1
|
Kushwaha JP, Ahuja S, Singh N, Kaur R. Mathematical modeling and kinetics of batch and continuous electro-catalytic oxidation of pharmaceutical-contaminated wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122871. [PMID: 39405857 DOI: 10.1016/j.jenvman.2024.122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
An accurate yet simple model is the key to the design and control of intricate electro-catalytic oxidation of pharmaceutical contaminated wastewater. For both batch and unsteady-state continuous flow stirred tank reactors (CSTR), batch reactor models have been used earlier. Further, these models do not correlate rate to the operating conditions, and consider pseudo-first/second-order kinetics. Here, first-principles models are proposed by formulating unsteady-state mass balances, modifying them to attain realistic final conditions, and incorporating fractional variable-order kinetics. Following integral analysis, analytical solutions are obtained. These are independently applicable to design, unlike a numerical solution. Nonlinear regression is performed to estimate the model parameters from the transient experimental data. The simulations yield markedly accurate model parameters together with a better fit to the experimental data of Ti/RuO2-mediated amoxicillin-trihydrate electro-oxidation, for CSTR and batch reactors. For the batch reactor, the operating conditions are varied one at a time. Their effects on the model parameters are elucidated based on the oxidant and transformation species formed. The computed optimum model parameters are: rate constant 3.318 × 10-3 mg-0.092 m1.276 min-1, order 1.092, initial rate 4.032 × 102 mg m-2 min-1, and final conversion 90.6% in 180 min. The corresponding operating conditions are: pH 2.0, feed 50 mg L-1, electrolyte 2 g L-1, and current 1 A. A simple generalized power-law correlation, associating rate to the operating conditions, is then estimated. Statistical analysis of these models using central composite design delivers R2 0.99, predicted R2 0.96, and optimum set close to the above. The corresponding sensitivity analysis and generalized correlation, both show applied current to be the most significant operating condition. The dynamic modeling approaches proposed here can be extended to model, control, and scale-up complex reaction systems.
Collapse
Affiliation(s)
- Jai Prakash Kushwaha
- Chemical Engineering Department, Thapar Institute of Engineering and Technology (Deemed to be University), Bhadson Road, Patiala, Punjab, India.
| | - Sanjeev Ahuja
- Chemical Engineering Department, Thapar Institute of Engineering and Technology (Deemed to be University), Bhadson Road, Patiala, Punjab, India.
| | - Neetu Singh
- Chemical Engineering Department, Thapar Institute of Engineering and Technology (Deemed to be University), Bhadson Road, Patiala, Punjab, India.
| | - Ravneet Kaur
- Chemical Engineering Department, Thapar Institute of Engineering and Technology (Deemed to be University), Bhadson Road, Patiala, Punjab, India.
| |
Collapse
|
2
|
Shah AA, Walia S, Kazemian H. Advancements in combined electrocoagulation processes for sustainable wastewater treatment: A comprehensive review of mechanisms, performance, and emerging applications. WATER RESEARCH 2024; 252:121248. [PMID: 38335752 DOI: 10.1016/j.watres.2024.121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
This review explores the potential and challenges of combining electrochemical, especially electrocoagulation (EC) process, with various - wastewater treatment methods such as membranes, chemical treatments, biological methods, and oxidation processes to enhance pollutant removal and reduce costs. It emphasizes the advantages of using electrochemical processes as a pretreatment step, including increased volume and improved quality of permeate water, mitigation of membrane fouling, and lower environmental impact. Pilot-scale studies are discussed to validate the effectiveness of combined EC processes, particularly for industrial wastewater. Factors such as electrode materials, coating materials, and the integration of a third process are discussed as potential avenues for improving the environmental sustainability and cost-effectiveness of the combined EC processes. This review also discusses factors for improvement and explores the EC process combined with Advanced Oxidation Processes (AOP). The conclusion highlights the need for combined EC processes, which include reducing electrode consumption, evaluating energy efficiency, and conducting pilot-scale investigations under continuous flow conditions. Furthermore, it emphasizes future research on electrode materials and technology commercialization. Overall, this review underscores the importance of combined EC processes in meeting the demand for clean water resources and emphasizes the need for further optimization and implementation in industrial applications.
Collapse
Affiliation(s)
- Aatif Ali Shah
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| | - Sunil Walia
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| |
Collapse
|
3
|
Yakamercan E, Bhatt P, Aygun A, Adesope AW, Simsek H. Comprehensive understanding of electrochemical treatment systems combined with biological processes for wastewater remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121680. [PMID: 37149253 DOI: 10.1016/j.envpol.2023.121680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
The presence of toxic pollutants in wastewater discharge can affect the environment negatively due to presence of the organic and inorganic contaminants. The application of the electrochemical process in wastewater treatment is promising, specifically in treating these harmful pollutants from the aquatic environment. This review focused on recent applications of the electrochemical process for the remediation of such harmful pollutants from aquatic environments. Furthermore, the process conditions that affect the electrochemical process performance are evaluated, and the appropriate treatment processes are suggested according to the presence of organic and inorganic contaminants. Electrocoagulation, electrooxidation, and electro-Fenton applications in wastewater have shown effective performance with high removal rates. The disadvantages of these processes are the formation of toxic intermediate metabolites, high energy consumption, and sludge generation. To overcome such disadvantages combined ecotechnologies can be applied in large-scale wastewater pollutants removal. The combination of electrochemical and biological treatment has gained importance, increased removal performance remarkably, and decreased operational costs. The critical discussion with depth information in this review could be beneficial for wastewater treatment plant operators throughout the world.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Ahmet Aygun
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Adedolapo W Adesope
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
4
|
Electrochemical oxidation of phenol in chloride containing electrolyte using a carbon-coated Ti4O7 anode. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Can-Güven E, Ilhan F, Ulucan-Altuntas K, Yazici Guvenc S, Varank G. Electrochemically activated persulfate and peroxymonosulfate for furfural removal: optimization using Box-Behnken design. ENVIRONMENTAL TECHNOLOGY 2023; 44:1251-1264. [PMID: 34813713 DOI: 10.1080/09593330.2021.2000037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Furfural removal by electrochemically activated peroxydisulfate (E-PS) and peroxymonosulfate (E-PMS) was investigated. The effect of different anodes was investigated for the electrochemical activation of oxidants. Box Behnken Design was applied to determine optimum operating conditions, which were determined as follows; PS concentration: 2.3 mM, applied current: 1.15 A, pH: 3.5, and reaction time: 118.3 min for E-PS process; PMS concentration: 1.8 mM, applied current: 1.05 A, pH: 3.3, and reaction time: 107.8 min for E-PMS process. The results of the study showed that the E-PMS process is more advantageous in terms of the chemical and electricity costs to be used.
Collapse
Affiliation(s)
- Emine Can-Güven
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, Turkey
| | - Fatih Ilhan
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, Turkey
| | - Kubra Ulucan-Altuntas
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, Turkey
- University of Padova, Department of Chemical Sciences, Padova, Italy
| | - Senem Yazici Guvenc
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, Turkey
| | - Gamze Varank
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, Turkey
| |
Collapse
|
6
|
Yan Z, Zhu Z, Chang H, Fan G, Wang Q, Fu X, Qu F, Liang H. Integrated membrane electrochemical reactor-membrane distillation process for enhanced landfill leachate treatment. WATER RESEARCH 2023; 230:119559. [PMID: 36608523 DOI: 10.1016/j.watres.2022.119559] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/19/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Treatment of recalcitrant landfill leachate (LFL) induces huge energy consumption and carbon emissions due to its complex composition. Although membrane distillation (MD) exhibits good potential in LFL treatment with waste heat utilization, membrane fouling and ammonia rejection are still the major problems encountered that hinder its application. Herein, membrane electrochemical reactor (MER) was coupled with MD for simultaneous membrane fouling control and resource recovery. LFL pretreatment with membrane-less electrochemical reactor (EO) and without pretreatment were also purified by MD for comparison. Results showed that the MER-MD system rejected almost all CODCr, total phosphorus, metal salts, and ammonia nitrogen (increased by 33.5%-43.5% without chemical addition), and recovered 31% of ammonia nitrogen and 48% of humic acid in the raw LFL. Owing to the effective removal of hardness (61%) and organics (77%) using MER, the MER-MD system showed higher resistance to the membrane wetting and fouling, with about 61% and 14% higher final vapor flux than those of the MD and EO-MD systems, respectively, and the pure water flux could be fully recovered by alkaline solution cleaning. Moreover, SEM-EDS, ATR-FTIR and XRD characterization further demonstrated the superiority of the MD membrane fouling reversibility of the MER-MD system. Energy consumption and carbon emissions analysis showed that the MER-MD system reduced the total energy consumption/carbon emissions by ∼20% and ∼8% compared to the MD and EO-MD systems, respectively, and the ammonia nitrogen recovered by MER could offset 8.25 kg carbon dioxide equivalent. Therefore, the introduction of MER pretreatment in MD process would be an option to decrease energy consumption and reduce carbon emissions for MD treatment of LFL.
Collapse
Affiliation(s)
- Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian 350116, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian 350002, China; State Key Laboratory of Comprehensive Utilization of Low Grade Refractory Gold Ores, Zijin Mining Group Co. Ltd., Xiamen 361101, China
| | - Zhengshi Zhu
- College of Civil Engineering, Fuzhou University, Fujian 350116, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fujian 350116, China.
| | - Qiankun Wang
- State Key Laboratory of Comprehensive Utilization of Low Grade Refractory Gold Ores, Zijin Mining Group Co. Ltd., Xiamen 361101, China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian 350002, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Köktaş İY, Gökkuş Ö, Kariper İA, Othmani A. Tetracycline removal from aqueous solution by electrooxidation using ruthenium-coated graphite anode. CHEMOSPHERE 2023; 315:137758. [PMID: 36610513 DOI: 10.1016/j.chemosphere.2023.137758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
This paper reports the electrochemical oxidation treatment of 80 mL of acidic aqueous solutions with 0.2 mM of the drug tetracycline in 25 mM Na2SO4 using a lab-scale electrochemical cell. The performance of tetracycline removal with Ru-coated graphite by the chemical bath deposition (CBD) and raw graphite anode has been demonstrated. The effects of operating parameters were tested such as pH, applied current, supporting electrolyte concentration, and initial tetracycline concentration. The best tetracycline degradation was obtained with Ru-coated graphite anode due to its higher oxidation power, which allowed the complete degradation of refractory compounds. The modified surface structure of the Ru-coated graphite anode was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy-dispersive X-ray (EDX). The EO process with Ru-coated graphite anode allowed 93.8% tetracycline abatement after 100 min of electrolysis at an applied current of 100 mA. In all cases, tetracycline decay obeyed pseudo-first-order kinetics. The tetracycline removal performance of graphite electrodes with nano coating on graphite has offered a performing alternative. A Comparative study revealed that electrolysis with Ru-coated graphite acted as a better electrode material than raw graphite for the catalytic reaction.
Collapse
Affiliation(s)
- İbrahim Yasin Köktaş
- Department of Environmental Engineering, Erciyes University, 38039, Kayseri, Turkey
| | - Ömür Gökkuş
- Department of Environmental Engineering, Erciyes University, 38039, Kayseri, Turkey.
| | - İshak Afşin Kariper
- Education Faculty, Erciyes University, 38039, Kayseri, Turkey; Erciyes Teknopark, Building 1, No:41, Kayseri, Turkey
| | - Amina Othmani
- Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5019, Monastir, Tunisia
| |
Collapse
|
8
|
Kaur G, Singh N, Rajor A, Arya RK. Removal of doxycycline hydrochloride from aqueous solution by rice husk ash using response surface methodology and disposability study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8485-8499. [PMID: 35157206 PMCID: PMC8853133 DOI: 10.1007/s11356-022-18961-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/26/2022] [Indexed: 05/06/2023]
Abstract
The huge demand and consumption of DOX, its incomplete metabolism, and complex behavior in atmosphere are causing a great ecological issue, which needs to be solved. In the present study, the suitability of rice husk ash (RHA) for the greater sorption efficiency of DOX antibiotic was investigated. Furthermore, disposability study of exhausted RHA was performed using solidification technique and leachate had undergone toxicity test to evaluate the DOX encapsulation ability. The central composite design under RSM was employed for the design of experiment and optimization of adsorption parameters. RHA was characterized using various techniques such as XRD, SEM (EDX), FTIR, BET, and zeta potential analysis. The influence of various adsorption parameters, like initial DOX concentration (C0), RHA dosage (m), incubation-time period (t), and pH were examined on the performance in terms of DOX elimination % (X1) and adsorptive capacity (mg/g) (X2). At optimized conditions, the obtained X1 and X2 were 98.85% and 17.74 mg/g, respectively. Moreover, the kinetics data suited well to the pseudo-second-order model. Freundlich, Langmuir, and Redlich-Peterson (R-P) isotherm models were applied, out of which Langmuir model best performed under optimized conditions; m = 5 g/L, t = 85.85 min, DOX concentration = 89.73 mg/L, and pH = 6. The bacterial toxicity test of leachate confirmed complete encapsulation of DOX by solidification technique.
Collapse
Affiliation(s)
- Gurleenjot Kaur
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, 147004 India
| | - Neetu Singh
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala, 147004 India
| | - Anita Rajor
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, 147004 India
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| |
Collapse
|
9
|
Hao J, Wu L, Lu X, Zeng Y, Jia B, Luo T, He S, Liang L. A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water: adsorption behavior and mechanisms. RSC Adv 2022; 12:31650-31662. [PMID: 36380923 PMCID: PMC9634719 DOI: 10.1039/d2ra05334a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2023] Open
Abstract
In this study, Fe-Co-modified biochar (FMBC) loaded with iron (Fe) and cobalt (Co) bimetals after NaOH activation was prepared by pyrolysis using forestry waste cedar bark as a raw material to study its properties and the adsorption of ofloxacin (OFX). The surface structure and chemical properties were analyzed by BET, SEM-EDS, XRD, XPS, and FTIR characterization, and the results showed that the FMBC possessed a larger specific surface area and abundant surface functional groups. FMBC conformed to pseudo-second-order kinetic and Langmuir isotherm models, indicating that the OFX adsorption process on FMBC was a monolayer adsorption process and controlled by chemisorption. The saturation adsorption capacity of FMBC was 10 times higher than that of cedar bark biochar (BC). In addition, the effects of initial pH and coexisting ions on the adsorption process were investigated, and FMBC showed good adsorption, with the best adsorption capacity at pH = 7. Multiple adsorption mechanisms, including physical and chemical interactions, were involved in the adsorption of OFX by FMBC. TG, metal leaching, different water sources, and VSM tests showed that FMBC had good stability and was easily separated from water. Finally, the reusability performance of FMBC was investigated by various methods, and after five cycles it could still reach 75.78-89.31% of the adsorption capacity before recycling. Therefore, the FMBC synthesized in this study is a promising new adsorbent.
Collapse
Affiliation(s)
- Jiajie Hao
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Lieshan Wu
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Xiaowei Lu
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Yalin Zeng
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Bing Jia
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Tingting Luo
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Shixing He
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Liuling Liang
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre Nanning 530028 China
| |
Collapse
|
10
|
Green and facile synthesis of heterojunction nanocatalyst: Insights and mechanism of antibiotics removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Santacruz W, Fiori I, de Mello R, Motheo AJ. Detection of radicals produced during electro-oxidation of atrazine using commercial DSA®-Cl 2 in methanol media: Keys to understand the process. CHEMOSPHERE 2022; 307:136157. [PMID: 36029853 DOI: 10.1016/j.chemosphere.2022.136157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
This work reports the radicals detected and identified during the degradation of atrazine in methanol medium in the presence and absence of different proportions of water (0%, 5%, and 10%). The determination of these radicals is an important step to understand the electrolysis processes in methanol medium and contribute to clarify the degradation mechanism. Furthermore, the parameters for the successful removal of the contaminant were optimized and the results showed that the application of the technique led to the removal of nearly 99.8% of atrazine after 1 h of electrolysis. The oxidation kinetics was found to be very fast and most of the atrazine molecule in the medium was degraded in the first hour of electrolysis. The results obtained from a thorough analysis conducted with a view to evaluating the effects of different current densities and initial pH values on atrazine degradation showed that the application of higher current densities resulted in lower energy consumption, as this led to faster removal of atrazine. Additionally, the initial pH of the solution was found to favor the formation of different species of active chlorine. The radicals formed during the electro-oxidation process were detected by electron paramagnetic resonance spectroscopy and include hydroxyl, methoxy and hydroxymethyl. The use of methanol for the degradation of pollutants is a highly promising technique and this work shows that the identification of the different radicals formed in the process can be the key to understanding the degradation mechanism.
Collapse
Affiliation(s)
- William Santacruz
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970. São Carlos, SP, Brazil
| | - Isabela Fiori
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970. São Carlos, SP, Brazil
| | - Rodrigo de Mello
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970. São Carlos, SP, Brazil
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970. São Carlos, SP, Brazil.
| |
Collapse
|
12
|
Wang Z, Song W, Li J, Zhang X, Wang H. Optimization and mechanism of Tetrabromobisphenol A removal by dithionite under anaerobic conditions: Response surface methodology and degradation pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116034. [PMID: 36027733 DOI: 10.1016/j.jenvman.2022.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In this study, dithionite (DTN) was used to degrade Tetrabromobisphenol A (TBBPA), a widely applied brominated flame retardants, under anaerobic conditions with the reaction terminator of nitrate. The optimization of reaction parameters including TBBPA concentration, DTN concentration and pH value were conducted by response surface methodology (RSM) based on central composite design (CCD). The degradation process could be simulated accurately by a quadratic model with the correlation coefficient R2 of 0.9550. The interaction between pH and DTN concentration was significant with the p-value of 0.0017. Moreover, the maximum TBBPA removal was 87.6 ± 3.2% and obtained at TBBPA concentration of 2.00 μM, the DTN concentration of 322.31 μM, and the pH of 6.14 under anaerobic conditions. It was found that the factors influenced TBBPA removal followed the order: pH > DTN concentration > TBBPA concentration. The major active products from DTN are SO32- and S2O32-. In addition, different inhibitions of natural water matrix including chloride, bicarbonate, sulfide and humic acid on TBBPA degradation had been confirmed. According to the identified six intermediates via gas chromatography-mass spectrometry (GC-MS), two steps of the degradation pathways were speculated, including the breakage of C-Br bond and C-C bond. This study provides a convenient way to degrade TBBPA.
Collapse
Affiliation(s)
- Zhuoyue Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
13
|
Qutob M, Shakeel F, Alam P, Alshehri S, Ghoneim MM, Rafatullah M. A review of radical and non-radical degradation of amoxicillin by using different oxidation process systems. ENVIRONMENTAL RESEARCH 2022; 214:113833. [PMID: 35839907 DOI: 10.1016/j.envres.2022.113833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical compounds have piqued the interest of researchers due to an increase in their demand, which increases the possibility of leakage into the environment. Amoxicillin (AMX) is a penicillin derivative used for the treatment of infections caused by gram-positive bacteria. AMX has a low metabolic rate in the human body, and around 80-90% is unmetabolized. As a result, AMX residuals should be treated immediately to avoid further accumulation in the environment. Advanced oxidation process techniques are an efficient way to degrade AMX. This review attempts to collect, organize, summarize, and analyze the most up to date research linked to the degradation of AMX by different advanced oxidation process systems including photocatalytic, ultrasonic, electro-oxidation, and advanced oxidation process-based on partials. The main topics investigated in this review are degradation mechanism, degradation efficiency, catalyst stability, the formation of AMX by-products and its toxicity, in addition, the influence of different experimental conditions was discussed such as pH, temperature, scavengers, the concentration of amoxicillin, oxidants, catalyst, and doping ratio. The degradation of AMX could be inhibited by very high values of pH, temperature, AMX concentration, oxidants concentration, catalyst concentration, and doping ratio. Several AMX by-products were discovered after oxidation treatment, and several of them had lower or same values of LC50 (96 h) fathead minnow of AMX itself, such as m/z 384, 375, 349, 323, 324, 321, 318, with prediction values of 0.70, 1.10, 1.10 0.42, 0.42, 0.42, and 0.42 mg/L, respectively. We revealed that there is no silver bullet system to oxidize AMX from an aqueous medium. However, it is recommended to apply hybrid systems such as Photo-electro, Photo-Fenton, Electro-Fenton, etc. Hybrid systems are capable to cover the drawbacks of the single system. This review may provide important information, as well as future recommendations, for future researchers interested in treating AMX using various AOP systems, allowing them to improve the applicability of their systems and successfully oxidize AMX from an aqueous medium.
Collapse
Affiliation(s)
- Mohammad Qutob
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
14
|
Progress in Preparation and Application of Titanium Sub-Oxides Electrode in Electrocatalytic Degradation for Wastewater Treatment. Catalysts 2022. [DOI: 10.3390/catal12060618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To achieve low-carbon and sustainable development it is imperative to explore water treatment technologies in a carbon-neutral model. Because of its advantages of high efficiency, low consumption, and no secondary pollution, electrocatalytic oxidation technology has attracted increasing attention in tackling the challenges of organic wastewater treatment. The performance of an electrocatalytic oxidation system depends mainly on the properties of electrodes materials. Compared with the instability of graphite electrodes, the high expenditure of noble metal electrodes and boron-doped diamond electrodes, and the hidden dangers of titanium-based metal oxide electrodes, a titanium sub-oxide material has been characterized as an ideal choice of anode material due to its unique crystal and electronic structure, including high conductivity, decent catalytic activity, intense physical and chemical stability, corrosion resistance, low cost, and long service life, etc. This paper systematically reviews the electrode preparation technology of Magnéli phase titanium sub-oxide and its research progress in the electrochemical advanced oxidation treatment of organic wastewater in recent years, with technical difficulties highlighted. Future research directions are further proposed in process optimization, material modification, and application expansion. It is worth noting that Magnéli phase titanium sub-oxides have played very important roles in organic degradation. There is no doubt that titanium sub-oxides will become indispensable materials in the future.
Collapse
|
15
|
Xu J, Liu Y, Li D, Li L, Zhang Y, Chen S, Wu Q, Wang P, Zhang C, Sun J. Insights into the electrooxidation of florfenicol by a highly active La-doped Ti4O7 anode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Ma J, Gao M, Liu Q, Wang Q. High efficiency three-dimensional electrochemical treatment of amoxicillin wastewater using Mn-Co/GAC particle electrodes and optimization of operating condition. ENVIRONMENTAL RESEARCH 2022; 209:112728. [PMID: 35081359 DOI: 10.1016/j.envres.2022.112728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In this work, Mn-Co/GAC particle electrode was prepared by loading Mn and Co as catalysts on granular activated carbon (GAC) and used in a three-dimensional (3D) electrochemical system for mineralization of amoxicillin wastewater. Observation results by SEM, EDS and XRD confirmed that Mn and Co catalysts were successfully loaded onto GAC. The electrochemical properties were measured using an electrochemical workstation. Mn-Co/GAC had a much higher oxygen evolution potential (1.46V) than GAC (1.1V), which demonstrated that it could effectively reduce the oxygen evolution side reaction. In addition, Mn-Co/GAC had an electrochemically active surface area 1.34 times that of GAC and a much smaller mass transfer resistance than GAC, which could provide favorable conditions for the degradation of pollutants. The investigation of the influences of single operating parameters on total organic carbon (TOC) removal rate and electrical energy consumption (EEC) indicated that current density and treatment time had the greatest effect. In order to maximize TOC removal rate and minimize EEC, optimization of operating parameters was also carried out using response surface method in combination with central composite design. The optimal operating parameters were determined as current density of 5.68 mA/cm2, electrolyte concentration of 0.127M, particle electrode dosage of 31.14g and treatment time of 120min. Under this optimum operating condition, TOC removal rate of 85.24% and amoxicillin removal rate of 100% could be achieved with a low EEC of 0.073 kWh/g TOC. In addition, TOC removal rate and EEC were significantly improved compared to the use of bare GAC as particle electrode under the same operating conditions, demonstrating the excellent electrocatalytic ability of the new particle electrode Mn-Co/GAC. A possible mechanism of enhanced amoxicillin and TOC removal was also recommended. In summary, the 3D electrochemical method using Mn-Co/GAC particle electrodes is a suitable choice for amoxicillin wastewater treatment.
Collapse
Affiliation(s)
- Jinsong Ma
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Department of Electrical Engineering, Kim Chaek University of Technology, Kyogu dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qin Liu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
17
|
Wang W, Wang K, Hao W, Zhang T, Liu Y, Yu L, Li W. Preparation of Ti-based Yb-doped SnO2–RuO2 electrode and electrochemical oxidation treatment of coking wastewater. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Rai D, Sinha S. Research trends in the development of anodes for electrochemical oxidation of wastewater. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The review focuses on the recent development in anode materials and their synthesis approach, focusing on their compatibility for treating actual industrial wastewater, improving selectivity, electrocatalytic activity, stability at higher concentration, and thereby reducing the mineralization cost for organic pollutant degradation. The advancement in sol–gel technique, including the Pechini method, is discussed in the first section. A separate discussion related to the selection of the electrodeposition method and its deciding parameters is also included. Furthermore, the effect of using advanced heating approaches, including microwave and laser deposition synthesis, is also discussed. Next, a separate discussion is provided on using different types of anode materials and their effect on active •OH radical generation, activity, and electrode stability in direct and indirect oxidation and future aspects. The effect of using different synthesis approaches, additives, and doping is discussed separately for each anode. Graphene, carbon nanotubes (CNTs), and metal doping enhance the number of active sites, electrochemical activity, and mineralization current efficiency (MCE) of the anode. While, microwave or laser heating approaches were proved to be an effective, cheaper, and fast alternative to conventional heating. The electrodeposition and nonaqueous solvent synthesis were convenient and environment-friendly techniques for conductive metallic and polymeric film deposition.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Shishir Sinha
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
19
|
Kaur G, Singh N, Rajor A. Adsorptive decontamination of doxycycline hydrochloride via Prosopis juliflora activated carbon: Parameter optimization and disposal study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10687. [PMID: 35165966 DOI: 10.1002/wer.10687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
This study deals with the removal of doxycycline hydrochloride (DOX) antibiotic, from aqueous environment by using Prosopis juliflora activated carbon (PJAC). PJAC was synthesized by chemical activation and pyrolysis of Prosopis juliflora. It was characterized by employing Fourier transform infrared spectroscopy (FTIR), scanning electron microscope-energy dispersive X-ray analysis (SEM-EDX), X-ray diffraction analysis (XRD), and Brunauer-Emmett-Teller (BET) techniques. The specific surface area, pore volume, and pore diameter were evaluated as 320.45 m2 /g, 0.176 cm3 /g, and 2.65 nm, respectively. Different functional groups (O-H, C-O, C=C, C-N, and C-C) present on PJAC promoted the adsorption of DOX. The influence of various adsorption parameters suggested by central composite design (CCD) model was determined using response surface methodology (RSM), and interactive effects of these were optimized. The thermodynamic and kinetic studies performed at optimized conditions, exhibited that adsorption was spontaneous and endothermic. The experimental data were well described with Langmuir, Redlich-Peterson, and Freundlich isotherm models while kinetics data were well described by pseudo second order. The excellent interactions between the PJAC and DOX resulted maximum adsorption capacity as 57.11 mg/g. The adsorption mechanisms was dominated by π - π interactions and hydrogen bonding. Moreover, almost complete encapsulation of DOX was achieved by stabilization of exhausted PJAC. PRACTITIONER POINTS: A wild harmful plant Prosopis juliflora was used to synthesize a low-cost and eco-friendly bio-sorbent PJAC. Adsorptive ability of PJAC was quantified for adsorption of DOX antibiotic from its aqueous solution. DOX uptake on PJAC was mainly governed by л-л EDA interactions and hydrogen bonding.
Collapse
Affiliation(s)
- Gurleenjot Kaur
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neetu Singh
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| | - Anita Rajor
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
20
|
Bakaraki Turan N, Sari Erkan H, Ilhan F, Onkal Engin G. Decolorization of textile wastewater by electrooxidation process using different anode materials: Statistical optimization. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e1683. [PMID: 35044018 DOI: 10.1002/wer.1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The presence of reactive dyes in textile wastewater is a serious environmental concern due to their associated mutagenic and carcinogenic effects. The present study aims to analyze the effect of different anodic materials on the decolorization of a real textile wastewater effluent. For this purpose, four different anodic materials-TiO2-coated platine, TiO2-coated ruthenium dioxide (RuO2) (viz., RuO2), titanium dioxide (TiO2), and graphite-were connected, respectively, to titanium dioxide (TiO2) used as a cathode electrode. Color and cost optimization studies were performed using the response surface methodology and the Box-Behnken experimental design (BBD). According to ANOVA results, the R2 values for Pt/TiO2, RuO2/TiO2, TiO2/TiO2, and graphite/TiO2 electrode pairs were found to be 97.4%, 93.8%, 92.44%, and 92.2%, respectively, indicating a good compatibility as it is close to one. The results show that color removal efficiencies at the optimal conditions were 86.3%, 90.8%, 91.5%, and 93.6% for Pt/TiO2, graphite/TiO2, TiO2/TiO2, and RuO2/TiO2, respectively. Furthermore, energy consumption cost at the optimum conditions was also evaluated, and the results were as follows: Pt/TiO2 (0.95 €/m3), graphite/TiO2 (0.74 €/m3), TiO2/TiO2 (0.31 €/m3), and RuO2/TiO2 (0.26 €/m3). Consequently, this research paper shows that all of the tested anodic materials give satisfactory color removal efficiencies higher than 86%. When energy consumption and color removal are considered together, the use of TiO2/TiO2 and RuO2/TiO2 pairs would be preferred. PRACTITIONER POINTS: Anodic contribution was investigated for decolorization of textile wastewater by electrooxidation process. Graphite, TiO2-coated Pt, TiO2-coated RuO2, and TiO2 were used as anode materials. Highest color removal with lowest energy consumption was achieved with TiO2-coated RuO2 anode material (93.6%).
Collapse
Affiliation(s)
- Nouha Bakaraki Turan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Hanife Sari Erkan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Fatih Ilhan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Guleda Onkal Engin
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
21
|
Ahmadi A, Zarei M, Hassani A, Ebratkhahan M, Olad A. Facile synthesis of iron(II) doped carbonaceous aerogel as a three-dimensional cathode and its excellent performance in electro-Fenton degradation of ceftazidime from water solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Kaur G, Singh N, Rajor A, Kushwaha JP. Deep eutectic solvent functionalized rice husk ash for effective adsorption of ofloxacin from aqueous environment. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103847. [PMID: 34166909 DOI: 10.1016/j.jconhyd.2021.103847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 06/06/2021] [Indexed: 05/22/2023]
Abstract
Deep eutectic solvents (DESs) have achieved the rising attention of the scientific community because of their distinctive physicochemical properties and variety of applications. Herein, DES composed of choline chloride as hydrogen bond acceptor (HBA) and glycolic acid as hydrogen bond donor (HBD) was synthesized. Next, the prepared DES was examined as a functionalization agent for rice husk ash (RHA) to form a novel adsorbent (DES-RHA). To ensure the formation of DES and to recognize the modifications occurred due to the functionalization process, a comprehensive characterization study was performed using 1HNMR, FTIR spectroscopy, TGA, XRD, FESEM, HR-TEM and BET surface area. Potential of the prepared DES-RHA was investigated for the uptake of ofloxacin (OFL) from an aqueous environment. The impact of relevant process parameters was evaluated under optimum conditions, and the data were examined applying various kinetic and isotherm models. As per the regression findings, adsorption kinetics data were well described by pseudo-second-order model, and the isotherm data were in good agreement with Langmuir, Temkin, RP and Freundlich isotherm models. Further, the adsorption procedure was endothermic and spontaneous. The high regeneration and adsorption capacity of DES-RHA than untreated RHA adds a promising approach to eliminate emerging pollutants present in effluent sites.
Collapse
Affiliation(s)
- Gurleenjot Kaur
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Neetu Singh
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| | - Anita Rajor
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Jai Prakash Kushwaha
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
23
|
Liang J, You S, Yuan Y, Yuan Y. A tubular electrode assembly reactor for enhanced electrochemical wastewater treatment with a Magnéli-phase titanium suboxide (M-TiSO) anode and in situ utilization. RSC Adv 2021; 11:24976-24984. [PMID: 35481062 PMCID: PMC9036886 DOI: 10.1039/d1ra02236a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The electrochemical oxidation technology has been widely used for the waste water treatment and water reuse because of its easy-to-operate nature, an effective removal of pollutants and non-secondary pollution. However, the price of electrode materials, the limitation of mass transfer and the associated effects on contaminant degradation hamper its application. Within this context, an in situ utilization tubular electrode assembly reactor (TEAR) was proposed, in which a stainless steel pipe (SSP) was used as the cathode, and a tubular Magnéli-phase titanium suboxide (M-TiSO) anode was posited in the center of that pipe. Besides the cathode and anode, an integral electrochemical system to treat water pollutants was constituted with a spiral static mixer made from three-dimensional (3D) printing. A spiral static mixer was pushed into the interspace of electrodes to minimize the adverse effect caused by inhomogeneous distribution of pollutants. Here, the effects of current density and resident time on the removal of methylene blue (MB) and total organic carbon (TOC) were investigated, the corresponding hydrodynamics was studied using computational fluid dynamics (CFD), and the long-term stability of removing MB by the reactor was discussed. The results indicated that the MB and TOC removal rate was enhanced at specific current density with a static mixer and the velocity distribution tended to be more homogeneous. Moreover, the anode surface shear force and heat transfer were increased by improving the fluid state. This study proposed an in situ utilization concept and provided a potential value for feasible and efficient water treatment. A stainless steel pipe (SSP) was used as a cathode. A tubular Magnéli-phase titanium suboxide (M-TiSO) anode was posited in the center. A spiral static mixer was used to process intensification.![]()
Collapse
Affiliation(s)
- Jiabin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology Harbin P. R. China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology Harbin P. R. China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology Harbin P. R. China
| | - Yuan Yuan
- School of Biological Engineering, Beijing Polytechnic Beijing 100176 P.R. China
| |
Collapse
|
24
|
Chen S, He P, Zhou P, Wang X, Xiao F, He Q, Li J, Jia L, Zhang H, Jia B, Tang B. Development of a novel graphitic carbon nitride and multiwall carbon nanotube co-doped Ti/PbO 2 anode for electrocatalytic degradation of acetaminophen. CHEMOSPHERE 2021; 271:129830. [PMID: 33556630 DOI: 10.1016/j.chemosphere.2021.129830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
In this work, we have constructed a novel graphitic carbon nitride/multiwall carbon nanotube (GCN/CNT) doped Ti/PbO2 as anode for highly effective degradation of acetaminophen (ACE) wastewater. The ACE removal efficiency of 83.2% and chemical oxygen demand removal efficiency of 76.3% are achieved under the optimal condition of temperature 25 °C, initial pH 7, current density 15 mA cm-2 and Na2SO4 concentration 6.0 g L-1. The excellent electrocatalytic activity of Ti/PbO2-GCN-CNT anode for ACE oxidation is ascribed to the effective suppression of oxygen evolution and the enhanced electron transfer after introducing GCN and CNT. Furthermore, Ti/PbO2-GCN-CNT electrode displays excellent stability and reusability. ACE degradation is accomplished by direct oxidation and indirect oxidation, and ∙OH radical plays primary role in the indirect oxidation of ACE wastewater. The intermediates of ACE degradation are detailly investigated using LC-MS analysis and a possible degradation mechanism is proposed.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Xuejiao Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jing Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lingpu Jia
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Bin Jia
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
25
|
Chen S, He P, Wang X, Xiao F, Zhou P, He Q, Jia L, Dong F, Zhang H, Jia B, Liu H, Tang B. Co/Sm-modified Ti/PbO 2 anode for atrazine degradation: Effective electrocatalytic performance and degradation mechanism. CHEMOSPHERE 2021; 268:128799. [PMID: 33187658 DOI: 10.1016/j.chemosphere.2020.128799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
In this work, Ti/PbO2-Co-Sm electrode has been successfully prepared using electrodeposition and further applied for the electrocatalysis of atrazine (ATZ) herbicide wastewater. As expected, Ti/PbO2-Co-Sm electrode displays highest oxygen evolution potential, lowest charge transfer resistance, longest service lifetime and most effective electrocatalytic activity compared with Ti/PbO2, Ti/PbO2-Sm and Ti/PbO2-Co electrodes. Orthogonal and single factor experiments are designed to optimize the condition of ATZ degradation. The maximum degradation efficiency of 92.6% and COD removal efficiency of 84.5% are achieved in electrolysis time 3 h under the optimum condition (current density 20 mA cm-2, Na2SO4 concentration 8.0 g L-1, pH 5 and temperature 35 °C). In addition, Ti/PbO2-Co-Sm electrode exhibits admirable recyclability in degradation progress. The degradation of ATZ is accomplished by indirect electrochemical oxidation and ∙OH is tested as the main active substance in ATZ oxidation. The possible degradation mechanism of ATZ has been proposed according to the degradation intermediates detected by LC-MS. This research suggests that Ti/PbO2-Co-Sm is a promising electrode for ATZ degradation.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Xuejiao Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lingpu Jia
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Bin Jia
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China; Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hongtao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.
| |
Collapse
|
26
|
Guo H, Xu Z, Qiao D, Wang L, Xu H, Yan W. Fabrication and characterization of titanium-based lead dioxide electrode by electrochemical deposition with Ti 4 O 7 particles. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:42-50. [PMID: 32304604 DOI: 10.1002/wer.1339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
A novelly modified Ti/PbO2 electrode was synthesized with Ti4 O7 particles through electrochemical deposition method (marked as PbO2 -Ti4 O7 ). The properties of the as-prepared electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), hydroxyl radical concentration, accelerated life test, etc. Azophloxine was chosen as the model pollutant for electro-catalytic oxidation to evaluate electrochemical activity of the electrode. The experimental results indicated that Ti4 O7 modification could prominently improve the properties of the electrodes, especially, improve the surface morphology, enhance the current response, and reduce the impedance. However, the predominant phases of PbO2 electrodes were unchanged, which were completely pure β-PbO2 . During the electrochemical oxidation process, the PbO2 -Ti4 O7 (1.0) electrode showed the best performance on degradation of AR1 (i.e., the highest removal efficiency and the lowest energy consumption), which could be attributed to its high oxygen evolution potential (OEP) and strong capability of HO· generation. Moreover, the accelerated service lifetime of PbO2 -Ti4 O7 (1.0) electrode was 175 hr, 1.65 times longer than that of PbO2 electrode (105.5 hr). PRACTITIONER POINTS: PbO2 /Ti4 O7 composite anode was fabricated through electrochemical co-deposition. Four concentration gradients of Ti4 O7 particle were tested. PbO2 -Ti4 O7 (1.0) showed optimal electrocatalytic ability due to its high OEP and HO· productivity.
Collapse
Affiliation(s)
- Hua Guo
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhicheng Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Dan Qiao
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Liangtian Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Electrochemical advanced oxidation process of Phenazopyridine drug waste using different Ti-based IrO2-Ta2O5 anodes. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Chen S, Zhou L, Yang T, He Q, Zhou P, He P, Dong F, Zhang H, Jia B. Thermal decomposition based fabrication of dimensionally stable Ti/SnO 2-RuO 2 anode for highly efficient electrocatalytic degradation of alizarin cyanin green. CHEMOSPHERE 2020; 261:128201. [PMID: 33113663 DOI: 10.1016/j.chemosphere.2020.128201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
In this work, Ti/SnO2-RuO2 dimensionally stable anode has been successfully fabricated via thermal decomposition method and further used for highly efficient electrocatalytic degradation of alizarin cyanin green (ACG) dye wastewater. The morphology, crystal structure and composition of Ti/SnO2-RuO2 electrode are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF), respectively. The result of accelerated life test suggests that as-prepared Ti/SnO2-RuO2 anode exhibits excellent electrochemical stability. Some parameters, such as reaction temperature, initial pH, electrode spacing and current density, have been investigated in detail to optimize the degradation condition of ACG. The results show that the decolorization efficiency and chemical oxygen demand removal efficiency of ACG reach up to 80.4% and 51.3% after only 40 min, respectively, under the optimal condition (reaction temperature 25 °C, pH 5, electrode spacing 1.0 cm and current density 3 mA cm-2). Furthermore, the kinetics analysis reveals that the process of electrocatalytic degradation of ACG follows the law of quasi-first-order kinetics. The excellent electrochemical activity demonstrates that the Ti/SnO2-RuO2 electrode presents a favorable application prospect in the electrochemical treatment of anthraquinone dye wastewater.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lianhong Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tiantian Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Mianyang, 621010, Sichuan, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Bin Jia
- Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
29
|
Yu X, Tang Y, Pan J, Shen L, Begum A, Gong Z, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1751-1769. [PMID: 32762110 DOI: 10.1002/wer.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
By summarizing 187 relevant research articles published in 2019, the review is focused on the research progress of physicochemical processes for wastewater treatment. This review divides into two sections, physical processes and chemical processes. The physical processes section includes three sub-sections, that is, adsorption, granular filtration, and dissolved air flotation, whereas the chemical processes section has five sub-sections, that is, coagulation/flocculation, advanced oxidation processes, electrochemical, capacitive deionization, and ion exchange. PRACTITIONER POINTS: Totally 187 research articles on wastewater treatment have been reviewed and discussed. The review has two major sections with eight sub-topics.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- China Construction Science & Technology Co. Ltd., Shenzhen Branch, Shenzhen, China
| | - Yao Tang
- Ebo Environmental Protection Group, Guangzhou, China
| | - Jian Pan
- Hangzhou Bertzer Catalyst Co., Ltd., Hangzhou, China
- Environmental Technology Innovation Center of Jiande, Hangzhou, China
| | - Lin Shen
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Afruza Begum
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| | | | - Jinkai Xue
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| |
Collapse
|
30
|
Espinoza LC, Sepúlveda P, García A, Martins de Godoi D, Salazar R. Degradation of oxamic acid using dimensionally stable anodes (DSA) based on a mixture of RuO 2 and IrO 2 nanoparticles. CHEMOSPHERE 2020; 251:126674. [PMID: 32359720 DOI: 10.1016/j.chemosphere.2020.126674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Dimensionally stable anodes (DSA) have been widely used to degrade organic compounds because these surfaces promote the electrogeneration of active chlorine species in the bulk of the solution, as well as in the vicinity of the anode when NaCl is used as supporting electrolyte. In this work, the nanoparticles synthesis of IrO2 and RuO2 was performed to obtain two types of DSA electrodes named Class I and II to degrade oxamic acid. For Class I and II DSA, the nanoparticles used were synthesized separately and in the same reaction medium, respectively. Electrolysis were carried out in an open cylindrical cell without division at 25 °C, DSAs were used as anodes and a stainless-steel electrode as cathode, both elements have a geometric area of 2.8 cm2 immersed in 0.05 mol L-1 of NaCl or Na2SO4 and a current density of 3 mA cm-2 was applied for 6 h. Active chlorine species generated in the absence of oxamic acid in NaCl were also detected and quantified through ion chromatography. In Na2SO4 there was no degradation of the compound, but in NaCl the oxamic acid concentration reaching 85% with Class I DSA. The same tendency is observed in mineralization, in which Class I DSA allowed reaching a CO2 transformation close to 73%. The difference in the results occurs because with Class I DSA, more hypochlorite is generated than with Class II and therefore there is a larger amount of oxidizing species in the solution that enables the degradation and mineralization of oxamic acid.
Collapse
Affiliation(s)
- L Carolina Espinoza
- Laboratorio de Electroquímica Del Medio Ambiente, LEQMA. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH, Santiago, Chile.
| | - Pamela Sepúlveda
- Facultad de Química and Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Alejandra García
- Laboratorio de síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales. Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Mexico
| | - Denis Martins de Godoi
- Laboratorio de Materiais Magneticos e Coloides, Departamento de Fisicoquímica, São Paulo State University,UNESP, Araraquara, Brazil
| | - Ricardo Salazar
- Laboratorio de Electroquímica Del Medio Ambiente, LEQMA. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH, Santiago, Chile.
| |
Collapse
|
31
|
Acevedo-García V, Rosales E, Puga A, Pazos M, Sanromán M. Synthesis and use of efficient adsorbents under the principles of circular economy: Waste valorisation and electroadvanced oxidation process regeneration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116796] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Zhi D, Zhang J, Wang J, Luo L, Zhou Y, Zhou Y. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti 4O 7 and Ti/RuO 2-IrO 2 anodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110571. [PMID: 32421562 DOI: 10.1016/j.jenvman.2020.110571] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Electrochemical treatments of coking wastewater (CW) and coal gasification wastewater (CGW) were conducted with Ti/Ti4O7 and Ti/RuO2-IrO2 anodes. The performances of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes were investigated by analyzing the effects of five key influencing factors including anodes material, current density, anode-cathode distance, initial pH value, and electrolyte type. The removal efficiencies of total organic carbon (TOC) were analyzed during the processes of CW and CGW electro-oxidation. The removal efficiencies of sixteen polynuclear aromatic hydrocarbons (PAHs) in CW and CGW by electro-oxidation were also explored to further assess the electrochemical activities of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes. The Ti/Ti4O7 anode achieved 78.7% COD removal efficiency of CW, 85.8% COD removal efficiency of CGW, 50.3% TOC removal efficiency of CW, and 54.8% TOC removal efficiency of CGW, higher than the Ti/RuO2-IrO2 anode (76.7%, 78.1%, 44.8% and 46.8%). The COD removal efficiencies increased with the applied current density, decreased with the increase of the anode-cathode distance, and slightly decreased with the increase of the initial pH value. Meanwhile, the removal efficiencies of sixteen PAHs by the Ti/Ti4O7 anode were mostly higher than those by the Ti/RuO2-IrO2 anode. By comprehensively analyzing the performances of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes on electrochemical treatments of CW and CGW, this study may supply insights into the application potentials of these anodes to the electrochemical treatments of real wastewater.
Collapse
Affiliation(s)
- Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jia Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing, 100083, PR China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| | - Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
33
|
Pan G, Sun X, Sun Z. Fabrication of multi-walled carbon nanotubes and carbon black co-modified graphite felt cathode for amoxicillin removal by electrochemical advanced oxidation processes under mild pH condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8231-8247. [PMID: 31900780 DOI: 10.1007/s11356-019-07358-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen peroxide (H2O2) electrogenerated via two-electron oxygen reduction reaction at cathode plays an important role in electrochemical advanced oxidation processes for organic pollutants removal from wastewater. Herein, multi-walled carbon nanotubes and carbon black co-modified graphite felt electrode (MWCNTs-CB/GF) was prepared as an efficient cathode for H2O2 electrogeneration and amoxicillin removal by anodic oxidation with hydrogen peroxide (AO-H2O2) and electro-Fenton (EF) under mild pH condition. Besides, the physicochemical and electrochemical properties of MWCNTs-CB/GF were characterized by scanning electron microscopy, N2 adsorption and desorption experiment, contact angle measurement, X-ray photoelectron spectroscopy, and linear sweep voltammetry. Compared with GF, MWCNTs-CB/GF showed a higher H2O2 generation of 309.0 mg L-1 with a current efficiency of 60.9% (after 120 min) and more effective amoxicillin removal efficiencies of 97.5% (after 120 min) and 98.7% (after 30 min) in AO-H2O2 and EF (with 0.5 mM Fe2+) processes, under the condition of current density 12 mA cm-2 and initial pH 5.5. Meanwhile, the TOC removal efficiency was 45.2% during EF process after 120 min. Anodic oxidation, H2O2 oxidation, and methanol capture indicated that ∙OH generated via electro-activation reaction at MWCNTs-CB/GF and Fenton reaction in solution played the dominant role in amoxicillin removal. Moreover, the TOC removal was associated with ∙OH generated during Fenton reaction in the solution. The major intermediates of AMX degradation by EF process were identified using LC-MS and the possible degradation pathways were proposed containing of β-lactam ring opening, hydroxylation reaction, decarboxylation reaction, methyl groups in the thiazolidine ring oxidation reaction, bond cleavage, and rearrangement processes. All of the above results proved that MWCNTs-CB/GF was an excellent cathode for AMX degradation under mild pH condition.
Collapse
Affiliation(s)
- Guifang Pan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xiuping Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| |
Collapse
|
34
|
Zhang Y, He P, Zhou L, Dong F, Yang D, Lei H, Du L, Jia L, Zhou S. Optimized terbium doped Ti/PbO 2 dimensional stable anode as a strong tool for electrocatalytic degradation of imidacloprid waste water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109921. [PMID: 31711778 DOI: 10.1016/j.ecoenv.2019.109921] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
The presence of pesticides in water has emerged as a momentous environmental issue over the past decades. Herein, a terbium doped Ti/PbO2 (denoted as Ti/PbO2-Tb) dimensionally stable Ti/PbO2-Tb anode has been successfully prepared by one-step electrodeposition path for electrocatalytic degradation of imidacloprid (IMD) wastewater with high efficiency. Ti/PbO2-Tb electrode presents higher oxygen evolution potential, lower charge transfer resistance, stronger stability, longer service lifetime and outstanding electrocatalytic activity than Ti/PbO2 electrode. The optimum condition for IMD oxidation is obtained by analyzing the effects of some critical operating parameters including temperature, initial pH, current density and electrolyte concentration. It is proved that 70.05% of chemical oxygen demand and 76.07% of IMD are removed after 2.5 h of degradation under current density of 8 mA cm-2, pH 9, temperature 30 °C and 7.0 g L-1 NaCl electrolyte. In addition, the electrode displays commendable energy saving property as well as favorable reusability. The degradation mechanism of IMD is proposed by analyzing the intermediates identified by LC-MS. The present research provides a feasible strategy to degrade IMD wastewater by Ti/PbO2-Tb electrode.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Mianyang 621010, Sichuan, PR China.
| | - Lianhong Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Dingming Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Hong Lei
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Licheng Du
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lingpu Jia
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Shiping Zhou
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China; National Engineering Research Center for Municipal Wastewater Treatment and Reuse, Mianyang, 621000, PR China
| |
Collapse
|
35
|
Teng J, Liu G, Liang J, You S. Electrochemical oxidation of sulfadiazine with titanium suboxide mesh anode. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135441] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|