shape the response of salt marshes to nutrient exposure. In this study, we characterized belowground productivity and decomposition, organic matter mineralization rates, soil respiration, microbial biomass, soil humification, carbon and nitrogen inventories, nitrogen isotope ratios, and porewater profiles at high and low marsh elevations across eight marshes in four estuaries in California and New York that have strong contrasts in nutrient inputs. The higher nutrient load marshes were characterized by faster carbon turnover, with higher belowground production and decomposition and greater carbon dioxide efflux than lower nutrient load marshes. These patterns were robust across marshes of the Atlantic and Pacific coasts that varied in plant species composition, soil flooding patterns, and soil texture. Although impacts of eutrophic conditions on carbon cycling appeared clear, it was ambiguous whether high nutrient loads are causing negative effects on long-term marsh sustainability in terms of studied metrics. While high nutrient exposure marshes had high rates of decomposition and soil respiration rates, high nutrient exposure was also associated with increased belowground production, and reduced levels of sulfides, which should lead to greater marsh sustainability. While this study does not resolve the extent to which nutrient loads are negatively affecting these salt marshes, we do highlight functional differences between Atlantic and Pacific wetlands which may be useful for understanding coastal marsh health and integrity.
Collapse
Affiliation(s)
- Elizabeth Burke Watson
- Department of Biodiversity, Earth and Environmental Sciences and The Academy of Natural Sciences, Drexel University, Philadelphia, PA, United States of America
- * E-mail:
| | - Farzana I. Rahman
- Department of Biodiversity, Earth and Environmental Sciences and The Academy of Natural Sciences, Drexel University, Philadelphia, PA, United States of America
| | - Andrea Woolfolk
- Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, United States of America
| | - Robert Meyer
- Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, United States of America
| | - Nicole Maher
- The Nature Conservancy in New York, Uplands Farm Sanctuary, Cold Spring Harbor, New York, United States of America
| | - Cathleen Wigand
- Atlantic Coastal Environmental Sciences Division, United States Environmental Protection Agency, Narragansett, Rhode Island, United States of America
| | - Andrew B. Gray
- Department of Environmental Sciences, University of California, Riverside, California, United States of America
| |
Collapse
|
21
|
Liu S, Trevathan-Tackett SM, Jiang Z, Cui L, Wu Y, Zhang X, Li J, Luo H, Huang X. Nutrient loading decreases blue carbon by mediating fungi activities within seagrass meadows. ENVIRONMENTAL RESEARCH 2022; 212:113280. [PMID: 35430277 DOI: 10.1016/j.envres.2022.113280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Coastal pollution, including nutrient loading, can negatively impact seagrass health and cover and may consequently alter soil organic carbon (SOC) accumulation and preservation. Key to understanding how eutrophication impacts SOC cycling in seagrass ecosystems is how nutrient loading changes the sources of carbon being deposited and how these changes in resources, both nutrients and carbon availability, influence soil microbiota community and activity. Currently, the direction and magnitude of nutrient loading impacts on seagrass SOC dynamics are poorly understood at a meadow scale, limiting our ability to reveal the driving mechanisms of SOC remineralisation. The purpose of this study was to assess the response of surface SOC and soil microbiomes to nutrient loading within tropical seagrass meadows. To achieve this, we quantified both total SOC and recalcitrant soil organic carbon (RSOC) concentrations and sources, in addition to the composition of bacterial and fungal communities and soil extracellular enzyme activities. We found that nutrient loading elevated SOC and RSOC content, mainly facilitated by enhanced algal growth. There was no nutrient effect on the soil prokaryotic communities, however, saprotrophic fungi groups (i.e. Trapeliales, Sordaridales, Saccharomycetales and Polyporales) and fungal activities were elevated under high nutrient conditions, including extracellular enzyme activities linked to seagrass-based cellulose and lignin decomposition. This relative increase in RSOC transformation may decrease the relative contribution of seagrass carbon to RSOC pools. Additionally, significantly different fungal communities were observed between adjacent T. hemprichii and E. acoroides areas, which coincided with elevated RSOC-decomposing enzyme activity in T. hemprichii meadows, even though the mixed seagrass meadow received allochthonous SOC and RSOC from the same sources. These results suggest that nutrient loading stimulated fungal activity and community shifts specific to the local seagrass species, thereby causing fine-scale (within-meadow) variability in SOC cycling in response to nutrient loading. This study provides evidence that fungal composition and activity, mediated by human activities (e.g. nutrient loading), can be an important influence on seagrass blue carbon accumulation and remineralisation.
Collapse
Affiliation(s)
- Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Stacey M Trevathan-Tackett
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, Victoria, 3125, Australia
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijun Cui
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jinlong Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxue Luo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572100, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
22
|
Soil microbial metabolism on carbon and nitrogen transformation links the crop-residue contribution to soil organic carbon. NPJ Biofilms Microbiomes 2022; 8:14. [PMID: 35365687 PMCID: PMC8975862 DOI: 10.1038/s41522-022-00277-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/24/2022] [Indexed: 11/20/2022] Open
Abstract
The beneficial effect of crop residue amendment on soil organic carbon (SOC) stock and stability depends on the functional response of soil microbial communities. Here we synchronized microbial metagenomic analysis, nuclear magnetic resonance and plant-15N labeling technologies to gain understanding of how microbial metabolic processes affect SOC accumulation in responses to differences in N supply from residues. Residue amendment brought increases in the assemblage of genes involved in C-degradation profiles from labile to recalcitrant C compounds as well as N mineralization. The N mineralization genes were correlated with the C and N accumulation in the particulate and mineral-associated C pools, and plant-derived aliphatic forms of SOC. Thus, the combined C and N metabolic potential of the microbial community transforms residue into persistent organic compounds, thereby increasing C and N sequestration in stable SOC pools. This study emphasizes potential microbially mediated mechanisms by which residue N affects C sequestration in soils.
Collapse
|
23
|
Ferreira TO, Queiroz HM, Nóbrega GN, de Souza Júnior VS, Barcellos D, Ferreira AD, Otero XL. Litho-climatic characteristics and its control over mangrove soil geochemistry: A macro-scale approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152152. [PMID: 34919924 DOI: 10.1016/j.scitotenv.2021.152152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Brazil hosts an extensive coastal area, marked by a great diversity of geoenvironments. The present study evaluated the role of geoclimatic factors in the geochemistry of mangrove soils by using wet extractions and several physical and chemical parameters. Soil samples were collected in 11 mangrove forests from NE (n = 94) and SE Brazil (n = 230). Our results show an important effect of the surrounding geology and climate on the geochemistry of the mangrove soils. NE mangroves are dominated by suboxic soils (mean: Eh of +150 ± 174 mV and pH 7.1 ± 0.5, respectively) while anoxic conditions prevail in the SE mangrove soils (mean: Eh -46 ± 251 mV and pH 6.5 ± 0.5). In the NE region, a period of several months without rainfall and high temperatures leads to soil suboxic conditions. Conversely, at the SE coast, the surrounding mountain range contributes to well-distributed rain favoring anoxic conditions. The contrasting geochemical environment caused differences in the geochemistry of elements such as C, Fe, and S. Significantly higher Fe (193 ± 24 μmol g-1) and organic carbon contents (6.9 ± 7.1%) were recorded in the SE coast. The higher organic carbon contents are possibly related to Fe organo-mineral associations. These differences are ultimately associated with the contrasting geological surroundings (crystalline massifs at the SE and the iron poor sedimentary formations at the NE). The higher contents of reactive Fe and organic carbon also triggered more intense pyritization in the SE mangroves (pyritic Fe: 93 ± 63 μmol g-1). Our results demonstrate that climate and geological surroundings create identifiable patterns at a regional level and, thus, studies should take these factors into account on future global modelling approaches.
Collapse
Affiliation(s)
- Tiago Osório Ferreira
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, Piracicaba, São Paulo 13418-900, Brazil.
| | - Hermano Melo Queiroz
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Gabriel Nuto Nóbrega
- Graduate Program in Earth Sciences (Geochemistry), Department of Geochemistry, Federal Fluminense University, Niterói, RJ 24020-140, Brazil
| | - Valdomiro S de Souza Júnior
- Universidade Federal Rural de Pernambuco, Departamento de Agronomia, Av. Dom Manoel de Medeiros, s/n, Recife, PE 52171-900, Brazil
| | - Diego Barcellos
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, Piracicaba, São Paulo 13418-900, Brazil; Department of Environmental Science, Federal University of São Paulo (UNIFESP), Rua São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - Amanda Duim Ferreira
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Xosé L Otero
- CRETUS Institute, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| |
Collapse
|
24
|
Wang Q, Kang Q, Zhao B, Li H, Lu H, Liu J, Yan C. Effect of land-use and land-cover change on mangrove soil carbon fraction and metal pollution risk in Zhangjiang Estuary, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150973. [PMID: 34699828 DOI: 10.1016/j.scitotenv.2021.150973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Land-use and land-cover change (LULCC) is the main cause of mangrove deforestation and degradation. However, the effect of LULCC on mangrove soil organic carbon (SOC) fractions and metal pollution risks, and the difference between the effects of those two soil evolutions are largely unknown. Here, we collected soil samples from natural systems (mangroves and mudflat), land-cover changes (Spartina alterniflora invasion), and anthropogenic land-use changes (cropland and culture pond) in Zhangjiang Estuary. We determined the soil aggregate fractions (macro-aggregate, micro-aggregate, and silt-clay fraction) and the associated carbon, and heavy metal dynamics. Our findings suggested that LULCC did not remarkably affect SOC contents, but changed the soil aggregate structures. LULCC significantly increased aggregate-associated carbon fractions, especially macro-aggregate carbon fraction. The large proportion of silt-clay fraction in natural systems was corresponding to a high percentage of mineral organic carbon, indicating that LULCC decreases the mangrove SOC stability. Land-cover change promoted the accumulation of SOC, nitrogen, and heavy metals compared with uninvaded mudflat. The heavy metal contents in mangrove soil were highest among all studied soils, expect for Cd, which suggested that mangrove soil had high metal accumulation. However, land-use changes could stimulate the mobility and dynamics of metals enriched in mangrove soils; these changes, especially in cropland, will also cause a large amount of exogenous Cd being exported into the adjacent aquatic environment. Thus, mangrove shifts metal pollutant from sink to source when affected by land-use changes. The contamination index demonstrated that heavy metals have posed ecological risks, especially for Cd in cropland. Compared with mangrove, land-use change was dominated by single-element pollution, but land-cover change showed low multiple-element complex pollution. These findings elucidate the effects of LULCC on mangrove SOC fraction and metal pollution risk, and are of great significance for designing the long-term management and conservation policies for mangrove managers.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Qian Kang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Bo Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Hanyi Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
25
|
Ren Q, Yuan J, Wang J, Liu X, Ma S, Zhou L, Miao L, Zhang J. Water Level Has Higher Influence on Soil Organic Carbon and Microbial Community in Poyang Lake Wetland Than Vegetation Type. Microorganisms 2022; 10:microorganisms10010131. [PMID: 35056580 PMCID: PMC8779464 DOI: 10.3390/microorganisms10010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Although microorganisms play a key role in the carbon cycle of the Poyang Lake wetland, the relationship between soil microbial community structure and organic carbon characteristics is unknown. Herein, high-throughput sequencing technology was used to explore the effects of water level (low and high levels above the water table) and vegetation types (Persicaria hydropiper and Triarrhena lutarioriparia) on microbial community characteristics in the Poyang Lake wetland, and the relationships between soil microbial and organic carbon characteristics were revealed. The results showed that water level had a significant effect on organic carbon characteristics, and that soil total nitrogen, organic carbon, recombinant organic carbon, particle organic carbon, and microbial biomass carbon were higher at low levels above the water table. A positive correlation was noted between soil water content and organic carbon characteristics. Water level and vegetation type significantly affected soil bacterial and fungal diversity, with water level exerting a higher effect than vegetation type. The impacts of water level and vegetation type were higher on fungi than on bacteria. The bacterial diversity and evenness were significantly higher at high levels above the water table, whereas an opposite trend was noted among fungi. The bacterial and fungal richness in T. lutarioriparia community soil was higher than that in P. hydropiper community soil. Although both water level and vegetation type had significant effects on bacterial and fungal community structures, the water level had a higher impact than vegetation type. The bacterial and fungal community changes were the opposite at different water levels but remained the same in different vegetation soils. The organic carbon characteristics of wetland soil were negatively correlated with bacterial diversity but positively correlated with fungal diversity. Soil water content, soluble organic carbon, C/N, and microbial biomass carbon were the key soil factors affecting the wetland microbial community. Acidobacteria, Alphaproteobacteria, Verrucomicrobia, Gammaproteobacteria, and Eurotiomycetes were the key microbiota affecting the soil carbon cycle in the Poyang Lake wetland. Thus, water and carbon sources were the limiting factors for bacteria and fungi in wetlands with low soil water content (30%). Hence, the results provided a theoretical basis for understanding the microbial-driven mechanism of the wetland carbon cycle.
Collapse
Affiliation(s)
- Qiong Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing 210037, China; (Q.R.); (X.L.); (S.M.)
- Wetland Ecological Resources Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China; (J.Y.); (L.Z.); (L.M.)
| | - Jihong Yuan
- Wetland Ecological Resources Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China; (J.Y.); (L.Z.); (L.M.)
| | - Jinping Wang
- Jiangxi Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China;
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing 210037, China; (Q.R.); (X.L.); (S.M.)
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing 210037, China; (Q.R.); (X.L.); (S.M.)
| | - Liyin Zhou
- Wetland Ecological Resources Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China; (J.Y.); (L.Z.); (L.M.)
| | - Lujun Miao
- Wetland Ecological Resources Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China; (J.Y.); (L.Z.); (L.M.)
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing 210037, China; (Q.R.); (X.L.); (S.M.)
- Correspondence: ; Tel.: +86-025-8542-7202
| |
Collapse
|
26
|
Lewis DB, Jimenez KL, Abd-Elrahman A, Andreu MG, Landry SM, Northrop RJ, Campbell C, Flower H, Rains MC, Richards CL. Carbon and nitrogen pools and mobile fractions in surface soils across a mangrove saltmarsh ecotone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149328. [PMID: 34375269 DOI: 10.1016/j.scitotenv.2021.149328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
In the subtropics, climate change is pushing woody mangrove forests into herbaceous saltmarshes, altering soil carbon (C) and nitrogen (N) pools, with implications for coastal wetland productivity and C and N exports. We quantified total C and N pools, and mobile fractions including extractable mineral N, extractable organic C and N, and active (aerobically mineralizable) C and N, in surface soils (top 7.6 cm) of adjacent mangrove (primarily Avicennia germinans) and saltmarsh (Juncus roemerianus) vegetation zones in tidal wetlands of west-central Florida (USA). We tested whether surface-soil accumulations of C, N, and their potentially mobile fractions are greater in mangrove than in saltmarsh owing to greater accumulations in the mangrove zone of soil organic matter (SOM) and fine mineral particles (C- and N-retaining soil constituents). Extractable organic fractions were 39-45% more concentrated in mangrove than in saltmarsh surface soil, and they scaled steeply and positively with SOM and fine mineral particle (silt + clay) concentrations, which themselves were likewise greater in mangrove soil. Elevation may drive this linkage. Mangrove locations were generally at lower elevations, which tended to have greater fine particle content in the surface soil. Active C and extractable mineral N were marginally (p < 0.1) greater in mangrove soil, while active N, total N, and total C showed no statistical differences between zones. Extractable organic C and N fractions composed greater shares of total C and N pools in mangrove than in saltmarsh surface soils, which is meaningful for ecosystem function, as persistent leaching of this fraction can perpetuate nutrient limitation. The active (mineralizable) C and N fractions we observed constituted a relatively small component of total C and N pools, suggesting that mangrove surface soils may export less C and N than would be expected from their large total C and N pools.
Collapse
Affiliation(s)
- David Bruce Lewis
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave., SCA 110, Tampa, FL 33620, USA.
| | - Kristine L Jimenez
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave., SCA 110, Tampa, FL 33620, USA
| | - Amr Abd-Elrahman
- University of Florida, School of Forest, Fisheries, and Geomatic Sciences, Gulf Coast Research and Education Center, 1200 North Park Road, Plant City, FL 33563, USA.
| | - Michael G Andreu
- University of Florida, School of Forest, Fisheries, and Geomatic Sciences, 351 Newins-Ziegler Hall, PO Box 110410, Gainesville, FL 32611, USA.
| | - Shawn M Landry
- University of South Florida, School of Geosciences, 4202 E. Fowler Ave, NES 107, Tampa, FL 33620, USA.
| | - Robert J Northrop
- University of Florida, Institute of Food and Agricultural Sciences Extension-Hillsborough County, 5339 South County Road 579, Seffner, FL 33584, USA.
| | - Cassandra Campbell
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave., SCA 110, Tampa, FL 33620, USA.
| | - Hilary Flower
- Eckerd College, Department of Environmental Studies, 4200 54th Avenue South, Saint Petersburg, FL 33711, USA.
| | - Mark C Rains
- University of South Florida, School of Geosciences, 4202 E. Fowler Ave, NES 107, Tampa, FL 33620, USA.
| | - Christina L Richards
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Ave., SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
27
|
Soil Organic Matter Responses to Mangrove Restoration: A Replanting Experience in Northeast Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18178981. [PMID: 34501570 PMCID: PMC8431229 DOI: 10.3390/ijerph18178981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
Mangroves are among the most relevant ecosystems in providing ecosystem services because of their capacity to act as sinks for atmospheric carbon. Thus, restoring mangroves is a strategic pathway for mitigating global climate change. Therefore, this study aimed to examine the organic matter dynamics in mangrove soils during restoration processes. Four mangrove soils under different developmental stages along the northeastern Brazilian coast were studied, including a degraded mangrove (DM); recovering mangroves after 3 years (3Y) and 7 years (7Y) of planting; and a mature mangrove (MM). The soil total organic carbon (CT) and soil carbon stocks (SCSs) were determined for each area. Additionally, a demineralization procedure was conducted to assess the most complex humidified and recalcitrant fractions of soil organic matter and the fraction participating in organomineral interactions. The particle size distribution was also analyzed. Our results revealed significant differences in the SCS and CT values between the DM, 3Y and 7Y, and the MM, for which there was a tendency to increase in carbon content with increasing vegetative development. However, based on the metrics used to evaluate organic matter interactions with inorganic fractions, such as low rates of carbon enrichment, C recovery, and low C content after hydrofluoric acid (HF) treatment being similar for the DM and the 3Y and 7Y—this indicated that high carbon losses were coinciding with mineral dissolution. These results indicate that the organic carbon dynamics in degraded and newly planted sites depend more on organomineral interactions, both to maintain their previous SCS and increase it, than mature mangroves. Conversely, the MM appeared to have most of the soil organic carbon, as the stabilized organic matter had a complex structure with a high molecular weight and contributed less in the organomineral interactions to the SCS. These results demonstrate the role of initial mangrove vegetation development in trapping fine mineral particles and favoring organomineral interactions. These findings will help elucidate organic accumulation in different replanted mangrove restoration scenarios.
Collapse
|
28
|
Chen W, Wen D. Archaeal and bacterial communities assembly and co-occurrence networks in subtropical mangrove sediments under Spartina alterniflora invasion. ENVIRONMENTAL MICROBIOME 2021; 16:10. [PMID: 33941277 PMCID: PMC8091715 DOI: 10.1186/s40793-021-00377-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/02/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Mangrove ecosystems are vulnerable due to the exotic Spartina alterniflora (S. alterniflora) invasion in China. However, little is known about mangrove sediment microbial community assembly processes and interactions under S. alterniflora invasion. Here, we investigated the assembly processes and co-occurrence networks of the archaeal and bacterial communities under S. alterniflora invasion along the coastlines of Fujian province, southeast China. RESULTS Assembly of overall archaeal and bacterial communities was driven predominantly by stochastic processes, and the relative role of stochasticity was stronger for bacteria than archaea. Co-occurrence network analyses showed that the network structure of bacteria was more complex than that of the archaea. The keystone taxa often had low relative abundances (conditionally rare taxa), suggesting low abundance taxa may significantly contribute to network stability. Moreover, S. alterniflora invasion increased bacterial and archaeal drift process (part of stochastic processes), and improved archaeal network complexity and stability, but decreased the network complexity and stability of bacteria. This could be attributed to S. alterniflora invasion influenced microbial communities diversity and dispersal ability, as well as soil environmental conditions. CONCLUSIONS This study fills a gap in the community assembly and co-occurrence patterns of both archaea and bacteria in mangrove ecosystem under S. alterniflora invasion. Thereby provides new insights of the plant invasion on mangrove microbial biogeographic distribution and co-occurrence network patterns.
Collapse
Affiliation(s)
- Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
29
|
Xia S, Wang W, Song Z, Kuzyakov Y, Guo L, Van Zwieten L, Li Q, Hartley IP, Yang Y, Wang Y, Andrew Quine T, Liu C, Wang H. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. GLOBAL CHANGE BIOLOGY 2021; 27:1627-1644. [PMID: 33432697 DOI: 10.1111/gcb.15516] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Coastal wetlands are among the most productive ecosystems and store large amounts of organic carbon (C)-the so termed "blue carbon." However, wetlands in the tropics and subtropics have been invaded by smooth cordgrass (Spartina alterniflora) affecting storage of blue C. To understand how S. alterniflora affects soil organic carbon (SOC) stocks, sources, stability, and their spatial distribution, we sampled soils along a 2500 km coastal transect encompassing tropical to subtropical climate zones. This included 216 samplings within three coastal wetland types: a marsh (Phragmites australis) and two mangroves (Kandelia candel and Avicennia marina). Using δ13 C, C:nitrogen (N) ratios, and lignin biomarker composition, we traced changes in the sources, stability, and storage of SOC in response to S. alterniflora invasion. The contribution of S. alterniflora-derived C up to 40 cm accounts for 5.6%, 23%, and 12% in the P. australis, K. candel, and A. marina communities, respectively, with a corresponding change in SOC storage of +3.5, -14, and -3.9 t C ha-1 . SOC storage did not follow the trend in aboveground biomass from the native to invasive species, or with vegetation types and invasion duration (7-15 years). SOC storage decreased with increasing mean annual precipitation (1000-1900 mm) and temperature (15.3-23.4℃). Edaphic variables in P. australis marshes remained stable after S. alterniflora invasion, and hence, their effects on SOC content were absent. In mangrove wetlands, however, electrical conductivity, total N and phosphorus, pH, and active silicon were the main factors controlling SOC stocks. Mangrove wetlands were most strongly impacted by S. alterniflora invasion and efforts are needed to focus on restoring native vegetation. By understanding the mechanisms and consequences of invasion by S. alterniflora, changes in blue C sequestration can be predicted to optimize storage can be developed.
Collapse
Affiliation(s)
- Shaopan Xia
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Yakov Kuzyakov
- Tianjin Key Laboratory of Water Resources and Environment, & School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
- Department of Soil Science of Temperate Ecosystems, University of Goettingen, Goettingen, Germany
- Department of Agricultural Soil Science, University of Goettingen, Goettingen, Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Qiang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Iain P Hartley
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yidong Wang
- Tianjin Key Laboratory of Water Resources and Environment, & School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | | | - Congqiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Chuvochina M, Adame MF, Guyot A, Lovelock C, Lockington D, Gamboa-Cutz JN, Dennis PG. Drivers of bacterial diversity along a natural transect from freshwater to saline subtropical wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143455. [PMID: 33243518 DOI: 10.1016/j.scitotenv.2020.143455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Tropical coastal wetlands provide a range of ecosystem services that are closely associated with microbially-driven biogeochemical processes. Knowledge of the main players and their drivers in those processes can have huge implications on the carbon and nutrient fluxes in wetland soils, and thus on the ecosystems services we derive from them. Here, we collected surface (0-5 cm) and subsurface (20-25 cm) soil samples along a transect from forested freshwater wetlands, to saltmarsh, and mangroves. For each sample, we measured a range of abiotic properties and characterised the diversity of bacterial communities using 16S rRNA gene amplicon sequencing. The alpha diversity of bacterial communities in mangroves exceeded that of freshwater wetlands, which were dominated by members of the Acidobacteria, Alphaproteobacteria and Verrucomicrobia, and associated with high soil pore-water concentrations of soluble reactive phosphorous, and nitrogen as nitrate and nitrite (N-NOX-). Bacterial communities in the saltmarsh were strongly stratified by depth and included members of the Actinobacteria, Chloroflexi, and Deltaproteobacteria. Finally, the mangroves were dominated by representatives of Deltaproteobacteria, mainly Desulfobacteraceae and Synthrophobacteraceae, and were associated with high salinity and soil pore-water concentrations of ammonium (N-NH4+). These communities suggest methane consumption in freshwater wetlands, and sulfate reduction in deep soils of marshes and in mangroves. Our work contributes to the important goal of describing reference conditions for specific wetlands in terms of both bacterial communities and their drivers. This information may be used to monitor change and assess wetland health and function.
Collapse
Affiliation(s)
- Maria Chuvochina
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia; National Centre for Groundwater Research and Training, Flinders University, Bedford Park 5042, Australia
| | | | - Adrien Guyot
- National Centre for Groundwater Research and Training, Flinders University, Bedford Park 5042, Australia; School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Catherine Lovelock
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Lockington
- National Centre for Groundwater Research and Training, Flinders University, Bedford Park 5042, Australia; School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
31
|
Wang L, Yuan J, Wang Y, Butterly CR, Tong D, Zhou B, Li X, Zhang H. Effects of Exotic Spartina alterniflora Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands. ACS OMEGA 2021; 6:5730-5738. [PMID: 33681612 PMCID: PMC7931372 DOI: 10.1021/acsomega.0c06161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Soil microorganisms can be altered by plant invasion into wetland ecosystems and comprise an important linkage between phosphorus (P) availability and soil carbon (C) chemistry; however, the intrinsic mechanisms of P and C transformation associated with microbial community and function are poorly understood in coastal wetland. In this study, we used a sequential fractionation method and 13C nuclear magnetic resonance (NMR) spectroscopy to capture the changes in soil P pools and C chemical composition with bare flats (BF), native Phragmites australis(PA), and invasive Spartina alterniflora(SA), respectively. The responses of the soil microbial community using phospholipid fatty acid (PLFA) profiling and function indicated by nine enzyme activities associated with C, nitrogen (N), and P cycles were also investigated. Compared to PA and BF, SA invasion significantly (P < 0.05) changed P pools and mainly increased the available P by 17.5 and 37.0%, respectively. The presence of the plants (SA and PA) significantly (P < 0.05) altered the soil C chemical composition mainly by affecting the aliphatic functional groups, resulting in a lower alkyl C/O-alkyl C ratio value. Compared to BF and SA, PA significantly (P < 0.05) increased arbuscular mycorrhizal fungi (AMF) abundance. Soil enzyme activity, especially for the P and C cycle enzymes, was also affected by plant species with the highest geometric mean enzyme and hydrolase activity for the PA zone. We also found that soil C compositions and P pools were associated with microbial community structure and enzyme activity, respectively. However, little interaction between C and P was found on either soil microbial composition or soil enzyme activity variation. Further, microbial community composition was tightly correlated with the soil P compared to soil C chemistry, while enzyme activity showed more response with soil C chemistry compared to soil P pool changes.
Collapse
Affiliation(s)
- Lei Wang
- Ministry
of Ecology and Environment, Nanjing Institute
of Environmental Sciences, Nanjing 210042, China
| | - Jiahui Yuan
- State
Key Laboratory of Soil and Sustainable Agriculture, Changshu National
Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of the Chinese Academy of Sciences, Beijing 10049, China
| | - Yu Wang
- State
Key Laboratory of Soil and Sustainable Agriculture, Changshu National
Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Clayton R. Butterly
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| | - Deli Tong
- College
of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Bo Zhou
- Ministry
of Ecology and Environment, Nanjing Institute
of Environmental Sciences, Nanjing 210042, China
| | - Xiuzhen Li
- State Key
Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huabin Zhang
- Jiangsu
Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial
Key Laboratory of Coastal Wetland Bioresources and Environmental Protection,
Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224007, China
| |
Collapse
|
32
|
Chen S, Chen B, Chen G, Ji J, Yu W, Liao J, Chen G. Higher soil organic carbon sequestration potential at a rehabilitated mangrove comprised of Aegiceras corniculatum compared to Kandelia obovata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142279. [PMID: 33207510 DOI: 10.1016/j.scitotenv.2020.142279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The present study compared the ecosystem organic carbon (OC) stocks and soil OC sources between two 12-year-old monospecific mangrove sites comprised of different species (Kandelia obovata in tree form and Aegiceras corniculatum in shrub form). We tested whether the carbon sequestration performance following rehabilitation varied with plantation of species in different forms and whether mangrove vegetation sequestrate OC more rapidly than soil pool. The results showed that mangrove rehabilitation increased the ecosystem OC stock relative to that of a non-vegetated bare flat. The accumulation of soil carbon was accompanied by increased soil total nitrogen contents and decreased δ13C values of soil OC, indicating that the increases in OC and TN contents were a function of accumulation of 13C-depleted mangrove materials in the soil. The sequestrated OC over the 12 years was considerably less in soil than in biomass at each mangrove site, suggesting that mangrove vegetation contributes more rapidly than the soil to ecosystem OC sequestration following rehabilitation before the vegetation has reached maturity. Compilation of the carbon stocks from worldwide rehabilitated mangrove forests with various ages further supports this finding. The K. obovata site had an apparently higher biomass OC stock but less OC in the soil than those at the A. corniculatum site. There was a higher standing leaf litter stock on the forest floor and more mangrove materials incorporated into the top 15 cm soil at the A. corniculatum site. These results suggested that the two rehabilitated mangrove sites had different development trajectories of both biomass and soil OC sequestration. Moreover, the performance of ecosystem carbon sequestration was related to plantation of different mangrove species. These carbon sequestration feature of rehabilitated mangrove forests therefore deserve attention in future rehabilitation programs to promote carbon sequestration performance.
Collapse
Affiliation(s)
- Shunyang Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, Fujian, China
| | - Bin Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, Fujian, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, Fujian, China.
| | - Jianfeng Ji
- Quanzhou City Forestry Bureau, Quanzhou 362011, Fujian, China
| | - Weiwei Yu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, Fujian, China
| | - Jianji Liao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Ganlin Chen
- Fujian Institute of Oceanography, Xiamen 361004, Fujian, China
| |
Collapse
|
33
|
Trimethylornithine Membrane Lipids: Discovered in Planctomycetes and Identified in Diverse Environments. Metabolites 2021; 11:metabo11010049. [PMID: 33445571 PMCID: PMC7828035 DOI: 10.3390/metabo11010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
Intact polar membrane lipids (IPLs) are the building blocks of all cell membranes. There is a wide range of phosphorus-free IPL structures, including amino acid containing IPLs, that can be taxonomically specific. Trimethylornithine membrane lipids (TMOs) were discovered in northern wetland Planctomycete species that were isolated and described in the last decade. The trimethylated terminal nitrogen moiety of the ornithine amino acid in the TMO structure gives the lipid a charged polar head group, similar to certain phospholipids. Since their discovery, TMOs have been identified in various other recently described northern latitude Planctomycete species, and in diverse environments including tundra soil, a boreal eutrophic lake, meso-oligotrophic lakes, and hot springs. The majority of environments or enrichment cultures in which TMOs have been observed include predominately heterotrophic microbial communities involved in the degradation of recalcitrant material and/or low oxygen methanogenic conditions at primarily northern latitudes. Other ecosystems occupied with microbial communities that possess similar metabolic pathways, such as tropical peatlands or coastal salt marshes, may include TMO producing Planctomycetes as well, further allowing these lipids to potentially be used to understand microbial community responses to environmental change in a wide range of systems. The occurrence of TMOs in hot springs indicates that these unique lipids could have broad environmental distribution with different specialized functions. Opportunities also exist to investigate the application of TMOs in microbiome studies, including forensic necrobiomes. Further environmental and microbiome lipidomics research involving TMOs will help reveal the evolution, functions, and applications of these unique membrane lipids.
Collapse
|
34
|
Cao M, Cui L, Sun H, Zhang X, Zheng X, Jiang J. Effects of Spartina alterniflora Invasion on Soil Microbial Community Structure and Ecological Functions. Microorganisms 2021; 9:138. [PMID: 33435501 PMCID: PMC7827921 DOI: 10.3390/microorganisms9010138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
It has been reported that the invasion of Spartina alterniflora changed the soil microbial community in the mangrove ecosystem in China, especially the bacterial community, although the response of soil fungal communities and soil microbial ecological functions to the invasion of Spartina alterniflora remains unclear. In this study, we selected three different communities (i.e., Spartina alterniflora community (SC), Spartina alterniflora-mangrove mixed community (TC), and mangrove community (MC)) in the Zhangjiangkou Mangrove Nature Reserve in China. High-throughput sequencing technology was used to analyze the impact of Spartina alterniflora invasion on mangrove soil microbial communities. Our results indicate that the invasion of Spartina alterniflora does not cause significant changes in microbial diversity, but it can alter the community structure of soil bacteria. The results of the LEfSe (LDA Effect Size) analysis show that the relative abundance of some bacterial taxa is not significantly different between the MC and SC communities, but different changes have occurred during the invasion process (i.e., TC community). Different from the results of the bacterial community, the invasion of Spartina alterniflora only cause a significant increase in few fungal taxa during the invasion process, and these taxa are at some lower levels (such as family, genus, and species) and classified into the phylum Ascomycota. Although the invasion of Spartina alterniflora changes the taxa with certain ecological functions, it may not change the potential ecological functions of soil microorganisms (i.e., the potential metabolic pathways of bacteria, nutritional patterns, and fungal associations). In general, the invasion of Spartina alterniflora changes the community structure of soil microorganisms, but it may not affect the potential ecological functions of soil microorganisms.
Collapse
Affiliation(s)
- Minmin Cao
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China; (M.C.); (L.C.); (X.Z.)
| | - Lina Cui
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China; (M.C.); (L.C.); (X.Z.)
| | - Huimin Sun
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China;
| | | | - Xiang Zheng
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China; (M.C.); (L.C.); (X.Z.)
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China; (M.C.); (L.C.); (X.Z.)
| |
Collapse
|
35
|
Soil fungal and bacterial communities in southern boreal forests of the Greater Khingan Mountains and their relationship with soil properties. Sci Rep 2020; 10:22025. [PMID: 33328590 PMCID: PMC7745012 DOI: 10.1038/s41598-020-79206-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Little is known about the relationship between soil microbial communities and soil properties in southern boreal forests. To further our knowledge about that relationship, we compared the soil samples in southern boreal forests of the Greater Khingan Mountains—the southernmost boreal forest biome in the world. The forests can be divided into boardleaf forests dominated by birch (Betula platyphylla) or aspen (Populus davidiana) and coniferous forests dominated by larch (Larix gmelinii) or pine (Pinus sylvestris var. mongolica). Results suggested different soil microbial communities and soil properties between these southern boreal forests. Soil protease activity strongly associated with soil fungal communities in broadleaf and coniferous forests (p < 0.05), but not with soil bacterial communities (p > 0.05). Soil ammonium nitrogen and total phosphorus contents strongly associated with soil fungal and bacterial communities in broadleaf forests (p < 0.05), but not in coniferous forests (p > 0.05). Soil potassium content demonstrated strong correlations with both soil fungal and bacterial communities in broadleaf and coniferous forests (p < 0.05). These results provide evidence for different soil communities and soil properties in southern boreal forest, and further elucidate the explicit correlation between soil microbial communities and soil properties in southern boreal forests.
Collapse
|
36
|
Wang Q, Nielsen UG. Applications of solid-state NMR spectroscopy in environmental science. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 110:101698. [PMID: 33130521 DOI: 10.1016/j.ssnmr.2020.101698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Environmental science is an interdisciplinary field, which integrates chemical, physical, and biological sciences to study environmental problems and human impact on the environment. This article highlights the use of solid-state NMR spectroscopy (SSNMR) in studies of environmental processes and remediation with examples from both laboratory studies and samples collected in the field. The contemporary topics presented include soil chemistry, environmental remediation (e.g., heavy metals and radionuclides removal, carbon dioxide mineralization), and phosphorus recovery. SSNMR is a powerful technique, which provides atomic-level information about speciation in complex environmental samples as well as the interactions between pollutants and minerals/organic matter on different environmental interfaces. The challenges in the application of SSNMR in environmental science (e.g., measurement of paramagnetic nuclei and low-gamma nuclei) are also discussed, and perspectives are provided for the future research efforts.
Collapse
Affiliation(s)
- Qian Wang
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
37
|
Tian Y, Yan C, Wang Q, Ma W, Yang D, Liu J, Lu H. Glomalin-related soil protein enriched in δ 13C and δ 15N excels at storing blue carbon in mangrove wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138327. [PMID: 32442764 DOI: 10.1016/j.scitotenv.2020.138327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Glomalin-related soil protein (GRSP) derived from arbuscular mycorrhizal fungi can be transported from land to sea and captured in mangrove wetlands, thereby contributing to soil C and N pools. However, the stable isotope signatures of GRSP and the key influencing factors that affect its isotope values in coastal wetlands remain unknown. In this study, the results showed that total-GRSP (T-GRSP) was a significant contributor of C and N content to mangrove soil. We first compared stable isotope (δ13C and δ15N) values and C/N ratios of GRSP with those of other blue carbon sources in a typical mangrove wetland. The isotope fingerprints of T-GRSP, mangrove soils, mangrove plants, and tidal waters were identified. Unlike those of the conventional sources, the δ13C and δ15N values of T-GRSP were -25.04‰ to -22.83‰ and 3.22‰ to 7.24‰, respectively, and the mean C/N ratio was 12.95 in the mangrove cover sites. These findings indicated that T-GRSP is a novel blue carbon source mainly originating from terrestrial ecosystems. Moreover, the δ13C and δ15N values of T-GRSP in mangrove wetlands were affected by vegetation interception and soil properties. Redundancy analysis results indicated that pH, moisture, depth, and salinity were key factors influencing the T-GRSP isotope fingerprints in mangrove wetlands. Additionally, the simultaneous changes in T-GRSP content, isotope values, and C/N ratios among mangrove cover sites, a mudflat, and tidal waters suggested that this protein is a sensitive tracer between land and sea. Overall, the isotope signatures of GRSP captured by mangroves were identified for the first time, which will have important implications for the estimation of the blue carbon budget and identification of the blue carbon sources in global coastal regions.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Qiang Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Wei Ma
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Dan Yang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
38
|
|
39
|
Han L, Wan Z, Guo Y, Song C, Jin S, Zuo Y. Estimation of Soil Organic Carbon Storage in Palustrine Wetlands, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134646. [PMID: 32605219 PMCID: PMC7369724 DOI: 10.3390/ijerph17134646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
Wetlands regulate the balance of global organic carbon. Small changes in the carbon stocks of wetland ecosystem play a crucial role in the regional soil carbon cycle. However, an accurate estimation of carbon stocks is still be debated for China’s wetlands ecosystem due to the limitation of data collection and methodology. Here, we investigate the soil organic carbon (SOC) storage in a 1-m depth in China’s palustrine wetlands. A total of 1383 sample data were collected from palustrine wetlands in China. The data sources are divided into three parts, respectively, data collection from published literature, data from books, and actual measurement data of sample points. The results demonstrate that there is considerable SOC storage in China’s palustrine wetlands (9.945 Pg C), primarily abundant in the northeast, northwest arid and semi-arid as well as Qinghai-Tibet Plateau regions. The SOC density in per unit area soil was higher in the wetland area of northeast, southwest and Qinghai-Tibet plateau. Within China terrestrial scale, the temperature and precipitation differences caused by latitude were the main environmental factors affecting the organic carbon content. Furthermore, except for the southeast and south wetland region, SOC content decreased with depth.
Collapse
Affiliation(s)
- Lu Han
- College of Earth Sciences, Jilin University, Changchun 130061, China;
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (C.S.); (Y.Z.)
| | - Zhongmei Wan
- College of Earth Sciences, Jilin University, Changchun 130061, China;
- Correspondence: (Z.W.); (Y.G.)
| | - Yuedong Guo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (C.S.); (Y.Z.)
- Correspondence: (Z.W.); (Y.G.)
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (C.S.); (Y.Z.)
| | - Shaofei Jin
- Department of Geography, Ocean College, Minjiang University, Fuzhou 350108, China;
| | - Yunjiang Zuo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (C.S.); (Y.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Yin Y, Yan Z. Variations of soil bacterial diversity and metabolic function with tidal flat elevation gradient in an artificial mangrove wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137385. [PMID: 32092526 DOI: 10.1016/j.scitotenv.2020.137385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Understanding the sensitivity of soil bacteria to environmental fluctuations can enhance the management of microbial ecosystem services in artificial mangrove wetlands. In this study, the variation in bacterial diversity and metabolic functions in different compartments (bulk soil, rhizosphere soil, and rhizoplane) of the soil and mangrove plant along the tidal elevation gradient was studied in Xiatanwei (Xiamen China) mangrove wetland park, a Kandelia obovata-dominated artificial mangrove stand. With the increase of the tidal flat elevation, the soil pH, total organic matter, and soil moisture contents decreased significantly, while the soil electric conductivity and redox potential increased significantly. The bacterial diversity in the bulk soil and the rhizosphere soil both decreased with the elevation of tidal levels. The relative abundance of the dominant phyla in the bulk and rhizosphere soils decreased with the rise of the tidal flat level. A significant rhizosphere effect was observed in the roots of K. obovata that the rhizosphere soil had higher bacterial diversity and richness than that in the bulk soil nearby. The rhizosphere soil of K. obovata at the low-tidal flat was enriched with the genera Nitrospira and Planctomycetes, which are valuable for the mangrove ecosystem. The Chao1 estimator and Shannon index of the bacterial community in the rhizoplane of K. obovata were much lower than that in the rhizosphere and bulk soils. Results of Biolog-Eco assay show that the bacterial groups in low tidal flat bulk soil had the highest ability in utilizing the carbon sources, which was indicated by the high values of average well color development and the high McIntosh index, and the utilization ability of carbon source decreased with the increase of tidal flat levels. The variation of the soil humidity and Eh jointly shaped the diversity and metabolic function of soil bacterial communities along the tidal flat elevation gradient.
Collapse
Affiliation(s)
- Yichen Yin
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Zhongzheng Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.
| |
Collapse
|
41
|
Ji H, Han J, Xue J, Hatten JA, Wang M, Guo Y, Li P. Soil organic carbon pool and chemical composition under different types of land use in wetland: Implication for carbon sequestration in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136996. [PMID: 32059329 DOI: 10.1016/j.scitotenv.2020.136996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
This study was conducted to understand how different wetland vegetation-land use types influenced the storage and stability of soil organic carbon (SOC) in surface soils. We determined the concentration and chemical composition of SOC in both density (including light fraction organic carbon (LFOC) and heavy fraction organic carbon (HFOC)) and particle size fractions (including <2 μm, 2-63 μm, 63-200 μm and 200-2000 μm) in four wetland land use types covered with different vegetation: lake-sedge, reed, willow and poplar wetlands. Results showed that the concentrations and stock of SOC and LFOC in willow and poplar wetlands were significantly higher than those in lake-sedge and reed. However, a higher proportion of alkyl-C and a lower proportion of O-alkyl-C were observed in lake-sedge and reed wetlands than in willow and poplar, suggesting that accumulated C in willow and poplar wetlands was less stable than that in lake-sedge and reed. For all particle-size fractions except the silt (2-63 μm), the SOC concentrations were highest in willow and lowest in reed wetland surface soils, while their alkyl-C/O-alkyl-C (A/O-A) and hydrophobic-C/hydrophilic-C ratios progressively decreased from lake-sedge and reed wetland surface soils to poplar and willow surface soils. Moreover, the ratios of A/O-A and hydrophobic-C/hydrophilic-C in surface soils generally decreased with increasing concentrations of SOC in particle-size fractions, with these stability indexes being lowest in the largest particle-size fraction. These results indicate that the wetland vegetation-land use types that could incorporate more C into finer particle-size fractions had a greater potential for sequestering more stable C in such wetland ecosystems. Different wetland vegetation-land use types resulted in significant changes in the concentration and chemical structure of SOC, which could affect soil C sequestration and dynamics, C cycling in wetland ecosystems. Although both willow and poplar forests could increase SOC stock, the stability of SOC in willow wetland was higher. Therefore, on balance (stock and stability) the land use of wetland for willow forest could be a more promising way for enhancing soil C sequestration in wetlands.
Collapse
Affiliation(s)
- Huai Ji
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze 223100, China
| | - Jianming Xue
- New Zealand Forest Research Institute Ltd (Scion), Christchurch 8440, New Zealand
| | - Jeff A Hatten
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331, United States
| | - Minhuang Wang
- Chair of Silviculture, University of Freiburg, Tennenbacherstr. 4, Freiburg 79085, Germany
| | - Yanhui Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Pingping Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze 223100, China.
| |
Collapse
|
42
|
Sequential combustion separation of soil organic carbon fractions for AMS measurement of 14C and their application in fixation of carbon. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-019-06866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|