1
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
2
|
Zhu Z, Shi W, Li F, Zhang M, Luo K, Tong D, Yu Y, Zhang X, Lu L, Yan M. Studies on immunological characteristics and transcriptomic analysis of Litopenaeus vannamei low salt-tolerance family. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105265. [PMID: 39265856 DOI: 10.1016/j.dci.2024.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Litopenaeus vannamei is a widely distributed euryhaline aquatic animal, affected by low salinity, which can impact its disease resistance and immunity. However, there is a limited understanding of the adaptation mechanisms of L. vannamei with different genetic backgrounds to low salinity. Therefore, the present study aimed to compare the immunity characteristics and transcriptomics of L. vannamei low salt-tolerant (FG I/J) and low salt-sensitive (control) families. Also, the disease resistance and immune parameters (including [THC], hemolymph cell viability, lysozyme activity [LZM], phenoloxidase content [PO], interleukin-6 [IL-6], and tumor necrosis factor-alpha [TNF-α]) of the FG I/J and control families of L. vannamei under low salinity (5‰) and ambient salinity (24‰) were examined. Additionally, hepatopancreas transcriptomics of the FG I/J and control families were analyzed at a salinity of 5‰. The results showed that the FG I/J family had higher disease resistance to Vibrio parahaemolyticus and stronger immunological capacity than the control family. Transcriptomic analysis showed significantly enriched energy metabolism and immune regulation pathways. Therefore, we speculated that energy metabolism provides sufficient energy for immunological modulation in the FG I/J family to deal with long-term low-salt stress and achieve high growth and survival rates.
Collapse
Affiliation(s)
- Zhihang Zhu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang Li
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Min Zhang
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Kui Luo
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China.
| |
Collapse
|
3
|
Zhang W, Tang Y, Han Y, Tian D, Yu Y, Yu Y, Li W, Shi W, Liu G. Pentachlorophenol impairs the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk. CHEMOSPHERE 2024; 364:143230. [PMID: 39222693 DOI: 10.1016/j.chemosphere.2024.143230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Due to past massive usage and persistent nature, pentachlorophenol (PCP) residues are prevalent in environments, posing a potential threat to various organisms such as sessile filter-feeding bivalves. Although humoral immunity and its crosstalk with cellular one are crucial for the maintaining of robust antimicrobic capability, little is known about the impacts of PCP on these critical processes in bivalve mollusks. In this study, pathogenic bacterial challenge and plasma antimicrobic capability assays were carried out to assess the toxic effects of PCP on the immunity of a common bivalve species, blood clam (Tegillarca granosa). Moreover, the impacts of PCP-exposure on the capabilities of pathogen recognition, hemocyte recruitment, and pathogen degradation were analyzed as well. Furthermore, the activation status of downstream immune-related signalling pathways upon PCP exposure was also assessed. Data obtained illustrated that 28-day treatment with environmentally realistic levels of PCP resulted in evident declines in the survival rates of blood clam upon Vibrio challenge along with markedly weakened plasma antimicrobic capability. Additionally, the levels of lectin and peptidoglycan-recognition proteins (PGRPs) in plasma as well as the expression of pattern recognition receptors (PRRs) in hemocytes were found to be significantly inhibited by PCP-exposure. Moreover, along with the downregulation of immune-related signalling pathway, markedly fewer chemokines (interleukin 8 (IL-8), IL-17, and tumor necrosis factor α (TNF-α)) in plasma and significantly suppressed chemotactic activity of hemocytes were also observed in PCP-exposed blood clams. Furthermore, compared to that of the control, blood clams treated with PCP had markedly lower levels of antimicrobic active substances, lysozyme (LZM) and antimicrobial peptides (AMP), in their plasma. In general, the results of this study suggest that PCP exposure could significantly impair the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Han
- School of Life and Environmental, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Zhang T, Wang X, Zhang Q, Li K, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Yuan X, Zhao J. Intrinsic and extrinsic pathways of apoptosis induced by multiple antibiotics residues and ocean acidification in hemocytes of scallop Argopecten irradians irradians: An interactionist perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115806. [PMID: 38091672 DOI: 10.1016/j.ecoenv.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The increasing prevalence of antibiotics in seawater across global coastal areas, coupled with the ocean acidification induced by climate change, present a multifaceted challenge to marine ecosystems, particularly impacting the key physiological processes of marine organisms. Apoptosis is a critical adaptive response essential for maintaining cellular homeostasis and defending against environmental threats. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on apoptosis and the underlying mechanisms in hemocytes of A. irradians irradians were determined through flow cytometry analysis, comet assay, oxidative stress biomarkers analysis, and transcriptome analysis. Results showed that apoptosis could be triggered by either AM exposure or OA exposure, but through different pathways. Exposure to AM leads to mitochondrial dysfunction and oxidative damage, which in turn triggers apoptosis via a series of cellular events in both intrinsic and extrinsic pathways. Conversely, while OA exposure similarly induced apoptosis, its effects are comparatively subdued and are predominantly mediated through the intrinsic pathway. Additionally, the synergistic effects of AM and OA exposure induced pronounced mitochondrial dysfunction and oxidative damages in the hemocytes of A. irradians irradians. Despite the evident cellular distress and the potential initiation of apoptotic pathways, the actual execution of apoptosis appears to be restrained, which might be attributed to an energy deficit within the hemocytes. Our findings underscore the constrained tolerance capacity of A. irradians irradians when faced with multiple environmental stressors, and shed light on the ecotoxicity of antibiotic pollution in the ocean under prospective climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Ke Li
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiutang Yuan
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
5
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Lei F, Zhang N, Miao J, Tong R, Li Y, Pan L. Potential pathway and mechanisms underlining the immunotoxicity of benzo[a]pyrene to Chlamys farreri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97128-97146. [PMID: 37582894 DOI: 10.1007/s11356-023-29016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
The long-distance migration of polycyclic aromatic hydrocarbons (PAHs) promotes their release into the marine environment, posing a serious threat to marine life. Studies have shown that PAHs have significant immunotoxicity effects on bivalves, but the exact mechanism of immunotoxicity remains unclear. This paper aims to investigate the effects of exposure to 0.4, 2, and 10 μg/L of benzo(a)pyrene (B[a]P) on the immunity of Chlamys farreri under environmental conditions, as well as the potential molecular mechanism. Multiple biomarkers, including phagocytosis rate, metabolites, neurotoxicity, oxidative stress, DNA damage, and apoptosis, were adopted to assess these effects. After exposure to 0.4, 2, and 10 μg/L B[a]P, obvious concentration-dependent immunotoxicity was observed, indicated by a decrease in the hemocyte index (total hemocyte count, phagocytosis rate, antibacterial and bacteriolytic activity). Analysis of the detoxification metabolic system in C. farreri revealed that B[a]P produced B[a]P-7,8-diol-9,10-epoxide (BPDE) through metabolism, which led to an increase in the expression of protein tyrosine kinase (PTK). In addition, the increased content of neurotransmitters (including acetylcholine, γ -aminobutyric acid, enkephalin, norepinephrine, dopamine, and serotonin) and related receptors implied that B[a]P might affect immunity through neuroendocrine system. The changes in signal pathway factors involved in immune regulation indicated that B[a]P interfered with Ca2+ and cAMP signal transduction via the BPDE-PTK pathway or neuroendocrine pathway, resulting in immunosuppression. Additionally, B[a]P induced the increase in reactive oxygen species (ROS) content and DNA damage, as well as an upregulation of key genes in the mitochondrial pathway and death receptor pathway, leading to the increase of apoptosis rate. Taken together, this study comprehensively investigated the detoxification metabolic system, neuroendocrine system, and cell apoptosis to explore the toxic mechanism of bivalves under B[a]P stress.
Collapse
Affiliation(s)
- Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Abidli S, Zaidi S, Ben Younes R, Lahbib Y, Trigui El Menif N. Impact of polyethylene microplastics on the clam Ruditapes decussatus (Mollusca: Bivalvia): examination of filtration rate, growth, and immunomodulation. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:746-755. [PMID: 37460906 DOI: 10.1007/s10646-023-02683-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/25/2023]
Abstract
The present study was conducted to assess, for the first time, the effects of a 14 days experimental exposure to polyethylene (PE) based MPs (40-48 µm) on the clam Ruditapes decussatus. Clams were exposed to three different concentrations of MPs in controlled laboratory conditions: 10 µg/L (low), 100 µg/L (medium), and 1000 µg/L (high). The effects of MPs were assessed using a multi-marker approach, including the filtration rate, growth, and the integrity of immune cells (such as haemocyte numbers, viability, and lysosomal membrane destabilization). The results revealed that as the concentration of PE-MPs increased, the filtration rate decreased, indicating that PE-MPs hindered the clams' ability to filter water. Furthermore, there was a noticeable decrease in the overall weight of the clams, particularly in the group exposed to 1000 µg/L. This decrease could be attributed to the impairment of their nutrient filtration function. In terms of immune system biomarkers, exposure to PE-MPs led to immune system disruption, characterized by a significant increase in the number of haemocytic cells, especially in the group exposed to the high concentration. Additionally, there was a notable reduction in the viability of haemocytes, resulting in the destabilization of their lysosomal membranes, particularly in the groups exposed to medium and high PE-MPs concentrations. The findings of this study indicate that the sensitivity of hemolymph parameter changes and filtration rate in R. decussatus exposed to PE-MPs (100 and 1000 µg/L), surpasses that of growth performance and can serve as reliable indicators to assess habitat conditions and contaminant levels.
Collapse
Affiliation(s)
- Sami Abidli
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia.
| | - Salha Zaidi
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia
| | - Ridha Ben Younes
- University of Carthage, Faculty of Sciences of Bizerte, Research Unit of Immuno-Microbiology Environmental and Carcinogenesis, 7021, Zarzouna, Bizerte, Tunisia
| | - Youssef Lahbib
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia
| | - Najoua Trigui El Menif
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia
| |
Collapse
|
8
|
Li S, Chen H, Liu C, Sokolova IM, Chen Y, Deng F, Xie Z, Li L, Liu W, Fang JKH, Lin D, Hu M, Wang Y. Dietary exposure to nTiO 2 reduces byssus performance of mussels under ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163499. [PMID: 37062322 DOI: 10.1016/j.scitotenv.2023.163499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023]
Abstract
Nano‑titanium dioxide (nTiO2) is a widely used nanomaterial posing potential ecological risk for marine ecosystems that might be enhanced by elevated temperatures such as expected during climate change. nTiO2 may affect benthic filter feeders like mussels through waterborne exposures and via food chain due to the adsorption on/in algae. Mussel byssus are proteinaceous fibers secreted by byssal glands of the mussels for attachment. Byssus production and mechanical properties are sensitive to environmental stressors but the combined effects of warming and nTiO2 on byssus performance of mussels are unclear hampering our understanding of the predation and dislodgement risk of mussels under the multiple stressor scenarios. We explored the effects of a short-term (14-day) single and combined exposures to warming (28 °C) and 100 μg L-1 nTiO2 (including food co-exposure) on the byssus performance of the thick shell mussel Mytilus coruscus. The mechanical strength (measured as the breaking force) of the byssal threads was impaired by warming and nTiO2 (including food co-exposure), but the number and length of the byssal threads were increased. The mRNA expression levels of mussel foot proteins (mfp-3, mfp-5) and pre-collagens (preCOL-D, preCOL-P, preCOL-NG) were up-regulated to varying degrees, with the strongest effects induced by warming. This indicates that the physiological and molecular mechanisms of byssus secretion are plastic. However, downregulation of the mRNA expression of preCOL-D and preCOL-P under the combined warming and nTiO2 exposures indicate the limits of these plasticity mechanisms and suggest that the attachment ability and survival of the mussels may be impaired if the pollution or temperature conditions further deteriorate.
Collapse
Affiliation(s)
- Saishuai Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hui Chen
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Chunhua Liu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Yuchuan Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Fujing Deng
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhe Xie
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wei Liu
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
9
|
Li Y, Tong R, Li Z, Zhang X, Pan L, Li Y, Zhang N. Toxicological mechanism of ammonia-N on haematopoiesis and apoptosis of haemocytes in Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163039. [PMID: 36966842 DOI: 10.1016/j.scitotenv.2023.163039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Ammonia, as an important pollutant, contributed to the reduction of immunity, disruption of physiology in animals. RNA interference (RNAi) was performed to understand the function of astakine (AST) in haematopoiesis and apoptosis in Litopenaeus vannamei under ammonia-N exposure. Shrimps were exposed to 20 mg/L ammonia-N from 0 to 48 h with injection of 20 μg AST dsRNA. Further, shrimps were exposed to 0, 2, 10 and 20 mg/L ammonia-N also from 0 to 48 h. The results showed that the total haemocytes count (THC) decreased under ammonia-N stress and the knockdown of AST resulted in a further decrease of THC, suggesting that 1) the proliferation was decreased through the reduction of AST and Hedgehog, the differentiation was interfered by Wnt4, Wnt5 and Notch, and the migration was inhibited by the decrease of VEGF; 2) oxidative stress was induced under ammonia-N stress, leading to the increase of DNA damage with the up-regulated gene expression of death receptor, mitochondrial and endoplasmic reticulum stress pathways; 3) the changes of THC resulted from the decrease of proliferation, differentiation and migration of haematopoiesis cells and the increase of apoptosis of haemocytes. This study helps to deepen our understanding of risk management in shrimp aquaculture.
Collapse
Affiliation(s)
- Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
10
|
Zha S, Zhang W, Liu H, Huang S, Sun C, Bao Y. Two common nanoparticles exert immunostimulatory and protective effects in Tegillarca granosa against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108774. [PMID: 37105426 DOI: 10.1016/j.fsi.2023.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
There are many studies revealed that metal-based nanoparticles (NPs) possess excellent bactericidal effect on multitudinous bacteria and fungi. However, the control effect of NPs as antimicrobial agents to against Vibrio parahaemolyticus infection remain in poorly understood for blood clam, Tegillarca granosa. In order to evaluate the effect, the changes in six physiological parameters and the immune-related genes expression of clams exposed to V. parahaemolyticus alone or along with NPs (nZnO or nCuO) were investigated in present study. Results showed that both tested NPs exerted prominent redemptive or mitigative effect in an inverse dose-dependent way on physiological indexes of clam, especially in the total counts, phagocytosis and the cell viability of haemocytes, as well as the concentration and activity of lysozymes, when co-exposed with Vibrio. Gene expression analysis showed NPs at a concentration of 0.1 mg/L generally mitigated the downregulation of immune-related genes after clam exposure to V. parahaemolyticus. The combination of 0.1 mg/mL nZnO and nCuO additives has been shown to significantly enhance the humoral immunity of blood clam, suggesting its potential as a protective measure against V. parahaemolyticus infection in T. granosa.
Collapse
Affiliation(s)
- Shanjie Zha
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315604, PR China
| | - Weifeng Zhang
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; School of Marine Sciences, Ningbo University, Ningbo, 315823, PR China
| | - Hongxing Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315604, PR China
| | - Siyi Huang
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Changsen Sun
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315604, PR China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315604, PR China.
| |
Collapse
|
11
|
Huang L, Zhang W, Tong D, Lu L, Zhou W, Tian D, Liu G, Shi W. Triclosan and triclocarban weaken the olfactory capacity of goldfish by constraining odorant recognition, disrupting olfactory signal transduction, and disturbing olfactory information processing. WATER RESEARCH 2023; 233:119736. [PMID: 36801581 DOI: 10.1016/j.watres.2023.119736] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, increased production and consumption of disinfectants such as triclosan (TCS) and triclocarban (TCC) have led to massive pollution of the environment, which draws global concern over the potential risk to aquatic organisms. However, the olfactory toxicity of disinfectants in fish remains elusive to date. In the present study, the impact of TCS and TCC on the olfactory capacity of goldfish was assessed by neurophysiological and behavioral approaches. As shown by the reduced distribution shifts toward amino acid stimuli and hampered electro-olfactogram responses, our results demonstrated that TCS/TCC treatment would cause deterioration of the olfactory ability of goldfish. Our further analysis found that TCS/TCC exposure suppressed the expression of olfactory G protein-coupled receptors in the olfactory epithelium, restricted the transformation of odorant stimulation into electrical responses by disturbing the cAMP signaling pathway and ion transportation, and induced apoptosis and inflammation in the olfactory bulb. In conclusion, our results demonstrated that an environmentally realistic level of TCS/TCC would weaken the olfactory capacity of goldfish by constraining odorant recognition efficiency, disrupting olfactory signal generation and transduction, and disturbing olfactory information processing.
Collapse
Affiliation(s)
- Lin Huang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China.
| |
Collapse
|
12
|
Yu Y, Tian D, Ri S, Kim T, Ju K, Zhang J, Teng S, Zhang W, Shi W, Liu G. Gamma-aminobutyric acid (GABA) suppresses hemocyte phagocytosis by binding to GABA receptors and modulating corresponding downstream pathways in blood clam, Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108608. [PMID: 36764632 DOI: 10.1016/j.fsi.2023.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Although accumulating data demonstrated that gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, plays an important regulatory role in immunity of vertebrates, its immunomodulatory function and mechanisms of action remain poorly understood in invertebrates such as bivalve mollusks. In this study, the effect of GABA on phagocytic activity of hemocytes was evaluated in a commercial bivalve species, Tegillarca granosa. Furthermore, the potential regulatory mechanism underpinning was investigated by assessing potential downstream targets. Data obtained demonstrated that in vitro GABA incubation significantly constrained the phagocytic activity of hemocytes. In addition, the GABA-induced suppression of phagocytosis was markedly relieved by blocking of GABAA and GABAB receptors using corresponding antagonists. Hemocytes incubated with lipopolysaccharides (LPS) and GABA had significant higher K+-Cl- cotransporter 2 (KCC2) content compared to the control. In addition, GABA treatment led to an elevation in intracellular Cl-, which was shown to be leveled down to normal by blocking the ionotropic GABAA receptor. Treatment with GABAA receptor antagonist also rescued the suppression of GABAA receptor-associated protein (GABARAP), KCC, TNF receptor associated factor 6 (TRAF6), inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKα), and nuclear factor kappa B subunit 1 (NFκB) caused by GABA incubation. Furthermore, incubation of hemocytes with GABA resulted in a decrease in cAMP content, an increase in intracellular Ca2+, and downregulation of cAMP-dependent protein kinase (PKA), calmodulin kinase II (CAMK2), calmodulin (CaM), calcineurin (CaN), TRAF6, IKKα, and NFκB. All these above-mentioned changes were found to be evidently relieved by blocking the metabotropic G-protein-coupled GABAB receptor. Our results suggest GABA may play an inhibitory role on phagocytosis through binding to both GABAA and GABAB receptors, and subsequently regulating corresponding downstream pathways in bivalve invertebrates.
Collapse
Affiliation(s)
- Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, North Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, North Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Aquaculture, Wonsan Fisheries University, Wonsan, 999093, North Korea
| | - Jiongming Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, PR China
| | | | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
13
|
Zhang X, Shen M, Wang C, Gao M, Wang L, Jin Z, Xia X. Impact of aluminum exposure on oxidative stress, intestinal changes and immune responses in red swamp crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158902. [PMID: 36152855 DOI: 10.1016/j.scitotenv.2022.158902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/12/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Aluminum (Al) is an abundant metal that has been classified as a threatening pollutant due to indiscriminate use and anthropogenic activities. This study aimed to evaluate the impacts of Al on crayfish (Procambarus clarkii), including biochemical change, histological alteration, gut microbial community diversification, and immune changes. The bioaccumulation of Al was detected in the hemolymph and intestine of crayfish after Al exposure at different time points. Results showed that Al exposure significantly induced oxidative stress and caused pathohistological changes on intestinal barrier structures in crayfish. It was found that the intestinal microbiota was affected by retained Al and the intestinal community diversity was changed after Al treated in the crayfish. Furthermore, Al exposure affected the immunity in crayfish, by altering the expression of a set of immune-related genes, as well as reducing the phenoloxidase and lysozyme activities. Moreover, Al exposure promoted hemocytes apoptosis and impaired hemophagocytic capacity against Vibro parahamolyticus, resulting in higher mortality of crayfish upon bacterial infection. Taken these results together, we conclude that excessive Al exposure caused adverse effects on multiple biological processes of crayfish and Al pollution is a potential threat to crayfish culture.
Collapse
Affiliation(s)
- Xiaowen Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, China
| | - Manli Shen
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Cui Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Miaomiao Gao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Liuen Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zeyu Jin
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, China.
| |
Collapse
|
14
|
Stremmel H, Weiss L, Parra G, Ramos-Rodríguez E, Araújo CVM. Ecotoxicological assessment of the effects of fluoxetine on Daphnia magna based on acute toxicity, multigenerational reproduction effects, and attraction-repellence responses. CHEMOSPHERE 2023; 312:137028. [PMID: 36323386 DOI: 10.1016/j.chemosphere.2022.137028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Fluoxetine, a common pharmaceutical used as an antidepressant, is already considered potentially hazardous to biota due to its increasing use and detection in European, North American, and Asian rivers. We studied the effects of fluoxetine on Daphnia magna, as we hypothesized that fluoxetine might have harmful effects, short and long-term, at different levels: survival, behaviour, and reproduction (offspring production). We applied two different approaches: (i) a scenario at environmentally relevant concentrations (0.1-1.0 μg/L) and (ii) a scenario simulating a future worsening of contamination (1-800 μg/L) until the reach of lethal concentrations. In the former, we examined whether there are multigenerational effects on reproduction and on the avoidance/colonisation behaviour in previously exposed populations. In the latter, three responses were assessed: survival, avoidance behaviour and reproduction. We did not detect differences in the reproduction output of D. magna among the treatments over the three generations examined. Irrespective of the multigenerational treatment, D. magna colonised the environments with fluoxetine in a similar way. In the second scenario, we determined the lethal concentration for 50% of the population (96 h-LC50 = 365 μg/L), which, in spite of the toxic effect, was attractive to organisms during the avoidance tests (24 h); in fact, D. magna were attracted (no repellence) even to the highest concentrations of fluoxetine tested (800 μg/L). Lastly, in a 21-day chronic toxicity test the reproduction output of D. magna increased with higher concentrations of fluoxetine. This effect might be related to the fact that the organisms in the contaminated treatment began their first reproduction earlier, when compared to that in the control treatments. In conclusion, this study discusses an identified hazard for aquatic biota due to the fluoxetine attraction effect and a predictive assessment of the consequences expected if its indiscriminate use increases.
Collapse
Affiliation(s)
- Helmut Stremmel
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11510, Puerto Real, Cadiz, Spain; Department of Animal Ecology, Evolution and Biodiversity, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Linda Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr Universität Bochum, 44801 Bochum, Germany
| | - Gema Parra
- Animal Biology, Plant Biology and Ecology Department, University of Jaén, 23071 Jaén, Spain
| | | | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11510, Puerto Real, Cadiz, Spain.
| |
Collapse
|
15
|
Yu Y, Tian D, Han Y, Huang L, Tang Y, Zhang W, Zhou W, Shi W, Yu Y, Liu G. Impacts of microplastics and carbamazepine on the shell formation of thick-shell mussels and the underlying mechanisms of action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156442. [PMID: 35660597 DOI: 10.1016/j.scitotenv.2022.156442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Forming calcareous exoskeletons is crucial for the health and survival of calcifiers such as bivalves. However, the impacts of waterborne emergent pollutants on this important process remain largely unknown. In this study, the effects of two types of emergent pollutants, microplastics (MPs) and carbamazepine (CBZ), which are ubiquitously present in ocean environments, on shell formation were assessed in the thick-shell mussel (Mytilus coruscus) with a shell regeneration experiment. In addition, their impacts on the in vivo contents of ATP, Ca2+, carbonic anhydrase (CA), and bone morphogenetic protein receptor type-2 (BMPR2), the activity of phosphofructokinase (PFK) and Ca2+-ATPase, and the expression of shell-formation related genes were analyzed. The data collected demonstrated that shell regeneration after mechanical injury was significantly arrested by CBZ and/or MPs. Besides, all the physiological and molecular parameters investigated were markedly suppressed by these two pollutants. Furthermore, synergistic impacts on most of the parameters examined were observed between CBZ and MPs. Our results indicate that these two pollutants may disrupt shell formation by constraining the availability of raw materials and energy, inhibiting the formation of the organic shell matrix, and interfering with the regulation of crystallization, which may have far-reaching impacts on the health of marine calcifiers.
Collapse
Affiliation(s)
- Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
16
|
Protective Effect of Escitalopram on Hepatocellular Carcinoma by Inducing Autophagy. Int J Mol Sci 2022; 23:ijms23169247. [PMID: 36012510 PMCID: PMC9408912 DOI: 10.3390/ijms23169247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is an aggressive cancer with poor prognosis. Although recent research has indicated that selective serotonin reuptake inhibitors (SSRIs), including escitalopram, have anticancer effects, little is known about the effects of escitalopram on HCC. Methods: Both in vitro and in vivo studies were conducted to verify the potentials of escitalopram on HCC treatment. To explore whether the effects of escitalopram are clinically consistent with laboratory findings, a nationwide population-based cohort study was also adopted to examine the association between escitalopram and HCC risk. Results: As compared with THLE-3 cells, escitalopram significantly inhibited the proliferation of HepG2 and Huh-7 cells. Specifically, escitalopram significantly induced autophagy in HepG2 and Huh-7 cells by increasing the LC3-II/LC3-I ratio and the expression of ATG-3, ATG-5, ATG-7, and Beclin-1 proteins. Moreover, escitalopram significantly inhibited the growth of xenografted Huh-7 cells in SCID mice that were treated with 12.5 mg/kg escitalopram. Accordingly, the risk of HCC was negatively correlated with escitalopram use. Conclusions: These findings provided evidence supporting the therapeutic potential of escitalopram for HCC. Both laboratory and nationwide population-based cohort evidence demonstrated the attenuated effects of escitalopram on HCC.
Collapse
|
17
|
Dolar A, Drobne D, Dolenec M, Marinšek M, Jemec Kokalj A. Time-dependent immune response in Porcellio scaber following exposure to microplastics and natural particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151816. [PMID: 34813818 DOI: 10.1016/j.scitotenv.2021.151816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are very common contaminants in the environment. Despite increasing efforts to assess the effects of microplastics on soil organisms, there remains a lack of knowledge on how organisms respond to diverse types of microplastics after different exposure durations. In the present study, we investigated the immune response of the terrestrial crustacean Porcellio scaber exposed to the two most common microplastic particles in the environment: polyester fibres and tyre particles. We also tested two natural particles: wood dust and silica powder, with all treatments performed at 1.5% w/w. The response of P. scaber was evaluated at the level of the immune system, and also the biochemical, organism and population level, after different exposure durations (1, 2, 4, 7, 14, 21 days). These data reveal dynamic changes in the levels of some immune parameters shortly after exposure, with a gradual return to control values. The total number of haemocytes was significantly decreased after 4 days of exposure to tyre particles, while the proportion of different haemocyte types in the haemolymph was altered shortly after exposure to both polyester fibres and tyre particles. Moreover, 7 days of exposure to tyre particles resulted in increased superoxide dismutase activity in the haemolymph, while metabolic activity in whole woodlice (measured as electron transport system activity) was increased after exposure for 7, 14 and 21 days. In contrast, the natural particles did not elicit any significant changes in the measured parameters. Survival and feeding of P. scaber were not altered by exposure to the microplastics and natural particles in soil. Overall, this study defines a time-dependent transient immune response of P. scaber, which indicates that immune parameters represent sensitive biomarkers of exposure to microplastics. We discuss the importance of using natural particles in studies of microplastics exposure and their effects.
Collapse
Affiliation(s)
- Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matej Dolenec
- Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia
| | - Marjan Marinšek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Tang Y, Du X, Sun S, Shi W, Han Y, Zhou W, Zhang J, Teng S, Ren P, Liu G. Circadian Rhythm and Neurotransmitters Are Potential Pathways through Which Ocean Acidification and Warming Affect the Metabolism of Thick-Shell Mussels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4324-4335. [PMID: 35293730 DOI: 10.1021/acs.est.1c06735] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although the impacts of ocean acidification and warming on marine organisms have been increasingly documented, little is known about the affecting mechanism underpinning their interactive impacts on physiological processes such as metabolism. Therefore, the effects of these two stressors on metabolism were investigated in thick-shell mussel Mytilus coruscus in this study. In addition, because metabolism is primarily regulated by circadian rhythm and neurotransmitters, the impacts of acidification and warming on these two regulatory processes were also analyzed. The data obtained demonstrated that the metabolism of mussels (indicated by the clearance rate, oxygen consumption rate, ammonia excretion rate, O:N ratio, ATP content, activity of pyruvate kinase, and expression of metabolism-related genes) were significantly affected by acidification and warming, resulting in a shortage of energy supply (indicated by the in vivo content of ATP). In addition, exposure to acidification and warming led to evident disruption in circadian rhythm (indicated by the heartrate and the expression rhythm of Per2, Cry, and BMAL1) and neurotransmitters (indicated by the activity of acetyl cholinesterase and in vivo contents of ACh, GABA, and DA). These findings suggest that circadian rhythms and neurotransmitters might be potential routes through which acidification and warming interactively affect the metabolism of mussels.
Collapse
Affiliation(s)
- Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiongming Zhang
- Zhejiang Mariculture Research Institute, Wenzhou 325005, P.R. China
| | | | - Peng Ren
- Zhejiang Mariculture Research Institute, Wenzhou 325005, P.R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
19
|
Ramirez G, Gomez E, Dumas T, Rosain D, Mathieu O, Fenet H, Courant F. Early Biological Modulations Resulting from 1-Week Venlafaxine Exposure of Marine Mussels Mytilus galloprovincialis Determined by a Metabolomic Approach. Metabolites 2022; 12:metabo12030197. [PMID: 35323640 PMCID: PMC8949932 DOI: 10.3390/metabo12030197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
There is growing evidence of the presence of pharmaceuticals in natural waters and their accumulation in aquatic organisms. While their mode of action on non-target organisms is still not clearly understood, their effects warrant assessment. The present study assessed the metabolome of the Mediterranean mussel (Mytilus galloprovincialis) exposed to a 10 µg/L nominal concentration of the antidepressant venlafaxine (VLF) at 3 time-points (1, 3, and 7 days). Over the exposure period, we observed up- or down-modulations of 113 metabolites, belonging to several metabolisms, e.g., amino acids (phenylalanine, tyrosine, tryptophan, etc.), purine and pyrimidine metabolisms (adenosine, cyclic AMP, thymidine, etc.), and several other metabolites involved in diverse functions. Serotonin showed the same time-course modulation pattern in both male and female mussels, which was consistent with its mode of action in humans, i.e., after a slight decrease on the first day of exposure, its levels increased at day 7 in exposed mussels. We found that the modulation pattern of impacted metabolites was not constant over time and it was gender-specific, as male and female mussels responded differently to VLF exposure.
Collapse
Affiliation(s)
- Gaëlle Ramirez
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Elena Gomez
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Thibaut Dumas
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - David Rosain
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Olivier Mathieu
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
- Laboratoire de Pharmacologie-Toxicologie, CHU de Montpellier, Montpellier, France
| | - Hélène Fenet
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Frédérique Courant
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
- Correspondence: ; Tel.: +33-411-759-414
| |
Collapse
|
20
|
Khan MF, Murphy CD. Bacterial degradation of the anti-depressant drug fluoxetine produces trifluoroacetic acid and fluoride ion. Appl Microbiol Biotechnol 2021; 105:9359-9369. [PMID: 34755212 DOI: 10.1007/s00253-021-11675-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/28/2022]
Abstract
Fluoxetine (FLX) is a blockbuster drug with annual sales in the billions of dollars. Its widespread use has resulted in its detection in water courses, where it impacts aquatic life. Investigations on the biodegradation of FLX by microorganisms are important, since augmentation of secondary wastewater treatment by an effective degrader may be one method of improving the drug's removal. In this paper, we demonstrate that common environmental bacteria can use FLX as a sole carbon and energy source. Investigations into the metabolites formed using fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR) and gas chromatography-mass spectrometry indicated that the drug was initially hydrolysed to yield 4-(trifluoromethyl)phenol (TFMP) and 3-(methylamino)-1-phenylpropan-1-ol. Since the fluorometabolite accumulated, the bacteria presumably used the latter compound for carbon and energy. Further growth studies revealed that TFMP could also be used as a sole carbon and energy source and was most likely catabolised via meta-cleavage, since semialdehyde products were detected in culture supernatants. The final products of the degradation pathway were trifluoroacetate and fluoride ion; the former is a dead-end product and was not further catabolised. Fluoride ion most likely arises owing to spontaneous defluorination of the meta-cleavage products that were shown to be photolabile.Key points• Bacteria can use FLX and TFMP as sole carbon and energy sources for their growth.• Biodegradation produces fluorometabolites that were detected by 19F NMR and GC-MS.• Trifluoroacetic acid and fluoride ion were identified as end products.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
21
|
Sun S, Shi W, Tang Y, Han Y, Du X, Zhou W, Zhang W, Sun C, Liu G. The toxic impacts of microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) on haematic parameters in a marine bivalve species and their potential mechanisms of action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147003. [PMID: 33865135 DOI: 10.1016/j.scitotenv.2021.147003] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are universally detected in the marine ecosystem and may exert adverse impacts on marine species. Although under realistic pollution scenarios, PAH pollution usually occurs as a mixture of different PAH compounds, the toxic impacts of PAH mixtures on marine organisms remain largely unknown to date, including their interactions with other emergent pollutants such as MPs. In this study, the single and combined toxic impacts of polystyrene MPs and a mixture of PAHs (standard mix of 16 representative PAHs) on haematic parameters were evaluated in the blood clam Tegillarca granosa. Our data demonstrated that blood clams treated with the pollutants examined led to decreased total haemocyte count (THC), changed haematic composition, and inhibited phagocytosis of haemocytes. Further analyses indicated that MPs and a mixture of PAHs may exert toxic impacts on haematic parameters by elevating the intracellular contents of reactive oxygen species (ROS), giving rise to lipid peroxidation (LPO) and DNA damage, reducing the viability of haemocytes, and disrupting important molecular signalling pathways (indicated by significantly altered expressions of key genes). In addition, compared to clams treated with a single type of pollutant, coexposure to MPs and a mixture of PAHs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect of MPs and PAHs.
Collapse
Affiliation(s)
- Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Changsen Sun
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China.
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
22
|
Han Y, Zhou W, Tang Y, Shi W, Shao Y, Ren P, Zhang J, Xiao G, Sun H, Liu G. Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel Mytilus coruscus and induce synergistic immunotoxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145273. [PMID: 33513513 DOI: 10.1016/j.scitotenv.2021.145273] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/02/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Marine bivalves living in pollution-prone coastal areas may be simultaneously coexposed to veterinary antibiotic residuals and microplastics (MPs). However, the synergistic effects of these two types of emergent pollutants have not been fully elucidated in mussel species. Therefore, the immunotoxic effects of the three representative antibiotics, oxytetracycline (OTC, 270 ng/L), florfenicol (FLO, 42 ng/L), and sulfamethoxazole (SMX, 140 ng/L), with and without the copresence of polystyrene MPs (0.26 mg/L, dimeter: 500 nm), were investigated in the thick shell mussel. Our data showed that the immunity was significantly hampered by exposure to the pollutants and MP-antibiotic coexposure induced synergistic immunotoxicity. For instance, compared to those treated with antibiotics (OTC, FLO, and SMX) alone, mussels coexposed to antibiotic and MPs had significantly lower phagocytic rate (further decline by approximately 28.80%, 34.21%, and 11.22%, respectively) and total hemocyte count (further reduced by approximately 37.45%, 61.67%, and 46.32%, respectively). Exposure to the pollutants tested also led to inductions in intracellular reactive oxygen species (ROS), decreases in the F-actin cytoskeleton, declines in the cell viability of hemocytes, and downregulation of cytoskeleton- and immune-related genes. In addition, mussels coexposed to antibiotic-MP accumulated significantly greater amounts of antibiotics, which may partially explain the synergic immunotoxic effect detected. Exposure to pollutants tested also led to suppression in the activity of glutathione-S-transferase (GST) and downregulation of detoxification-related genes whereas induction in the level of lipid peroxidation (indicated by MDA content) in gills, which may facilitate the entry whereas constrain the exclusion of antibiotics and therefore result in an elevation in accumulation of antibiotics.
Collapse
Affiliation(s)
- Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanqing Shao
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Peng Ren
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Jiongming Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Shi W, Sun S, Han Y, Tang Y, Zhou W, Du X, Liu G. Microplastics impair olfactory-mediated behaviors of goldfish Carassius auratus. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:125016. [PMID: 33444954 DOI: 10.1016/j.jhazmat.2020.125016] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Recently, the ubiquitous presence of microplastics (MPs) has drawn worldwide concern over its potential threat to aquatic organisms. However, the effects of MPs on the olfactory ability of fish and the subsequent odorant evoked behaviors remain elusive. In the present study, we analyzed the potential olfactory toxicity of polystyrene (PS) MPs by assessing olfactory-driven behaviors of goldfish in response to odorants. Our results showed that the olfactory-driven behavioral responses of goldfish to L-cysteine and taurocholic acid were significantly hampered by a 28-day MP exposure. Further analysis demonstrated that exposure to MPs may suppress the expression of genes encoding olfactory G protein-coupled receptors, inhibit the enzyme activities of cation transport ATPases crucial for action potential generation, alter the in vivo contents of neurotransmitters as well as metabolites involved in the transduction of electrical signals, and cause olfactory bulb injury and neurotoxicity closely related to the processing of electrical signals. In conclusion, the results obtained in the present study suggest that MPs at environmentally relevant concentrations could impair the olfactory-mediated behavioral responses of goldfish, probably through hampering odorant identification, action potential generation, olfactory neural signal transduction, and olfactory information processing.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
24
|
Palma TL, Costa MC. Anaerobic biodegradation of fluoxetine using a high-performance bacterial community. Anaerobe 2021; 68:102356. [PMID: 33766774 DOI: 10.1016/j.anaerobe.2021.102356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 01/13/2023]
Abstract
Fluoxetine (FLX), an antidepressant extensively used worldwide is considered an emerging pollutant. The present work intends to investigate for the first time the capacity of a bacterial community containing sulphate-reducing bacteria (SRB) enriched from an anaerobic sludge to biodegrade and use FLX as sole carbon source, since current literature suggests that this drug is poorly biodegraded being mainly removed by adsorption to sediments, where it persists. FLX was biodegraded under sulphate reducing conditions until reaching its lowest and reliably detectable concentration, when 20 mg/L of the drug was used as sole carbon source, while 66 ± 9% of 50 mg/L FLX was removed, after 31 days. The initial bacterial population was mainly constituted by Desulfomicrobium and Desulfovibrio whereas during the experiments using FLX as unique carbon source a clear shift occurred with the increase of vadinBC27 wastewater-sludge group, Macellibacteroidetes, Dethiosulfovibrio, Bacteroides, Tolumonas, Sulfuricurvum, f_Enterobacteriaceae_OTU_18 that are assumed for the first time as FLX degrading bacteria. Although the main mechanism of FLX removal described in literature is by adsorption, in the results herein presented anaerobic biodegradation appears to play the main role in the removal of the FLX, thus demonstrating the potentialities that the anaerobic processes can play in wastewater treatment aiming the removal of new emerging compounds.
Collapse
Affiliation(s)
- Tânia Luz Palma
- Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, Building 7, 8005-139, Faro, Portugal; Faculdade de Ciências e Tecnologias, University of Algarve, Campus de Gambelas, Building 8, 8005-139, Faro, Portugal.
| | - Maria Clara Costa
- Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, Building 7, 8005-139, Faro, Portugal; Faculdade de Ciências e Tecnologias, University of Algarve, Campus de Gambelas, Building 8, 8005-139, Faro, Portugal.
| |
Collapse
|
25
|
Zhou W, Tang Y, Du X, Han Y, Shi W, Sun S, Zhang W, Zheng H, Liu G. Fine polystyrene microplastics render immune responses more vulnerable to two veterinary antibiotics in a bivalve species. MARINE POLLUTION BULLETIN 2021; 164:111995. [PMID: 33493858 DOI: 10.1016/j.marpolbul.2021.111995] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Living in close proximity to the sediment of coastal areas, bivalves may be exposed to veterinary antibiotic residuals and microplastics (MPs) simultaneously. However, the immunotoxic impacts of veterinary antibiotics remain unknown in bivalves, let alone their interactions with MPs. Therefore, the immune responses of two representative veterinary antibiotics, oxytetracycline and florfenicol, was investigated in a bivalve species, the blood clam (Tegillarca granosa). The effects of the copresence of MPs on the immune responses triggered by these antibiotics were also analyzed. Results showed that exposure to antibiotics investigated led to significant alteration in hematic parameters and reduction in lectin content in serum. In addition to inducing ROS production, aggravating lipid peroxidation and DNA damage, and suppressing the hemocyte viability, antibiotic treatments also downregulated the expression of immune- and detoxification-related genes but upregulated apoptosis-related Caspase-3. Furthermore, the toxic impacts of antibiotics were found to be significantly increased by the copresence of MPs.
Collapse
Affiliation(s)
- Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
26
|
Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Sosa-Hernández JE, Parra-Arroyo L, López-Pacheco IY, Barceló D, Iqbal HNM, Parra-Saldívar R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143722. [PMID: 33221013 DOI: 10.1016/j.scitotenv.2020.143722] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.
Collapse
Affiliation(s)
| | - Mario E Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research, Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
27
|
Coates CJ, Söderhäll K. The stress–immunity axis in shellfish. J Invertebr Pathol 2020; 186:107492. [DOI: 10.1016/j.jip.2020.107492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
|
28
|
Tang Y, Zhou W, Sun S, Du X, Han Y, Shi W, Liu G. Immunotoxicity and neurotoxicity of bisphenol A and microplastics alone or in combination to a bivalve species, Tegillarca granosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115115. [PMID: 32806413 DOI: 10.1016/j.envpol.2020.115115] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/16/2020] [Accepted: 06/25/2020] [Indexed: 05/24/2023]
Abstract
Though invertebrates are one of the largest groups of animal species in the sea and exhibit robust immune and neural responses that are crucial for their health and survival, the potential immunotoxicity and neurotoxicity of the most produced chemical bisphenol A (BPA), especially in conjunction with microplastics (MPs), still remain poorly understood in marine invertebrate species. Therefore, the impacts of exposure to BPA and MPs alone or in combination on a series of immune and neural biomarkers were investigated in the invertebrate bivalve species blood clam (Tegillarca granosa). Evident immunotoxicity as indicated by alterations in hematic indexes was observed after two weeks of exposure to BPA and MPs at environmentally realistic concentrations. The expression of four immune-related genes from the NFκB signaling pathway was also found to be significantly suppressed by the BPA and MP treatment. In addition, exposure to BPA and MPs led to an increase in the in vivo contents of three key neurotransmitters (GABA, DA, and ACh) but a decrease in the expression of genes encoding modulatory enzymes and receptors for these neurotransmitters, implying the evident neurotoxicity of BPA and MPs to blood clam. Furthermore, the results demonstrated that the toxic impacts exerted by BPA were significantly aggravated by the co-presence of MPs, which may be due to interactions between BPA and MPs as well as those between MPs and clam individuals.
Collapse
Affiliation(s)
- Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
29
|
Shi W, Guan X, Sun S, Han Y, Du X, Tang Y, Zhou W, Liu G. Nanoparticles decrease the byssal attachment strength of the thick shell mussel Mytilus coruscus. CHEMOSPHERE 2020; 257:127200. [PMID: 32473408 DOI: 10.1016/j.chemosphere.2020.127200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The extensive application of nanoparticles (NPs) drives their release into the ocean, which may pose a potential threat to marine organisms. Although the byssus is important for the survival of mussels, the effects of NPs on byssal attachment and the underlying molecular byssal responses remain largely unknown. Therefore, the impacts of three metal oxide NPs (nTiO2, nZnO, and nFe2O3) on the production and mechanical properties of byssal thread in the thick shell mussel M. coruscus were investigated in this study. The results showed that both mechanical properties (such as strength and extensibility) and morphology (diameter and volume) of byssal thread newly produced by M. coruscus were significantly affected after NP exposure, which resulted in an approximately 60-66% decrease in mussel byssal attachment strength. Downregulated expression of genes encoding mussel foot proteins, precursor collagen proteins, and proximal thread matrix proteins was also detected in this study, and this alteration may be one of the reasons for the weakened mechanical properties of byssal threads after NP exposure. This study indicated that NP pollution may hamper byssal attachment of M. coruscus and thereby pose a severe threat to the health of mussel individuals and the stability of the intertidal ecosystem.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaofan Guan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
30
|
Shi W, Han Y, Sun S, Tang Y, Zhou W, Du X, Liu G. Immunotoxicities of microplastics and sertraline, alone and in combination, to a bivalve species: size-dependent interaction and potential toxication mechanism. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122603. [PMID: 32289642 DOI: 10.1016/j.jhazmat.2020.122603] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Although coexposure to pharmaceuticals and microplastics (MPs) may frequently occur, the synergistic impact of MPs and antidepressants on marine species still remains poorly understood. In this study, the immunotoxicities of polystyrene MPs (diameters 500 nm and 30 μm) and sertraline (Ser), alone and in combination, were investigated in a bivalve mollusk Tegillarca granosa. Results showed that both MPs and Ser significantly suppressed the immune responses of T. granosa. In addition, though the toxic effect of Ser was not affected by microscale MPs, an evident synergistic immuno-toxic effect was observed between Ser and nanoscale MPs, which indicates a size-dependent interaction between the two. To further ascertain the underlying toxication mechanisms, the intracellular content of reactive oxygen species, apoptosis status, ATP content, pyruvate kinase activity, plasma cortisol level, and in vivo concentrations of neurotransmitters and cytochrome P450 1A1 were analysed. A transcriptomic analysis was also performed to reveal global molecular alterations following Ser and/or MPs exposure. The obtained results indicated that the presence of nanoscale MPs may enhance the immunotoxicity of Ser by (i) inducing apoptosis of haemocytes and, hence, reducing the THC; (ii) constraining the energy availability for phagocytosis; and (iii) hampering the detoxification of Ser.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
31
|
Sun S, Shi W, Tang Y, Han Y, Du X, Zhou W, Hu Y, Zhou C, Liu G. Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138852. [PMID: 32570313 DOI: 10.1016/j.scitotenv.2020.138852] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Both the frequent occurrence of accidental petroleum spills and the ubiquitous presence of microplastics (MPs) in the sea may pose severe threats to marine species. However, the immunotoxic impacts of these two types of pollutants and the underlying toxication mechanisms still remain largely unknown in sessile filter-feeding bivalve mollusks. Therefore, the impacts of exposure to petroleum hydrocarbons and MPs alone or in combination on the total count, cell type composition, and phagocytic activity of hemocytes were investigated in the blood clam, Tegillarca granosa. In addition, the intracellular ROS content, cell viability, degree of DNA damage, and expression levels of genes from immune-, apoptosis-, and immunotoxicity-related pathways were analyzed to reveal the potential toxication mechanisms. The results demonstrated that exposure to petroleum hydrocarbons and MPs alone or in combination at environmentally realistic concentrations could exert significant immunotoxic impacts on the blood clam, which may be caused by alterations in a series of physiological and molecular processes. In addition, the immunotoxicity of petroleum hydrocarbons could be significantly aggravated by the copresence of MPs, which suggests that coexposure to these two pollutants deserves closer attention.
Collapse
Affiliation(s)
- Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Chaosheng Zhou
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
32
|
Tian Y, Liu J, Pan L. The mechanism of Mitogen-Activated Protein Kinases to mediate apoptosis and immunotoxicity induced by Benzo[a]pyrene on hemocytes of scallop Chlamys farreri in vitro. FISH & SHELLFISH IMMUNOLOGY 2020; 102:64-72. [PMID: 32268177 DOI: 10.1016/j.fsi.2020.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Benzo [a]pyrene (B [a]P) has received widespread attention for serious pollution in the sea, which may reduce immunity and lead to the outbreak of disease in bivalves. However, the mechanism of immunotoxicity induced by B [a]P in bivalves was still unclear. Previous studies have found that Mitogen-Activated Protein Kinases (MAPKs) including three classic pathways (ERK, p38 and JNK) play an important role in mediating this process. Thus, in order to explore the mechanism of immunotoxicity induced by B [a]P in scallop Chlamys farreri, hemocytes were treated with PD98059 (ERK inhibitor), SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) for 1 h and then incubation with B [a]P for 24 h at 1 μg/mL. Indexes including oxidative damage, apoptotic rate, and immune indicators were detected in the present study. The results showed that the increase of Reactive Oxygen Species (ROS) and DNA damage induced by B [a]P was inhibited with PD98059 and SB203580. Besides, lysosomal membrane stability (LMS) damage was promoted by PD98059, while it was opposite when treated with SB203580. Moreover, the ascended apoptosis rate induced by B [a]P was increased significantly after treatment with PD98059, but it was remarkably attenuated by SB203580 and SP600125. However, the opposite pattern was showed in phagocytosis compared with apoptosis rate in all of three inhibitors. In addition, antibacterial activity and bacteriolytic activity were enhanced by SB203580 while inhibited by PD98059. Therefore, these results showed that MAPKs directly or indirectly mediate the decrease of oxidative damage, apoptosis and immune defense ability of C. farreri hemocytes, which suggesting ERK/p38/JNK pathways have different functions in the apoptosis and immunity of C. farreri hemocytes after B [a]P exposure. In conclusion, this study intended to enrich the theoretical basis for immunotoxicology of bivalves exposed to pollutants.
Collapse
Affiliation(s)
- Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jing Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
33
|
Du X, Tang Y, Han Y, Ri S, Kim T, Ju K, Shi W, Sun S, Zhou W, Liu G. Acetylcholine suppresses phagocytosis via binding to muscarinic- and nicotinic-acetylcholine receptors and subsequently interfering Ca 2+- and NFκB-signaling pathways in blood clam. FISH & SHELLFISH IMMUNOLOGY 2020; 102:152-160. [PMID: 32320762 DOI: 10.1016/j.fsi.2020.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Though immunomodulation via cholinergic neurotransmitter acetylcholine (ACh), an important part of neuroendocrine-immune (NEI) regulatory network, has been well established in vertebrate species, the mechanisms remain poorly understood in invertebrates. In the present study, the immunomodulatory effect of ACh on haemocyte phagocytosis was investigated in an invertebrate bivalve species, Tegillarca granosa. Data obtained showed that in vitro ACh incubation suppressed phagocytic activity of haemocytes along with a significant elevation in intracellular Ca2+. In addition, the expressions of genes from Ca2+ signaling pathway were significantly induced whereas those from NF-κB signaling pathway were significantly down-regulated by ACh incubation. Furthermore, these adverse impacts of ACh were significantly relieved by the blocking of muscarinic acetylcholine receptors (mAChRs) or nicotinic acetylcholine receptors (nAChRs) using corresponding antagonists. Our study suggests that ACh suppresses phagocytosis via binding to both mAChRs and nAChRs, which disrupts intracellular Ca2+ homeostasis and subsequently interferes with downstream Ca2+ and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, PR Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, PR Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Aquaculture, Wonsan Fisheries University, Wonsan, 999093, PR Korea
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
34
|
Byeon E, Park JC, Hagiwara A, Han J, Lee JS. Two antidepressants fluoxetine and sertraline cause growth retardation and oxidative stress in the marine rotifer Brachionus koreanus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105337. [PMID: 31739108 DOI: 10.1016/j.aquatox.2019.105337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/09/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
To understand effects of two widely used antidepressant on the antioxidant defense mechanism in the marine rotifer Brachionus koreanus, we assessed acute toxicity and measured population growth, reactive oxygen species (ROS) levels, glutathione (GSH) levels, and antioxidant enzymatic activities (GST, GR, and SOD) in response to fluoxetine hydrochloride (FLX) and sertraline hydrochloride (SER). The no observed effect concentration-24 h of fluoxetine and sertraline were 1000 μg/L and 450 μg/L, respectively, whereas the median lethal concentration (LC50)-24 h of fluoxetine and sertraline were 1560 μg/L and 507 μg/L, respectively. Both fluoxetine and sertraline caused significant reduction (P < 0.05) in the population growth rate indicating that both antidepressants have a potential adverse effect on life cycle parameters of B. koreanus. The intracellular ROS level and GSH level were significantly modulated (P < 0.05) in response to fluoxetine and sertraline. In addition, antioxidant enzymatic activities have shown significant modulation (P < 0.05) in response to FLX and SER in B. koreanus. Furthermore, transcriptional profiles of antioxidant genes (GSTs, SODs, and GR) have shown modulation in response to FLX compared to SER-exposed B. koreanus. Our results indicate that fluoxetine and sertraline induce oxidative stress, leading to reduction in the population density and modulation of antioxidant defense mechanism in the marine rotifer B. koreanus.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|