1
|
Hinton TG, Anderson D, Bæk E, Baranwal VC, Beasley JC, Bontrager HL, Broggio D, Brown J, Byrne ME, Gerke HC, Ishiniwa H, Lance SL, Lind OC, Love CN, Nagata H, Nanba K, Okuda K, Salbu B, Shamovich D, Skuterud L, Trompier F, Webster SC, Zabrotski V. Fundamentals of wildlife dosimetry and lessons learned from a decade of measuring external dose rates in the field. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 278:107472. [PMID: 38905881 DOI: 10.1016/j.jenvrad.2024.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Methods for determining the radiation dose received by exposed biota require major improvements to reduce uncertainties and increase precision. We share our experiences in attempting to quantify external dose rates to free-ranging wildlife using GPS-coupled dosimetry methods. The manuscript is a primer on fundamental concepts in wildlife dosimetry in which the complexities of quantifying dose rates are highlighted, and lessons learned are presented based on research with wild boar and snakes at Fukushima, wolves at Chornobyl, and reindeer in Norway. GPS-coupled dosimeters produced empirical data to which numerical simulations of external dose using computer software were compared. Our data did not support a standing paradigm in risk analyses: Using averaged soil contaminant levels to model external dose rates conservatively overestimate the dose to individuals within a population. Following this paradigm will likely lead to misguided recommendations for risk management. The GPS-dosimetry data also demonstrated the critical importance of how modeled external dose rates are impacted by the scale at which contaminants are mapped. When contaminant mapping scales are coarse even detailed knowledge about each animal's home range was inadequate to accurately predict external dose rates. Importantly, modeled external dose rates based on a single measurement at a trap site did not correlate to actual dose rates measured on free ranging animals. These findings provide empirical data to support published concerns about inadequate dosimetry in much of the published Chernobyl and Fukushima dose-effects research. Our data indicate that a huge portion of that literature should be challenged, and that improper dosimetry remains a significant source of controversy in radiation dose-effect research.
Collapse
Affiliation(s)
- Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan; CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Donovan Anderson
- Institute of Radiation Emergency Medicine, Hirosaki University, Aomori, Japan.
| | - Edda Bæk
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway.
| | | | - James C Beasley
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Helen L Bontrager
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - David Broggio
- Institute for Radiation Protection and Nuclear Safety, Fontenay-aux-Roses, France.
| | - Justin Brown
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway.
| | - Michael E Byrne
- School of Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Hannah C Gerke
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Ole C Lind
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Cara N Love
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Hiroko Nagata
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Kei Okuda
- Faculty of Human Environmental Sciences, Hiroshima Shudo University, Hiroshima, Japan.
| | - Brit Salbu
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | | | | | - François Trompier
- Institute for Radiation Protection and Nuclear Safety, Fontenay-aux-Roses, France.
| | - Sarah C Webster
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Viachaslau Zabrotski
- Republican Center for Hydrometeorology, Control of Radioactive Contamination and Environmental Monitoring (Belhydromet), Minsk, Belarus.
| |
Collapse
|
2
|
Bontrager HL, Hinton TG, Okuda K, Beasley JC. The impact of sampling scale: A comparison of methods for estimating external contaminant exposure in free-ranging wildlife. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171012. [PMID: 38369157 DOI: 10.1016/j.scitotenv.2024.171012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The impacts of contaminants on wildlife are dose dependent, and thus being able to track or predict exposure following contamination events is important for monitoring ecosystem health. However, the ability to track exposure in free-ranging wildlife is often severely limited. Consequently, researchers have predominantly relied on simple methods for estimating contaminant exposures in wildlife with little regard for spatial contaminant heterogeneity or an animal's use of diverse habitats. We evaluated the influence sampling scale (i.e., how finely contaminant distribution and organism's spatial use of the landscape is mapped) has on (1) realism and (2) conservativeness of exposure estimates. To do this, we monitored the actual exposure of wild boar (Sus scrofa) in Fukushima, Japan to radioactive contamination using GPS-coupled contaminant monitors placed on individual animals. We compared empirical exposures to estimates generated by combining varying amounts of information about an individual boar's location and/or movement, with the distribution of contamination on the landscape. We found that the most realistic exposure estimates were produced when finer-scale contaminant distribution surveys (e.g., airborne surveys) were combined with more accurate estimates of an individual's space use (e.g., home ranges or core areas). Importantly, estimates of exposure based on single point surveys at a trap site (a simple method commonly used in the literature), did not correlate with actual exposure rates, suggesting dose-effects studies using this method may result in spurious conclusions. These results suggest that researchers seeking realistic estimates of exposure, such as in dose-effect studies, should ensure they have adequately accounted for fine-scale contaminant distribution patterns and areas of higher use by study organisms. However, conservative estimates of exposure (i.e., intentionally over-predicting exposure as is done in initial tiers of ecological risk analyses) were not as scale sensitive and could be achieved with a single known location and coarse contaminant distribution maps.
Collapse
Affiliation(s)
- Helen L Bontrager
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Thomas G Hinton
- Centre of Excellence in Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1433 Ås, Norway; Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - Kei Okuda
- Faculty of Human Environmental Sciences, Hiroshima Shudo University, Hiroshima 731-3195, Japan
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA.
| |
Collapse
|
3
|
Beresford NA, Beaugelin-Seiller K, Barnett CL, Brown J, Doering C, Caffrey E, Johansen MP, Melintescu A, Ruedig E, Vandenhove H, Vives I Batlle J, Wood MD, Yankovich TL, Copplestone D. Ensuring robust radiological risk assessment for wildlife: insights from the International Atomic Energy Agency EMRAS and MODARIA programmes. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:020512. [PMID: 35502472 DOI: 10.1088/1361-6498/ac6043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
In response to changing international recommendations and national requirements, a number of assessment approaches, and associated tools and models, have been developed over the last circa 20 years to assess radiological risk to wildlife. In this paper, we summarise international intercomparison exercises and scenario applications of available radiological assessment models for wildlife to aid future model users and those such as regulators who interpret assessments. Through our studies, we have assessed the fitness for purpose of various models and tools, identified the major sources of uncertainty and made recommendations on how the models and tools can best be applied to suit the purposes of an assessment. We conclude that the commonly used tiered or graded assessment tools are generally fit for purpose for conducting screening-level assessments of radiological impacts to wildlife. Radiological protection of the environment (or wildlife) is still a relatively new development within the overall system of radiation protection and environmental assessment approaches are continuing to develop. Given that some new/developing approaches differ considerably from the more established models/tools and there is an increasing international interest in developing approaches that support the effective regulation of multiple stressors (including radiation), we recommend the continuation of coordinated international programmes for model development, intercomparison and scenario testing.
Collapse
Affiliation(s)
- N A Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - K Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire, PSE/ENV/SRTE, Centre de Cadarache, Saint-Pual-Les-Durance, BP3 13115, France
| | - C L Barnett
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom
| | - J Brown
- Norwegian Radiation and Nuclear Safety Authority (DSA), PO Box 55, No-1332 Østerås, Norway
| | - C Doering
- Environmental Research Institute of the Supervising Scientist, Darwin, NT, Australia
| | - E Caffrey
- Radian Scientific, LLC, Huntsville, AL, United States of America
| | - M P Johansen
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - A Melintescu
- 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, 30 Reactorului St., POB MG-6, Magurele, Bucharest, RO-077125, Romania
| | - E Ruedig
- BHP, 201 CW Santa Fe Av., Grants, NM 87404, United States of America
| | - H Vandenhove
- Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - J Vives I Batlle
- Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - M D Wood
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - T L Yankovich
- International Atomic Energy Agency, Assessment and Management of Environmental Releases Unit, PO Box 100, Vienna, 1400, Austria
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| |
Collapse
|
4
|
Rayner K, Sullivan M, Sims C, Cowen S. A pain in the neck: weak links are not a reliable release mechanism for radio-collars. AUSTRALIAN MAMMALOGY 2022. [DOI: 10.1071/am20065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Collars are an attachment method commonly used to mount data collection devices on wildlife. Removal of collars at the completion of a data collection period is a high priority for the purpose of animal welfare, but retrieval of collars can often be difficult. Weak links or other drop-off devices are used by researchers with the intention of improving collar retrieval rates, and for mitigation of animal welfare risks associated with collar entanglement. However, the design and effectiveness of such devices is not regularly reported in detail in the literature. We surveyed wildlife researchers to collate and communicate their experiences with weak links, and assess their attitudes towards collaring Australian mammals in the 35–5500 g weight range. Forty-five researchers responded to the survey, of whom 25 had used weak links in at least one study. There was very little consistency between the performances of weak links, with researchers finding them effective in less than half of the scenarios reported upon. Outcomes varied depending on the type of material used for the link, the species being collared, and the environmental conditions under which the collars were being deployed. We recommend (1) researchers test weak links prior to deployment; (2) users to not rely upon weak links as the primary method of collar retrieval; and (3) continued communication of design and outcomes of all radio-collars deployed including those with weak links.
Collapse
|
5
|
Gilbin R, Arnold T, Beresford NA, Berthomieu C, Brown JE, de With G, Horemans N, Madruga MJ, Masson O, Merroun M, Michalik B, Muikku M, O'Toole S, Mrdakovic Popic J, Nogueira P, Real A, Sachs S, Salbu B, Stark K, Steiner M, Sweeck L, Vandenhove H, Vidal M, Vives I Batlle J. An updated strategic research agenda for the integration of radioecology in the european radiation protection research. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106697. [PMID: 34334231 DOI: 10.1016/j.jenvrad.2021.106697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The ALLIANCE Strategic Research Agenda (SRA) for radioecology is a living document that defines a long-term vision (20 years) of the needs for, and implementation of, research in radioecology in Europe. The initial SRA, published in 2012, included consultation with a wide range of stakeholders (Hinton et al., 2013). This revised version is an update of the research strategy for identified research challenges, and includes a strategy to maintain and develop the associated required capacities for workforce (education and training) and research infrastructures and capabilities. Beyond radioecology, this SRA update constitutes a contribution to the implementation of a Joint Roadmap for radiation protection research in Europe (CONCERT, 2019a). This roadmap, established under the H2020 European Joint Programme CONCERT, provides a common and shared vision for radiation protection research, priority areas and strategic objectives for collaboration within a European radiation protection research programme to 2030 and beyond. Considering the advances made since the first SRA, this updated version presents research challenges and priorities including identified scientific issues that, when successfully resolved, have the potential to impact substantially and strengthen the system and/or practice of the overall radiation protection (game changers) in radioecology with regard to their integration into the global vision of European research in radiation protection. An additional aim of this paper is to encourage contribution from research communities, end users, decision makers and other stakeholders in the evaluation, further advancement and accomplishment of the identified priorities.
Collapse
|
6
|
Modelling the effects of ionising radiation on a vole population from the Chernobyl Red forest in an ecological context. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Rhodes OE, Bréchignac F, Bradshaw C, Hinton TG, Mothersill C, Arnone JA, Aubrey DP, Barnthouse LW, Beasley JC, Bonisoli-Alquati A, Boring LR, Bryan AL, Capps KA, Clément B, Coleman A, Condon C, Coutelot F, DeVol T, Dharmarajan G, Fletcher D, Flynn W, Gladfelder G, Glenn TC, Hendricks S, Ishida K, Jannik T, Kapustka L, Kautsky U, Kennamer R, Kuhne W, Lance S, Laptyev G, Love C, Manglass L, Martinez N, Mathews T, McKee A, McShea W, Mihok S, Mills G, Parrott B, Powell B, Pryakhin E, Rypstra A, Scott D, Seaman J, Seymour C, Shkvyria M, Ward A, White D, Wood MD, Zimmerman JK. Integration of ecosystem science into radioecology: A consensus perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140031. [PMID: 32559536 DOI: 10.1016/j.scitotenv.2020.140031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
In the Fall of 2016 a workshop was held which brought together over 50 scientists from the ecological and radiological fields to discuss feasibility and challenges of reintegrating ecosystem science into radioecology. There is a growing desire to incorporate attributes of ecosystem science into radiological risk assessment and radioecological research more generally, fueled by recent advances in quantification of emergent ecosystem attributes and the desire to accurately reflect impacts of radiological stressors upon ecosystem function. This paper is a synthesis of the discussions and consensus of the workshop participant's responses to three primary questions, which were: 1) How can ecosystem science support radiological risk assessment? 2) What ecosystem level endpoints potentially could be used for radiological risk assessment? and 3) What inference strategies and associated methods would be most appropriate to assess the effects of radionuclides on ecosystem structure and function? The consensus of the participants was that ecosystem science can and should support radiological risk assessment through the incorporation of quantitative metrics that reflect ecosystem functions which are sensitive to radiological contaminants. The participants also agreed that many such endpoints exit or are thought to exit and while many are used in ecological risk assessment currently, additional data need to be collected that link the causal mechanisms of radiological exposure to these endpoints. Finally, the participants agreed that radiological risk assessments must be designed and informed by rigorous statistical frameworks capable of revealing the causal inference tying radiological exposure to the endpoints selected for measurement.
Collapse
Affiliation(s)
- Olin E Rhodes
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America.
| | - Francois Bréchignac
- Institut de Radioprotection et de Sûreté Nucléaire, International Union of Radioecology, Center of Cadarache, Bldg 159, BP 1, 13115 St Paul-lez-Durance cedex, France
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima University, Fukushima 960-1296, Japan
| | | | - John A Arnone
- Division of Earth and Ecosystem Sciences Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, United States of America
| | - Doug P Aubrey
- Savannah River Ecology Lab, Warnell School of Forestry and Natural Resources, Drawer E, Aiken, SC 29802, United States of America
| | - Lawrence W Barnthouse
- LWB Environmental Services, Inc., 1620 New London Rd., Hamilton, OH 45013, United States of America
| | - James C Beasley
- Savannah River Ecology Lab, Warnell School of Forestry and Natural Resources, Drawer E, Aiken, SC 29802, United States of America
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768, United States of America
| | - Lindsay R Boring
- Joseph W. Jones Ecological Research Center, #988 Jones Center Dr., Newton, GA 39870, United States of America
| | - Albert L Bryan
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Krista A Capps
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America; Odum School of Ecology, University of Georgia, Athens, GA 30602, United States of America
| | - Bernard Clément
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518, rue Maurice Audin, Vaulx-en-Velin, France
| | - Austin Coleman
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Caitlin Condon
- School of Nuclear Science and Engineering, 100 Radiation Center, Oregon State University, Corvallis, OR 97331, United States of America
| | - Fanny Coutelot
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Clemson, SC 29625, United States of America
| | - Timothy DeVol
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Guha Dharmarajan
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Dean Fletcher
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Wes Flynn
- Department of Forestry and Natural Resources, Purdue University, 715 W State Street, West Lafayette, IN 47907, United States of America
| | - Garth Gladfelder
- School of Nuclear Science and Engineering, 100 Radiation Center, Oregon State University, Corvallis, OR 97331, United States of America
| | - Travis C Glenn
- Department of Environmental Health Science, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States of America
| | - Susan Hendricks
- Hancock Biological Station, 561 Emma Dr., Murray State University, Murray, KY 42071, United States of America
| | - Ken Ishida
- The University of Tokyo, Yokoze, 6632-12, Yokoze-town, Chichibu-gun, 368-0072, Japan
| | - Tim Jannik
- Savannah River National Laboratory, SRS Bldg. 999-W, Room 312, Aiken, SC 29808, United States of America
| | - Larry Kapustka
- LK Consultancy, P.O Box 373, 100 202 Blacklock Way SW, Turner Valley, Alberta T0L 2A0, Canada
| | - Ulrik Kautsky
- Svensk Kärnbränslehantering AB, PO Box 3091, SE-169 03 Solna, Sweden
| | - Robert Kennamer
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Wendy Kuhne
- Savannah River National Laboratory, 735-A, B-102, Aiken, SC 29808, United States of America
| | - Stacey Lance
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Gennadiy Laptyev
- Ukrainian HydroMeteorological Institute, 37 Prospekt Nauki, Kiev 02038, Ukraine
| | - Cara Love
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Lisa Manglass
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Nicole Martinez
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Teresa Mathews
- Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831, United States of America
| | - Arthur McKee
- Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59860, United States of America
| | - William McShea
- Smithsonian's Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, United States of America
| | - Steve Mihok
- Canadian Nuclear Safety Commission, P.O. Box 1046, Station B, 280 Slater St., Ottawa, Ontario K1P 5S9, Canada
| | - Gary Mills
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Ben Parrott
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Brian Powell
- Department of Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Clemson, SC 29625, United States of America; Savannah River National Laboratory, Aiken, SC 29808, United States of America
| | - Evgeny Pryakhin
- Urals Research Center for Radiation Medicine, Vorovsky Str., 68a, Chelyabinsk 454141, Russia
| | - Ann Rypstra
- Ecology Research Center, Miami University, Oxford, OH 45056, United States of America
| | - David Scott
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - John Seaman
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Colin Seymour
- Dept. of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Maryna Shkvyria
- Kyiv zoological park of national importance, prosp. Peremohy, 32, Kyiv 04116, Ukraine
| | - Amelia Ward
- Department of Biological Sciences, PO Box 870344, University of Alabama, Tuscaloosa, AL 35487, United States of America
| | - David White
- Hancock Biological Station, 561 Emma Dr., Murray State University, Murray, KY 42071, United States of America
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT. United Kingdom
| | - Jess K Zimmerman
- University of Puerto Rico, #17 Ave Universidad, San Juan 00925, Puerto Rico
| |
Collapse
|
8
|
Gerke HC, Hinton TG, Takase T, Anderson D, Nanba K, Beasley JC. Radiocesium concentrations and GPS-coupled dosimetry in Fukushima snakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139389. [PMID: 32464388 DOI: 10.1016/j.scitotenv.2020.139389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
One of the largest releases of radioactive contamination in history occurred at Japan's Fukushima Daiichi Nuclear Power Plant (FDNPP). Although the accident happened in 2011, questions still persist regarding its ecological impacts. For example, relatively little is known about radiocesium accumulation in snakes, despite their high trophic status, limited home range sizes, and close association with soil where many radionuclides accumulate. This study presents one of the most comprehensive radioecological studies of snakes published to date using a combination of whole-body radiocesium analyses, GPS transmitters, and optically stimulated luminescence (OSL) dosimeters. The objectives were to: 1) quantify whole-body radiocesium activity concentrations and internal dose rates among several common species of snakes within and around the Fukushima Exclusion Zone (FEZ), 2) determine effects of species, sex, and body size on radiocesium activity concentrations, 3) measure external dose rates using GPS-coupled dosimeters deployed on free-ranging snakes, 4) compare field-derived empirical dose rates to those generated by computer simulation software (i.e., the ERICA tool), and 5) determine if incorporating snake behavior into computer models improve simulated estimates of external dose. Whole-body radiocesium levels for snakes were highly variable among individuals (16 to 25,000 Bq/kg, FW), but were influenced more by levels of local contamination than species, sex, or size. Doses recorded by OSL dosimeters on snakes, as well as modeling in ERICA, suggest that individual movements and behavior have a substantial influence on dose rates to snakes. However, dose estimates produced with ERICA were comparable to dose received by tracked snakes. The average external plus internal dose rate for snakes captured in the FEZ was 3.6-3.9 μGy/h, with external dose contributing 80% to the total. Further research regarding reptile-specific benchmark dose rates would improve risk assessment for reptiles in radiologically contaminated areas.
Collapse
Affiliation(s)
- Hannah C Gerke
- University of Georgia, Savannah River Ecology Laboratory, Aiken, SC 29802, USA; University of Georgia, Warnell School of Forestry and Natural Resources, Athens, GA 30602, USA.
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, 960-1248, Kanayagawa, Fukushima Prefecture, Fukushima, Japan; CERAD CoE, Norwegian University of Life Sciences, Faculty for Environmental Sciences and Nature Research Management, Aas, Norway
| | - Tsugiko Takase
- Institute of Environmental Radioactivity, Fukushima University, 960-1248, Kanayagawa, Fukushima Prefecture, Fukushima, Japan
| | - Donovan Anderson
- Institute of Environmental Radioactivity, Fukushima University, 960-1248, Kanayagawa, Fukushima Prefecture, Fukushima, Japan
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, 960-1248, Kanayagawa, Fukushima Prefecture, Fukushima, Japan
| | - James C Beasley
- University of Georgia, Savannah River Ecology Laboratory, Aiken, SC 29802, USA; University of Georgia, Warnell School of Forestry and Natural Resources, Athens, GA 30602, USA
| |
Collapse
|
9
|
Mothersill CE, Oughton DH, Schofield PN, Abend M, Adam-Guillermin C, Ariyoshi K, Beresford NA, Bonisoli-Alquati A, Cohen J, Dubrova Y, Geras’kin SA, Hevrøy TH, Higley KA, Horemans N, Jha AN, Kapustka LA, Kiang JG, Madas BG, Powathil G, Sarapultseva EI, Seymour CB, Vo NTK, Wood MD. From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection. Int J Radiat Biol 2020; 98:1185-1200. [DOI: 10.1080/09553002.2020.1793022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Paul N. Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Kentaro Ariyoshi
- Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima City, Japan
| | | | | | - Jason Cohen
- Department of Biology and Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Yuri Dubrova
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | | - Kathryn A. Higley
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed services University of the Health Sciences, Bethesda, MD, USA
| | - Balázs G. Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Gibin Powathil
- Department of Mathematics, Computational Foundry, Swansea University, Swansea, UK
| | | | | | - Nguyen T. K. Vo
- Department of Biology and Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Michael D. Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| |
Collapse
|
10
|
Beresford NA, Horemans N, Copplestone D, Raines KE, Orizaola G, Wood MD, Laanen P, Whitehead HC, Burrows JE, Tinsley MC, Smith JT, Bonzom JM, Gagnaire B, Adam-Guillermin C, Gashchak S, Jha AN, de Menezes A, Willey N, Spurgeon D. Towards solving a scientific controversy - The effects of ionising radiation on the environment. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106033. [PMID: 31451195 DOI: 10.1016/j.jenvrad.2019.106033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 05/12/2023]
Affiliation(s)
- N A Beresford
- Centre for Ecology & Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP, United Kingdom; School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom.
| | - N Horemans
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - K E Raines
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - G Orizaola
- Universidad de Oviedo - Campus de Mieres, Edificio de Investigación 5a Planta, C/ Gonzalo Gutiérrez Quirós s/n, 33600, Mieres-Asturias, Spain
| | - M D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - P Laanen
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium; University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - H C Whitehead
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - J E Burrows
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - M C Tinsley
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - J T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom
| | - J-M Bonzom
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | - B Gagnaire
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | | | - S Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste & Radioecology, International Radioecology Laboratory, 77th Gvardiiska Dyviiya Str.11, P.O. Box 151, 07100, Slavutych, Kiev Region, Ukraine
| | - A N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | - A de Menezes
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - N Willey
- Centre for Research in Bioscience, Dept. of Applied Sciences, University of the West of England, Frenchay, BS16 1QY, Bristol, United Kingdom
| | - D Spurgeon
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| |
Collapse
|
11
|
Lecomte-Pradines C, Adam-Guillermin C, Gashchak S, Bradshaw C, Copplestone D, Beresford NA. More than thirty years after the Chernobyl accident: What do we know about the effects of radiation on the environment? JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106108. [PMID: 31753471 DOI: 10.1016/j.jenvrad.2019.106108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
| | | | - S Gashchak
- Chornobyl Centre for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 77th Gvardiiska Dyviiya Str.11, P.O. Box 151, 07100, Slavutych, Kiev Region, Ukraine
| | - C Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691, Stockholm, Sweden
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - N A Beresford
- UK Centre for Ecology & Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP, United Kingdom
| |
Collapse
|