1
|
Jin Z, Wang J, Wang D, Qiu S, Yang J, Guo W, Ma Y, Hu X, Chen J. A novel pretreatment method for analysis the oxygen isotopic compositions of inorganic phosphorus pools in freshwater sediment. WATER RESEARCH 2024; 262:122123. [PMID: 39067271 DOI: 10.1016/j.watres.2024.122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Identifying the sources and cycling of phosphorus (P) is particularly important for formulating effective P management strategies in inland water. The oxygen isotopic compositions of phosphate (δ18OP) are recognized as a promising tool to solve this problem. However, the application of δ18OP in freshwater sediment is currently constrained by multiple difficulties. In this study, we presented a novel pretreatment method for δ18OP analysis of sediment inorganic P pools. Our results showed that the new method has advantages of simple operation, less time-consuming, and high P recovery rates. Specifically, we replaced the traditional Mg-induced co-precipitation (MAGIC) method by introducing Zr-Oxides gels with high selective adsorption function for phosphate. This made subsequent processing simpler and reduced the time consumption to ∼10 days, and the range of P recovery rates were from 88 % to 104 %. Furthermore, we emphasized the necessity of vacuum roasting following lyophilized Ag3PO4 to eliminate residual oxygen-containing impurities (e.g., NO3-, Ag2O, and organic matter). Additionally, evidences from microscopy and spectroscopy confirmed that this method ultimately yielded high-purity Ag3PO4 with the Ag:P molar ratios of 3.35:1. Importantly, combining direct synthesis Ag3PO4 between KH2PO4 and AgNO3 with the Ag3PO4 obtained by the method revealed no stark oxygen isotopic fractionation of phosphate during the pretreatment processes. The newly established δ18OP pretreatment methods here can also be extended to broader studies of the biogeochemical cycling of P in aquatic ecosystems, potentially advancing the understanding of the global P cycle.
Collapse
Affiliation(s)
- Zuxue Jin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang, 551499, PR China
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang, 551499, PR China.
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shuoru Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Jiaojiao Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wen Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yiming Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Xinping Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang, 551499, PR China.
| |
Collapse
|
2
|
Yuan H, Yuan Q, Guan T, Cai Y, Liu E, Li B, Wang Y. Biotic regulation of phoD-encoding gene bacteria on organic phosphorus mineralization in lacustrine sediments with distinct trophic levels. WATER RESEARCH 2024; 260:121980. [PMID: 38909425 DOI: 10.1016/j.watres.2024.121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Organic phosphorus (Po) mineralization hydrolyzed by alkaline phosphatase (APase) can replenish bioavailable P load in the sediment water ecosystem of lakes. However, the understanding about the interaction between P load and bacteria community encoding APase generation in the sediment are still limited. Different P pools in the sediments from Taihu Lake, China were measured using sequential extraction procedure. The APAase activity (APA) were obtained accompanying with enzymatic dynamical parameters Vmax and Km. The abundances and diversity of gene phoD-harboring bacterial communities were assessed using high throughput sequencing. The analysis results showed the decrease of potentially bioavailable P fractions including MgCl2-P and Fe-P along sampling gradient southwards together with active P concentrations in the water. Conversely, increasing APA and absolute abundance of phoD gene were found with the decreasing of P loads southwards. Positive correlation (p < 0.05) between absolute abundance and APA indicated that phoD-encoding bacteria manipulated the APA and Po mineralization. Negative correlation (p < 0.01) suggested that the APA was restrained by high P load and was promoted under low P condition. However, higher Vmax and Km values suggested that high mineralization potential of Po maintained the high concentrations of potentially bioavailable P even the APA was restricted. The abundance increase of predominant genus Cobetia (from 15.51 to 24.34 %) mirrored by the reduced Calothrix abundance (from 24.65 to 1036 %) was speculated to be responsible for the APA promotion under low P condition. Higher diversity indices in the high P scenario suggested that high P load stimulated the ecological diversity of gene phoD-encoding bacteria community. Generally, rare taxa such as Burkholderia having high connected degrees in bacterial communities together with abundant genera synergistically manipulated the phoD gene abundance and APase generation. Interaction between P fractions and bacteria encoding phoD gene determined the eutrophication status in the lacustrine ecosystem.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Qianhui Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tong Guan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Bin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
3
|
Zhang W, Tang Z, Yan Y, Sun C, He D, Li Y. New insight into identifying sediment phosphorus sources in multi-source polluted urban river: Effect of environmental-induced microbial community succession on stability of microbial source tracking results. ENVIRONMENTAL RESEARCH 2024; 247:118215. [PMID: 38253194 DOI: 10.1016/j.envres.2024.118215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Identifying sediment phosphorus sources, the key to control eutrophication, is hindered in multi-source polluted urban rivers by the lack of appropriate methods and data resolution. Community-based microbial source tracking (MST) offers new insight, but the bacterial communities could be affected by environmental fluctuations during the migration with sediments, which might induce instability of MST results. Therefore, the effects of environmental-induced community succession on the stability of MST were compared in this study. Liangxi River, a highly eutrophic urban river, was selected as the study area where sediment phosphorus sources are difficult to track because of multi-source pollution and complicated hydrodynamic conditions. Spearman correlation analysis (P < 0.05) was conducted to recognize a close relationship between sediment, bacterial communities and phosphorus, verifying the feasibility of MST for identify sediment phosphorus sources. Two distinct microbial community fingerprints were constructed based on whether excluded 113 vulnerable species, which were identified by analyzing the differences of microorganisms across a concentration gradient of exogenous phosphorus input in microbial environmental response experiment. Because of the lower unknown proportion and relative standard deviations, MST results were more stable and reliable when based on the fingerprints excluding species vulnerable to phosphorus. This study presents a novel insight on how to identify sediment phosphorus sources in multi-source polluted urban river, and would help to develop preferential control strategies for eutrophication management.
Collapse
Affiliation(s)
- Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zikang Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuting Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Chenyue Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Dan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
4
|
Hu Y, Chen M, Pu J, Chen S, Li Y, Zhang H. Enhancing phosphorus source apportionment in watersheds through species-specific analysis. WATER RESEARCH 2024; 253:121262. [PMID: 38367374 DOI: 10.1016/j.watres.2024.121262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Phosphorus (P) is a pivotal element responsible for triggering watershed eutrophication, and accurate source apportionment is a prerequisite for achieving the targeted prevention and control of P pollution. Current research predominantly emphasizes the allocation of total phosphorus (TP) loads from watershed pollution sources, with limited integration of source apportionment considering P species and their specific implications for eutrophication. This article conducts a retrospective analysis of the current state of research on watershed P source apportionment models, providing a comprehensive evaluation of three source apportionment methods, inventory analysis, diffusion models, and receptor models. Furthermore, a quantitative analysis of the impact of P species on watersheds is carried out, followed by the relationship between P species and the P source apportionment being critically clarified within watersheds. The study reveals that the impact of P on watershed eutrophication is highly dependent on P species, rather than absolute concentration of TP. Current research overlooking P species composition of pollution sources may render the acquired results of source apportionment incapable of assessing the impact of P sources on eutrophication accurately. In order to enhance the accuracy of watershed P pollution source apportionment, the following prospectives are recommended: (1) quantifying the P species composition of typical pollution sources; (2) revealing the mechanisms governing the migration and transformation of P species in watersheds; (3) expanding the application of traditional models and introducing novel methods to achieve quantitative source apportionment specifically for P species. Conducting source apportionment of specific species within a watershed contributes to a deeper understanding of P migration and transformation, enhancing the precise of management of P pollution sources and facilitating the targeted recovery of P resources.
Collapse
Affiliation(s)
- Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Mengli Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jia Pu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yao Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
5
|
Yuan H, Wang H, Cai Y, Yin H, Zeng Q, Liu E, Li Q, Wang Y. Iron bound phosphorus predominates the contribution of phosphorus to lake system from terrigenous source: The evidence from the small watershed scale. WATER RESEARCH 2023; 245:120661. [PMID: 37769418 DOI: 10.1016/j.watres.2023.120661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
The reduction of exogenous emissions of phosphorus (P) is a crucial measure for resolving eutrophication in lakes. However, the input of terrigenous materials still potentially contributes to an increase of P load in lake systems. In this study, we examined the phosphate oxygen isotope (δ18OP) of various P fractions in soils and sediments in a small lake watershed, namely, Shijiuhu watershed. The high-resolution in-situ diffusive gradients in thin films (DGT) technology was also used to survey the dynamic processes of P diffusion from sediment particles to the water. The results demonstrated that lighter δ18OP values (16.2-19.5‰) for individual P fractions in lake sediments were detected compared to other land-use patterns, indicating the cumulative biological P recycling on anaerobic condition. Fe bound P (Fe-P) overall had heavier δ18OP values (17.3-24.8‰) than some of Ca bound P (Ca-P) and equilibrium values, suggesting that Fe-P conserved the parental isotope signatures from terrigenous source and could act as the ideal tracer for the lake sediments. The mixing effect of terrigenous detrital input and biological mineralization made the source identification uncertain by using Ca-P, which had a wider range of δ18OP values (13.0-26.6‰). Additionally, significantly positive correlation (r = 0.551-0.913, p<0.05) between soluble reactive P (SRP) and Fe2+ in interstitial water obtained using DGT measurement revealed the conspicuous release and desorption of solid Fe-P toward the water. High diffusion fluxes from the sediments toward the overlying water further demonstrated that the desorption of Fe-P in the soil-originated sediments toward the solution conspicuously facilitated the accumulation of SRP in lake water. The first-time application of δ18OP isotope combined with in-situ DGT techniques certified that it's feasible for the contribution confirmation from terrigenous to lacustrine environments, and presented the direct evidence for management strategy making about P control and eutrophication restoration at the catchment scale of lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qiang Li
- Department of Natural Sciences, University of Houston-Downtown, Houston 77002, United States
| | - Yu Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
6
|
Yuan H, Chen P, Liu E, Yu J, Tai Z, Li Q, Wang H, Cai Y. Terrestrial sources regulate the endogenous phosphorus load in Taihu Lake, China after exogenous controls: Evidence from a representative lake watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:118016. [PMID: 37121007 DOI: 10.1016/j.jenvman.2023.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Identifying phosphorus (P) sources and contributions from terrestrial sources is important for clean water and eutrophication management in lake watersheds. However, this remains challenging owing to the high complexity of P transport processes. The concentrations of different P fractions in the soils and sediments from Taihu Lake, a representative freshwater lake watershed, were obtained using sequential extraction procedure. The dissolved phosphate (PO4-P) and alkaline phosphatase activity (APA) in the lake's water were also surveyed. The results showed that different P pools in the soil and sediments displayed different ranges. Higher concentrations of P fractions were measured in the solid soils and sediments from the northern and western regions of the lake watershed, indicating a larger input of P from exogenous sources, including agriculture runoff and industrial effluent from the river. Generally, higher Fe-P and Ca-P concentrations of up to 399.5 and 481.4 mg/kg were detected in soils and lake sediments, respectively. Similarly, the lake's water had higher concentrations of PO4-P and APA in the northern region. A significant positive correlation was found between Fe-P in the soil and PO4-P concentrations in the water. Statistical analysis indicated that appropriately 68.75% P was retained in the sediment from terrigenous sources, and 31.25% P experienced dissolution and shifted to the solution phase in the water-sediment ecosystems. The dissolution and release in Fe-P in the soils were responsible for the increase of Ca-P in the sediment after the afflux of soils into the lake. These findings suggest that soil runoff predominantly controls P occurrence in lake sediments as an exogenous source. Generally, the strategy of reducing terrestrial inputs from agricultural soil discharge is still an important step in P management at the catchment scale of lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Panyu Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250359, China
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ziqiu Tai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
7
|
Li S, Du C, Jin X, Yang J, Zhang W, Li S. Optimization of phosphate oxygen isotope pretreatment measurement method based on phosphate in situ enrichment blanket. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:694-710. [PMID: 37578883 PMCID: wst_2023_241 DOI: 10.2166/wst.2023.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Phosphate oxygen isotope analysis is an effective tool for investigating phosphorus migration and transformation in water bodies. Unfortunately, current pretreatment methods for this technology are significantly limited due to their demanding sample amount requirements, complex operation, and limited scope of application. In order to enhance the efficiency of the pretreatment process, hydrated zirconia was synthesized through liquid-phase precipitation. Zeolite, D001 macroporous resin, activated carbon, and ceramsite were chosen as possible candidate materials for loading purposes. The optimal zirconium loading material was identified through a combination of field enrichment and laboratory elution experiments. The ideal in situ enrichment duration, material dosages, and elution time were ascertained using response surface methodology. The findings showed that D001 resin exhibited superior selective adsorption and elution capacity for phosphate. The response surface optimization yielded the optimal parameters for the in situ phosphate-enrichment blanket: a mass of 13 g for zirconium-loaded D001 resin, an enrichment period of 360 min, and an elution period of 853 min. The attainment of a bright yellow Ag3PO4 solid after purification served as proof of the reliability of the optimization method. The obtained results provide a fundamental basis for the preparation and application of phosphate oxygen isotope analysis in freshwater ecosystem.
Collapse
Affiliation(s)
- Sumei Li
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, China; College of Ocean and Earth Sciences, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China E-mail:
| | - Chengyu Du
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, China
| | - Xin Jin
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, China; Hebei Water Pollution Control and Water Ecological Restoration Technology Innovation Center, Handan, Hebei 056038, China; State Key Laboratory of Environmental Water Quality, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Yang
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, China; School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, Hebei 056038, China
| | - Wei Zhang
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, China; Hebei Water Pollution Control and Water Ecological Restoration Technology Innovation Center, Handan, Hebei 056038, China
| | - Simin Li
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, China; Hebei Water Pollution Control and Water Ecological Restoration Technology Innovation Center, Handan, Hebei 056038, China
| |
Collapse
|
8
|
Zhang X, Ke X, Du Y, Tao Y, Xue J, Li Q, Xie X, Deng Y. Coupled effects of sedimentary iron oxides and organic matter on geogenic phosphorus mobilization in alluvial-lacustrine aquifers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163216. [PMID: 37004762 DOI: 10.1016/j.scitotenv.2023.163216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
The organic matter (OM) biodegradation and reductive dissolution of iron oxides have been acknowledged as key factors in the release of geogenic phosphorus (P) to groundwater. However, the coupled effects of natural OM with iron oxides on the mobilization of geogenic P remain unclear. Groundwater with high and low P concentrations has been observed in two boreholes in the alluvial-lacustrine aquifer system of the Central Yangtze River Basin. Sediment samples from these boreholes were examined for their P and Fe species as well as their OM properties. The results show that sediments from borehole S1 with high P levels contain more bioavailable P, particularly iron oxide bound P (Fe-P) and organic P (OP) than those from borehole S2 with low P levels. Regarding borehole S2, Fe-P and OP show positive correlations with total organic carbon as well as amorphous iron oxides (FeOX1), which indicate the presence of Fe-OM-P ternary complexes, further evidenced by FTIR results. In a reducing environment, the protein-like component (C3) and terrestrial humic-like component (C2) will biodegrade. In the process of C3 biodegradation, FeOX1 will act as electron acceptors and then undergo reductive dissolution. In the process of C2 biodegradation, FeOX1 and crystalline iron oxides (FeOX2) will act as electron acceptors. FeOX2 will also act as conduits in the microbial utilization pathway. However, the formation of stable P-Fe-OM ternary complexes will inhibit the reductive dissolution of iron oxides and OM biodegradation, thus inhibiting the mobilization of P. This study provides new insights into the enrichment and mobilization of P in alluvial-lacustrine aquifer systems.
Collapse
Affiliation(s)
- Xinxin Zhang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianzhong Ke
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
| | - Yao Du
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yanqiu Tao
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jiangkai Xue
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qinghua Li
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
| | - Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yamin Deng
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
9
|
Liu D, Li X, Zhang Y, Qiao Q, Bai L. Using a Multi-isotope Approach and Isotope Mixing Models to Trace and Quantify Phosphorus Sources in the Tuojiang River, Southwest China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7328-7335. [PMID: 36920429 DOI: 10.1021/acs.est.2c07216] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Identifying phosphorus (P) sources is critical for solving eutrophication and controlling P in aquatic environments. Phosphate oxygen isotopes (δ18Op) have been used to trace P sources. However, the application of this method has been greatly restricted due to δ18OP values from the potential source having wide and overlapping ranges. In this research, P sources were traced by combining δ18Op with multiple stable isotopes of nitrogen (δ15N), hydrogen (δD), and dissolved inorganic carbon (δ13C). Then, a Bayesian-based Stable Isotope Analysis in R (SIAR) model and IsoSource model were used to estimate the proportional contributions of the potential sources in the Tuojiang River. δ18Op was not in equilibrium with ambient water, and statistically significant differences in the δ18Op values were found between the potential sources, indicating that δ18Op can be used to trace the P sources. δ15N, δD, and δ13C could assist δ18Op in identifying the main sources of P. The SIAR and IsoSource models suggested that industrial and domestic sewage was the largest contributor, followed by phosphate rock and phosphogypsum and agricultural sewage. The uncertainty of the calculation results of the SIAR model was lower than that of the IsoSource model. These findings provide new insights into tracing P sources using multiple stable isotopes in watersheds.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xueying Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qi Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lu Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
10
|
Yuan H, Wang H, Dong A, Zhou Y, Huang R, Yin H, Zhang L, Liu E, Li Q, Jia B, Cai Y. Tracing the sources of phosphorus in lake at watershed scale using phosphate oxygen isotope (δ 18O P). CHEMOSPHERE 2022; 305:135382. [PMID: 35718038 DOI: 10.1016/j.chemosphere.2022.135382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) is normally considered as the limited nutrient for shallow freshwater lakes and can potentially trigger eutrophication on account of high concentrations. Due to the various transportation and transformation processes, P source apportionment and management in lake ecosystems have become more and more difficult. Combining with sequential extraction of P fractions and mineralogical analysis, the isotopic compositions of oxygen in phosphate (δ18OP) of resin-extractable P from the different samples including soil, estuary sediments, pond sediments, and lake sediments in the Shijiuhu Lake catchment, China, were investigated. The results showed that δ18OP values ranged from +15.23 to +21.92‰ in agricultural soil, +16.53 to +24.10‰ in estuary sediments, +18.90 to +20.90‰ in pond sediments, and +17.42 to +19.70‰ in lake sediments. Isotopic signatures indicated that chemical fertilizers with heavier δ18OP values (+20.70 to +26.50‰) were the predominant contributors of P in the soil. The river transportation together with Fe/Al-P desorption on anaerobic condition simultaneously stimulated the enrichment of P in the lake sediments, even though the biotic activity regulated the isotope values moving toward the equilibrium. Eroded soil was the important source of P in lake and pond sediments via drainage and runoff, and conserved the source isotope signal in the samples. Stronger biotic activity in the aquatic environments dragged δ18OP values toward the equilibrium. However, conspicuous off-equilibrium isotope signature suggested the terrestrial sources in the aquatic ecosystems. The calculation of two end-member linear mixing models suggested that soils also predominantly controlled the P occurrence in the lake sediments with contribution higher than 80%, indicating that decreasing inputs from the agricultural activities is important in P reduction on catchment scale. Generally, δ18OP from different sources can provide indirect and important evidences for the identification and management of P sources in the lake catchment.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Azhong Dong
- Jiangsu Institute of Water Resources and Hydropower Research, Nanjing, 210017, China
| | - Yanwen Zhou
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing, 210013, China
| | - Rui Huang
- Jiangsu Institute of Water Resources and Hydropower Research, Nanjing, 210017, China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250359, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - Binchan Jia
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
11
|
Wang Z, Guo Q, Tian L. Tracing phosphorus cycle in global watershed using phosphate oxygen isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154611. [PMID: 35307435 DOI: 10.1016/j.scitotenv.2022.154611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The Phosphorus (P) cycle is a crucial biochemical process in the earth system. However, an extensive increase of P input into watersheds destroyed the ecosystem. To explore the effects of internal P loading and external P input in global watersheds, we reviewed the research progress and synthesized the isotope data of experimental results from literatures. An integrated result of the observational and experimental studies revealed that both internal P and external P largely contribute to watershed P loadings in watersheds. Internal P can be released to the overlying water during sediment resuspension process and change of redox conditions near the sediment-water interface. Growing fertilizer application on farmlands to meet food demand with population rise and diet improvement contributed to an huge increase of external P input to watersheds. Therefore, water quality cannot be improved by only reducing internal P or external P loadings. In addition, we found that phosphate oxygen isotope technology is an effectively way to trace the P biogeochemical cycle in watersheds. To better predict the dynamic of P in watersheds, future research integrating oxygen isotope fractionation mechanisms and phosphate oxygen isotope technology would be more effective.
Collapse
Affiliation(s)
- Ziteng Wang
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjun Guo
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, China
| |
Collapse
|
12
|
Sun C, Xiong W, Zhang W, Liu Z, Li Y, Zhou X, Niu L, Zhang H, Wang L. New insights into identifying sediment phosphorus sources in river-lake coupled system: A framework for optimizing microbial community fingerprints. ENVIRONMENTAL RESEARCH 2022; 209:112854. [PMID: 35104481 DOI: 10.1016/j.envres.2022.112854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Identifying sediment phosphorus sources in river-lake coupled system is a question in developing preferential control strategies for phosphorus. As sediments adsorbed phosphorus and microbes would be transported with changing hydrodynamic, the phosphorus source-specific microbial community fingerprints shed light on determining the major sediment phosphorus sources. However, the identification of microbial community fingerprints is a challenge because both microbial succession and hydrological characteristics of river-lake systems would affect the stability of fingerprints. Therefore, this study provided a framework for optimizing phosphorus source-specific microbial community fingerprints, and attempted to identify the major sources of sediment phosphorus in river-lake coupled ecosystem. Meiliang Lake is one of the highly eutrophic area in Taihu Lake, where the sediments, bacterial communities, and phosphorus had a close relationship. Through analyzing the connectivity of microbes along water continuum, a microbial fingerprints candidate database was constructed. The phosphorus-related bacterial communities were screened and optimized by comparing the difference of predicted results between upstream and downstream, forming the stable microbial community fingerprints which consisted of Bacteroidia, Bacilli, Clostridia, and other species at the class level. SourceTracker results that based on the optimized phosphorus source-specific microbial community fingerprints indicated that the major sediment phosphorus sources to Meiliang Lake were Liangxi River, Wujingang River, and Donghuandi River, with the relative standard deviations ranging from 2.59% to 27.56%. The accuracy of phosphorus source apportionments was further confirmed based on the composite pollution index and hydrodynamic condition. This study put forward suggestions on how to improve the stability of microbial community fingerprints, and would help to improve the understanding of applying microbial source tracking method to identify the sources of abiotic pollution like sediment phosphorus.
Collapse
Affiliation(s)
- Chenyue Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wei Xiong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zhigang Liu
- Ningbo Water Supply Co Ltd, Ningbo, 315041, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaobai Zhou
- China National Environmental Monitoring Center, 100012, Beijing, China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
13
|
Nisbeth CS, Tamburini F, Kidmose J, Jessen S, O'Connell DW. Analysis of oxygen isotopes of inorganic phosphate (δ18Op) in freshwater: A detailed method description for silver phosphate purification. MethodsX 2022; 9:101706. [PMID: 35518916 PMCID: PMC9062346 DOI: 10.1016/j.mex.2022.101706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/05/2022] Open
Abstract
The ability to identify the origin of phosphorus and understand processes controlling P cycling is essential for designing effective mitigation and restoration of eutrophic freshwater ecosystems. The oxygen isotope composition of orthophosphate (δ18Op) has significant potential as a tracer for P entering freshwater ecosystems. However, methods of analysis of δ18Op are still in their preliminary stages and have proven challenging to implement for new practitioners. In order to achieve progress in developing the application of δ18Op signatures as a tracing tool, there is a need to eliminate the methodological challenges involved in accurately determining δ18Op. This protocol article describes the various steps needed to concentrate and isolate orthophosphate in freshwater samples into an adequately pure Ag3PO4 analyte, without isotopic alteration during processing. The protocol compiles the disperse experiences from previous studies, combined with our own experience. The twofold aim of the paper is toprovide a baseline for an increasing standardisation of the silver phosphate purification method associated with analysis of the oxygen isotope composition of orthophosphate (δ18Op), and to foster new research in the applicability of δ18Op signatures for P source tracing in catchment science.
Collapse
|
14
|
Ji Z, Long Z, Zhang Y, Wang Y, Qi X, Xia X, Pei Y. Enrichment differences and source apportionment of nutrients, stable isotopes, and trace metal elements in sediments of complex and fragmented wetland systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117852. [PMID: 34330015 DOI: 10.1016/j.envpol.2021.117852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/10/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic activities significantly influence the lake environment and are reflected by the element contents in sediments/soils. The lake fragmentation provides a unique opportunity for comparing the influences of natural/anthropogenic activities of different wetlands systems. In this study, a complex and fragmented lake was investigated, and sediment/soil samples were collected from different systems. The nutrient contents (C, N, and P), stable isotopic compositions (δ13C and δ15N), and trace metal contents (As, Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments/soils were measured to determine the natural and anthropogenic influences and pollution sources. Lake fragmentation was caused by insufficient water input and long-term agricultural and aquacultural activities of local residents. Due to the effect of anthropogenic activities, the enrichment conditions of various elements differed significantly for different wetland systems. Industrial, agricultural, and biological sources significantly influenced the element enrichment in different systems. The results demonstrated that the anthropogenic activities significantly influenced the sediments/soils in wetland systems, and the lake fragmentation reduced the diffusion of the contaminants. These results provide accurate reference information for pollution control, lake management, and ecological restoration.
Collapse
Affiliation(s)
- Zehua Ji
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Ziwei Long
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yu Zhang
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Youke Wang
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xinyu Qi
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
15
|
Yuan H, Cai Y, Yang Z, Li Q, Liu E, Yin H. Phosphorus removal from sediments by Potamogeton crispus: New high-resolution in-situ evidence for rhizosphere assimilation and oxidization-induced retention. J Environ Sci (China) 2021; 109:181-192. [PMID: 34607667 DOI: 10.1016/j.jes.2021.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Macrophytes are usually chosen for phytoremediation tools to remove P in eutrophic aquatic ecosystems, but the lack of test methods hinders the understanding of removal mechanism and application. In this study, we used the novel technologies combined of Diffusive gradients in thin films (DGT), Planar optode (PO), and Non-invasive micro-test technology (NMT) to explore P dynamics in water-sediment continuum and rhizosphere of Potamogeton crispus over time. Results of the high-resolution in situ measurement showed that labile P(LPDGT) fluxes at the surficial sediment significantly decreased from approximate 120, 140, and 200 pg/ (cm2•sec) via 30 days incubation period to 17, 40, and 56 pg/(cm2•sec) via that of 15 days. Obvious synchronous increase of LPDGT was not detected in overlying water, suggesting the intense assimilation of dissolve reactive P via root over time. PO measurement indicated that O2 concentration around the rhizosphere remarkably increased and radially diffused into deeper sediment until 100% saturation along with the root stretch downwards. NMT detection of roots showed the obvious O2 inflow into root tissue with the uppermost flux of 30 pmol/(cm2•sec) from surroundings via aerenchyma on different treatment conditions. Different from previous reports, gradually saturating O2 concentrations around the rhizosphere was principally driven by O2 penetration through interspace attributing to root stretch downward rather than root O2 leakage. Increased O2 concentrations in deep sediment over time finally induced the oxidization of labile Fe(II) into Fe(III) bound P and local P immobilization.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706 Madison, WI, United States
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
16
|
Yuan H, Wang H, Zhou Y, Jia B, Yu J, Cai Y, Yang Z, Liu E, Li Q, Yin H. Water-level fluctuations regulate the availability and diffusion kinetics process of phosphorus at lake water-sediment interface. WATER RESEARCH 2021; 200:117258. [PMID: 34058482 DOI: 10.1016/j.watres.2021.117258] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Sequential extraction and in-situ diffusive gradients in thin films (DGT) techniques were used to determine phosphorus (P) fractions and high-resolution 2D fluxes of labile PDGT, Fe2+DGT, and S2-DGT in sediment systems. The diffusion fluxes were subsequently calculated for different scenarios. Dynamic diffusion parameters between solid sediment and solution were also fitted using the DIFS (DGT-induced fluxes in sediments) model. The results suggested that Fe-bound P (Fe-P) was the dominant pool which contributed to the resupply potential of P in the water-sediment continuum. Significant upward decreases of labile PDGT, Fe2+DGT, and S2-DGT fluxes were detected in pristine and incubated microcosms. This dominance indicated the more obvious immobilization of labile P via oxidation of both Fe2+ and S2- in oxidic conditions. Additionally, these labile analytes in the microcosms obviously decreased after a 30-day incubation period, indicating that water-level fluctuations can significantly regulate adsorption-desorption processes of the P bound to Fe-containing minerals within a short time. Higher concentrations of labile PDGT, Fe2+DGT, and S2-DGT were measured at the shallow lake region where more drastic water-level variation occurred. This demonstrates that frequent adsorption-desorption of phosphate from the sediment particles to the aqueous solution can result in looser binding on the solid sediment surface and easier desorption in aerobic conditions via the regulation of water levels. Higher R values fitted with DIFS model suggested that more significant desorption and replenishment effect of labile P to the aqueous solution would occur in lake regions with more dramatic water-level variations. Finally, a significant positive correlation between S2-DGT and Fe2+DGT in the sediment indicated that the S2- oxidization under the conditions of low water-level can trigger the reduction of Fe(III) and subsequent release of active P. In general, speaking, frequent water-level fluctuations in the lake over time facilitated the formation and retention of the Fe(II) phase in the sediment, and desorption of Fe coupled P into the aqueous solution when the water level was high.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yanwen Zhou
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing 210013, China
| | - Bingchan Jia
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706 Madison, Wisconsin, USA
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
17
|
Guimarães TCSM, Montenegro KS, Wasserman MAV, Wasserman JC. Innovative microcosm experiments for the evaluation of the regeneration rates of nutrients in sediments of a hypersaline lagoon. MARINE POLLUTION BULLETIN 2021; 166:112252. [PMID: 33735705 DOI: 10.1016/j.marpolbul.2021.112252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to evaluate the regeneration of nutrients from the sediments to the water column in varying salinities, with an innovative experiment that closely simulates real environment. In vitro experiments were carried out simulating six scenarios with two sediment types (low carbonate and high carbonate). Local water and sediments were added to microcosms where circulation was forced. Results showed nitrogen release from low carbonate sediment in the lagoon, mixed and seawater (1.69, 4.68 and 7.36 μmol m-2 day-1, respectively). Phosphate diffusive fluxes were positive in lagoon water and low carbonate sediment (2.24 μmol m-2 day-1), negative with mixed water (-0.30 μmol m-2 day-1) and seawater (-0.51 μmol m-2 day-1). A phosphate release surge was observed in the low-carbonate sediment with overlying mixed water and seawater that, in the natural environment, may boost primary production.
Collapse
Affiliation(s)
- Teresa Cristina S M Guimarães
- UFF Network Environment and Sustainable Development, University Federal Fluminense, Niterói, RJ, Brazil; Department of Geochemistry, University Federal Fluminense, Niterói, RJ, Brazil
| | - Kaylanne S Montenegro
- UFF Network Environment and Sustainable Development, University Federal Fluminense, Niterói, RJ, Brazil; Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Maria Angélica V Wasserman
- UFF Network Environment and Sustainable Development, University Federal Fluminense, Niterói, RJ, Brazil; Institute of Nuclear Engineering, Rio de Janeiro, RJ, Brazil
| | - Julio Cesar Wasserman
- UFF Network Environment and Sustainable Development, University Federal Fluminense, Niterói, RJ, Brazil; Department of Geochemistry, University Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
18
|
Yuan H, Yin H, Yang Z, Yu J, Liu E, Li Q, Tai Z, Cai Y. Diffusion kinetic process of heavy metals in lacustrine sediment assessed under different redox conditions by DGT and DIFS model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140418. [PMID: 32886994 DOI: 10.1016/j.scitotenv.2020.140418] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Different fractions and variations of Mn, Co, Ni, Cu, Cd, Pb, Zn, and Fe in sediment via oxic and anaerobic treatments were investigated using BCR sequential extraction methods, DGT technique, and DIFS model. The results indicated that reducible fraction was the considerable pool apart from residual fraction, suggesting the high desorption potential of heavy metals. The high-resolution DGT measurement indicated that CDGT significantly rose after anaerobic condition and characterized by the relative high R value. Significantly increasing positive fluxes varying from 0.64 to 339.4 μg cm-2 s-1 except Ni suggested that apparent diffusion upward occurred over time from the sediment to the overlying water on anaerobic episode. High proportion of reducible Fe fraction and concurrent reduction of Fe(III) to Fe(II) during anaerobic condition were responsible for the increase of labile metals. The diffusion kinetic parameters including the equilibrium distribution coefficient (Kd), response time (Tc), and rate constant (k1 and k-1) were obtained using DIFS model. These parameters confirmed the partially sustained resupply capacity of heavy metals from solid sediment particle to pore water because of the considerable reducible fractions. Additionally, planar optode (PO) imaging approach demonstrated that low pH accompanied with decreasing dissolved oxygen (DO) concentration on anaerobic condition enhanced the release of labile metal fraction. Generally, anoxia facilitated the reduction of reducible fraction of heavy metals and further strengthened the desorption, resupply and diffusion in the aquatic ecosystems.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianghu Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qiang Li
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Ziqiu Tai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
19
|
Tao Y, Deng Y, Du Y, Xu Y, Leng Z, Ma T, Wang Y. Sources and enrichment of phosphorus in groundwater of the Central Yangtze River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139837. [PMID: 32526585 DOI: 10.1016/j.scitotenv.2020.139837] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
In addition to the anthropogenic sources for elevated concentrations of phosphorus (P) in groundwater systems, the importance of geogenic enrichment of P warrants attention. To assess factors controlling the sources and enrichment processes of P in Quaternary aquifers, 355 groundwater samples were collected in the Jianghan Plain of central Yangtze River Basin. In the phreatic aquifer, the total dissolved phosphorus (TDP) concentrations range from below detection limit (BDL) to 2.56 mg/L, with 6.25% of samples exceeding 1 mg/L; in the confined aquifer, TDP concentrations range from BDL to 4.31 mg/L, with 22.18% of samples exceeding 1 mg/L. Factor analysis and correlation were used to determine major factors controlling P enrichment in the groundwater. Elevated levels of P in the confined aquifer are related to reductive dissolution of P-rich Fe(III)-(hydr)oxides (FeOOH) as well as organic phosphorus (OP) mineralization. The SEDEX sequential extraction procedure was applied to core samples from two boreholes with high and low P levels in groundwater, respectively, to characterize phosphorus speciation in aquifer sediments. Bioavailable P, particularly exchangeable P, in sediments with high P groundwater are significantly higher than those with low P groundwater. The content of Fe-bound P is higher than that of residual organic P (Res-OP) in sediments from both boreholes, indicating the greater contribution of reductive dissolution of P-rich FeOOH to geogenic P enrichment in groundwater than OP mineralization. Using the Redfield ratio, groundwater samples collected from the confined aquifer can be divided into three groups, with 65% of the samples falling into the group closely related to reduction of FeOOH. The present research provides new insights into the enrichment of geogenic P in groundwater systems, which are not only applicable in the Jianghan Plain, but also to other similar alluvial aquifers in floodplains and delta regions worldwide.
Collapse
Affiliation(s)
- Yanqiu Tao
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yamin Deng
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.
| | - Yao Du
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.
| | - Yu Xu
- Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Zhichao Leng
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
20
|
Liu Z, Zhang Y, Yan P, Luo J, Kong L, Chang J, Liu B, Xu D, He F, Wu Z. Synergistic control of internal phosphorus loading from eutrophic lake sediment using MMF coupled with submerged macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138697. [PMID: 32438085 DOI: 10.1016/j.scitotenv.2020.138697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Sediment phosphorus (P) is the main source of endogenous P for lake eutrophication. An in-situ combined technology for determination the removal effect of sediment P in all fractions was first developed using the novel modified maifanite (MMF) and submerged macrophytes in this study. MMF was synthesized using an acidification process (2.5 mol/L H2SO4) and then a calcination (400 °C) method. The morphology and structure of MMF were characterized by XRD, SEM, XPS, and BET. We tested the removal effects of sediment P by MMF and submerged macrophytes in combination and separately. The results demonstrated that the synergistic removal capacity of sediment P using MMF coupled with submerged macrophytes was higher than the sum of them applied separately. MMF could promote the submerged macrophytes growth and enhance the adsorption of extra P on MMF through root oxygenation and nutrient allocation. The microcosm experiment results showed that sediment from fMMF+V. spiralis exhibited the most microbial diversity and abundance among the sediment. The combination of MMF and submerged macrophytes increased the Firmicutes abundance and decreased the Bacteroidetes. These results indicated that adsorption-biological technology can be regarded as a novel and competitive technology to the endogenous pollution control in eutrophic shallow lakes.
Collapse
Affiliation(s)
- Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Pan Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Luo
- Center for Environmental Research and Technology, University of California-Riverside, California, USA
| | - Lingwei Kong
- Environmental Research and Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Junjun Chang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
21
|
Tiehm A, Hollert H, Yin D, Zheng B. Tai Hu (China): Water quality and processes - From the source to the tap. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135559. [PMID: 31810708 DOI: 10.1016/j.scitotenv.2019.135559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Andreas Tiehm
- Department of Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser (TZW), Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Daqiang Yin
- Tongji University, College of Environmental Science & Engineering, No. 1239 Siping Road, Shanghai 200092, China.
| | - Binghui Zheng
- Chinese Research Academy of Environmental Science, No. 8 Anwai Dayangfang, Beijing 100012, China.
| |
Collapse
|
22
|
Yuan H, Tai Z, Li Q, Liu E. In-situ, high-resolution evidence from water-sediment interface for significant role of iron bound phosphorus in eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136040. [PMID: 31864994 DOI: 10.1016/j.scitotenv.2019.136040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/19/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Potential release of phosphorus (P) bound to iron (Fe) is critical because of the aggravating effects on P load in aquatic ecosystems. However, the process is largely unknown due to the absence of in-situ high-resolution evidence. Dissolved oxygen (DO), ferrous ion (Fe2+), and dissolved reactive phosphate (DRP) in interstitial water of sediment columns from a eutrophic shallow lake were measured using the novel colorimetric planar optode imaging method and ZrO-Chelex DGT technology during controlled experimental episodes. The solid Fe and P fractions in sediments were also simultaneously evaluated by employing sequential extraction procedure and spectra scanning analysis including SEM-EDS and 57Fe-Mössbauer spectroscopy. The results demonstrated that the DO penetration depths were accordingly regulated with time, the depths depended on the oxygen supply patterns, and oxygen depletion occurred at anaerobic intervals. Considerable increases of concentrations and diffusion of Fe2+ and DRP in interstitial water upward from the deep layer into the overlying water were mirrored by decreased concentrations of solid Fe bound P and mineral phase Fe(II) during an anaerobic episode. This confirmed that the re-dissolution of solid Fe bound P pools is the most important source of labile P, and aggravates the P budget in lake water via anaerobic intervals. The reduction-precipitation mechanism of Fe bound P during different oxidation scenarios indicated that the Fe bound P in sediments can act as intermediates between Po and Ca bound P, and result in the permanent burying of authigenic Ca bound P. Significantly positive correlations (R2 ≥ 0.7783, n = 74) between labile Fe2+ and DRP on both redox conditions also provided explicit evidence for the critical role of redox controlling Fe in labile P cycling at the lacustrine sediment-water interface. These findings provide improved insight for potential controlling effort of Fe coupled P to labile P depending on the oxygen supply in shallow-water hypereutrophic lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ziqiu Tai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qiang Li
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China.
| |
Collapse
|
23
|
Wen S, Wang H, Wu T, Yang J, Jiang X, Zhong J. Vertical profiles of phosphorus fractions in the sediment in a chain of reservoirs in North China: Implications for pollution source, bioavailability, and eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135318. [PMID: 31780162 DOI: 10.1016/j.scitotenv.2019.135318] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
The level of eutrophication in reservoirs is dependent on their internal and external P loads. Identifying the P pollution characteristics and its fractional composition in sediments is therefore necessary to determine the potential bioavailability and dominant sources of P for effective water pollution control. In this study, we investigated the P pollution characteristics in the overlying water and sediment in a chain of reservoirs (the Panjiakou (PJK), Daheiting (DHT) and Yuqiao (YQ) Reservoirs) in North China. Our results showed that the P concentrations in the overlying water of the YQ Reservoir was higher than that of the PJK and DHT Reservoirs, but the sediment P loading and P bio-availability were lower than the PJK and DHT Reservoirs. However, the sediment P release risk in the YQ Reservoir was higher than the DHT and PJK Reservoirs. The YQ Reservoir was mainly polluted by internal sediment P release and external sources predominantly derived from the inflowing polluted Sha River Basin. Various forms of P in the DHT Reservoir decreased with depth, and the P in the overlying water column was mainly sourced from internal P release due to sediment accumulation of excess P from human activities. In recent years, the proportion of bio-available P (BAP) in the PJK and YQ Reservoirs had increased, and the proportion of the more inert Al-P and Ca-P in the PJK Reservoir decreased. Ca-P in the YQ Reservoir had also decreased, indicating that inert P has been gradually transformed into active P in the PJK and YQ Reservoirs in recent years. The observed differences in P loading and sedimentary P fractions indicate different pollution characteristics and sources between the three reservoirs. We therefore recommend site-specific remediation strategies for effective control on P pollution in the three eutrophic reservoirs.
Collapse
Affiliation(s)
- Shuailong Wen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongwei Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Wu
- Tianjin Hydraulic Research Institute, Tianjin 300061, PR China
| | - Jie Yang
- Tianjin Hydraulic Research Institute, Tianjin 300061, PR China
| | - Xue Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|