1
|
Buren S, Arnott SE. The effect of calcium on acute sodium chloride toxicity in Daphnia species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025:vgae066. [PMID: 39849615 DOI: 10.1093/etojnl/vgae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 01/25/2025]
Abstract
Chloride concentrations in freshwater are rising, with toxic effects on aquatic life. In temperate regions with cold winters, road salt used for deicing paved surfaces is a primary cause. There is evidence that water hardness can modify salt toxicity, but data are insufficient to inform policy. Because calcium is a primary ion influencing water hardness and there is widespread calcium decline in lakes, we examined the effects of varying calcium concentrations on acute salt toxicity in three Daphnia species to gain a greater understanding of the water hardness-salt toxicity relationship. We conducted 48-hr acute sodium chloride (NaCl) toxicity tests, using chloride concentrations as our metric, on neonates less than 24 hrs old in six calcium treatments: 1.5 to 128 mg/L (hardness ∼7 to 323 mgCaCO3/L). We determined the effective concentration of chloride that was lethal to 10%, 25%, and 50% of the sample populations from each iso-female line in each calcium treatment. Acute NaCl toxicity decreased as calcium concentrations increased. The relationship between NaCl toxicity and calcium concentration differed among Daphnia, such that Daphnia catawba and Daphnia pulex were more sensitive to NaCl in lower calcium treatments and less sensitive in higher calcium treatments compared to Daphnia pulicaria. Our results provide evidence that water quality guidelines are not protective enough for aquatic life in very soft water (≤3 mg Ca2+/L, 11.3 mg CaCO3/L) because most ECxx values we found for Daphnia were significantly lower than Canada's national guidelines for short-term chloride exposure. There are already many lakes with calcium concentrations below 3 mg/L, and global widespread calcium decline may put more aquatic ecosystems at risk of experiencing NaCl toxicity.
Collapse
Affiliation(s)
- Shakira Buren
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
2
|
Liu W, Zhang Z, Li W, Zhang Y, Ren Z, Li X, Wu Y, Li J, Zhu W, Ma Z, Zhou Y, Li W. Chloride accumulation in inland rivers of China and its toxic impact on cotton. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123122. [PMID: 39488955 DOI: 10.1016/j.jenvman.2024.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The escalation of major ion concentrations in freshwater and soil poses diverse effects on ecosystems and the environment. Excessive ions can exhibit toxicity to aquatic organisms and terrestrial plants. Currently, research on ion toxicity primarily focuses on cation toxicity. Notably, there is a noticeable research gap in understanding the impact of chloride ion (Cl-) on plant growth and development, as well as on the defense mechanisms against Cl- toxicity. In the present study, sampling was conducted on major rivers in China to measure Cl- concentrations. The results revealed that certain rivers exhibited excessive levels of Cl-, emphasizing the critical need to address Cl- toxicity issues. Subsequently, when salt-tolerant cotton seedlings were subjected to various chloride treatments, it was observed that excessive Cl- severely hindered plant growth and development. A combined analysis of transcriptomic and metabolomic data shed light on significantly enriched pathways related to galactose metabolism, arginine and proline metabolism, carotenoid metabolism, and alpha-linolenic acid metabolism under chloride stress. In summary, this research provides a scientific foundation and references for environmental management and water resource protection and offers novel insights for mitigating the adverse impacts of Cl-, thereby contributing to the preservation of ecosystem health.
Collapse
Affiliation(s)
- Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiqiang Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenhao Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuzhi Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaona Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuchen Wu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianing Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zongbin Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yang Zhou
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, China.
| | - Wei Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
3
|
Sparacino H, Stepenuck KF, Hurley SE. Understanding reduced salt practices used by commercial snow removal businesses in the Lake Champlain Basin: A mixed methods analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119957. [PMID: 38171133 DOI: 10.1016/j.jenvman.2023.119957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Holden Sparacino
- Rubenstein School of Environment and Natural Resources - University of Vermont, 81 Carrigan Dr, Burlington, VT, 05405, USA.
| | - Kristine F Stepenuck
- Rubenstein School of Environment and Natural Resources, Lake Champlain Sea Grant, Gund Institute for Environment, University of Vermont, 81 Carrigan Dr, Burlington, VT, 05405, USA.
| | - Stephanie E Hurley
- Department of Plant and Soil Sciences - University of Vermont, 221 Jeffords Hall, 63 Carrigan Dr., Burlington, VT, 05405, USA.
| |
Collapse
|
4
|
Venâncio C, Ribeiro R, Lopes I. Pre-exposure to seawater or chloride salts influences the avoidance-selection behavior of zebrafish larvae in a conductivity gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122126. [PMID: 37390916 DOI: 10.1016/j.envpol.2023.122126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
The risk assessment of freshwater salinization is constructed around standard assays and using sodium chloride (NaCl), neglecting that the stressor is most likely a complex mixture of ions and the possibility of prior contact with it, triggering acclimation mechanisms in the freshwater biota. To date, as far as we are aware of, no information has been generated integrating both acclimation and avoidance behavior in the context of salinization, that may allow these risk assessments upgrading. Accordingly, 6-days-old Danio rerio larvae were selected to perform 12-h avoidance assays in a non-confined 6-compartment linear system to simulate conductivity gradients using seawater (SW) and the chloride salts MgCl2, KCl, and CaCl2. Salinity gradients were established from conductivities known to cause 50% egg mortality in a 96-h exposure (LC50,96h,embryo). The triggering of acclimation processes, which could influence organisms' avoidance-selection under the conductivity gradients, was also studied using larvae pre-exposed to lethal levels of each salt or SW. Median avoidance conductivities after a 12-h of exposure (AC50,12h), and the Population Immediate Decline (PID) were computed. All non-pre-exposed larvae were able to detect and flee from conductivities corresponding to the LC50,96h,embryo, selecting compartments with lower conductivities, except for KCl. The AC50,12h and LC50,96h overlapped for MgCl2 and CaCl2, though the former is considered as more sensitive as it was obtained in 12 h of exposure. The AC50,12h for SW was 1.83-fold lower than the LC50,96h, thus, reinforcing the higher sensitivity of the parameter ACx and its adequacy for risk assessment frameworks. The PID, at low conductivities, was solely explained by the avoidance behavior of non-pre-exposed larvae. Larvae pre-exposed to lethal levels of salt or SW were found to select higher conductivities, except for MgCl2. Results indicated that avoidance-selection assays are ecologically relevant and sensitive tools to be used in risk assessment processes. Stressor pre-exposure influenced organisms' avoidance-selection behavior under conductivity gradients, suggesting that under salinization events organisms may acclimate, remaining in altered habitats.
Collapse
Affiliation(s)
- Cátia Venâncio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
5
|
Basant S, Wilcox BP, Parada C, Wyatt BM, Newman BD. Thicketized oak woodlands reduce groundwater recharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160811. [PMID: 36502972 DOI: 10.1016/j.scitotenv.2022.160811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Woodlands and pastures across the Post Oak Savannas (POS) in Texas have been undergoing thicketization over the last century via encroachment by understory shrubs such as Yaupon (Ilex decidua, Ilex vomitoria) and expansion of eastern redcedar (Juniperus virginiana). Because a large part of POS overlies the Carrizo-Wilcox (CW) aquifer - the third most important aquifer in Texas, there is a strong incentive to identify opportunities to increase groundwater recharge through land management. The purpose of this research is to evaluate the influence of thicketization of post oak (Quercus stellata) stands on deep drainage (DD) in POS. We achieved this by, a) applying chloride mass balance on soil cores, and b) simultaneously monitoring soil moisture in a woodland pasture setting in POS. Four sites representing different vegetation covers were identified for sampling: 1) a thicketized oak woodland paired with an adjacent open site, 2) a woodland mosaic, 3) a pasture and 4) a pine-oak stand paired with an adjacent open site. A total of 24 soil cores to the depth of 260 cm were collected and (soil) pore water chloride concentrations at multiple depths were measured. Soil moisture was monitored at 21 locations, to the depth of 140-260 cm using a neutron moisture meter. Negligible DD was estimated in the thicketized woodland, whereas most open locations recorded 3-18 cm/year and the woodland mosaic 0-1 cm of DD. Soil moisture data, collected from Jul-2020 to Jun-2021 also suggested higher deep drainage fluxes under open areas - with occurrence of sub-surface saturation only under the open areas and never under the woodlands. These results suggest that the thicketization in oak savannas is substantially reducing groundwater recharge. Given the extent of thicketized oak savannas across United States, this could be impacting water budgets and groundwater recharge rates on regional scales.
Collapse
Affiliation(s)
- Shishir Basant
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA.
| | - Bradford P Wilcox
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Chelsea Parada
- Department of Earth & Environmental Sciences, University of Kentucky, Lexington, KY, USA
| | - Briana M Wyatt
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
6
|
Chowaniec K, Żukowska-Trebunia A, Rola K. Combined effect of acute salt and nitrogen stress on the physiology of lichen symbiotic partners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28192-28205. [PMID: 36399301 PMCID: PMC9995433 DOI: 10.1007/s11356-022-24115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution and excessive salinity are commonly regarded as one of the major environmental concerns in recent decades in many urban environments. Although in urban areas lichens are exposed to both salt and nitrogen stress, no studies have been conducted to date on the simultaneous impact and interaction of these factors on lichen physiology. The aim was to determine the effect of various combinations of NaCl and NH4NO3 doses on the physiology of epigeic lichen Cladonia rei. We also aimed to compare the response of lichens collected from polluted and unpolluted sites to verify whether lichens exposed to different levels of environmental stress in their native environment will react differently. The combined salt-nitrogen treatment caused significant disturbances in the integrity of cell membranes and chlorophyll fluorescence parameters. The most detrimental effect concerned the loss of cell membrane integrity, which suggests that this parameter can serve as a relevant indicator of acute salt-nitrogen stress incidents. Salt stress decreased the photosynthetic efficiency 1 h after exposure, but after 72 h, the FV/FM returned to the level characteristic of healthy lichens in experimental groups without and with small doses of ammonium nitrate. In contrast, recovery was not possible in combination with high nitrogen doses. This indicates that exposure to short-term salt stress in a nitrogen-poor environment only causes a temporary reduction in photosynthetic efficiency, but in urban eutrophic environments may have more serious consequences. The weakened physiological condition of the mycobiont manifested by an increased level of cell membrane damage and a persistent decrease in the photosynthetic efficiency of the photobiont in lichens growing along the roads may indicate an excess of nitrogen in the environment, enhanced by the effect of salt. Lichens collected from a heavy-metal-polluted habitat responded more strongly than those from an unpolluted habitat suggesting that in lichens previously affected by certain harmful factors, exposure to another stress factor may lead to greater disturbances. This is of particular importance for lichens inhabiting the vicinity of roads, since they are also under the influence of other pollutants emitted by road traffic.
Collapse
Affiliation(s)
- Karolina Chowaniec
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Anna Żukowska-Trebunia
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Kaja Rola
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| |
Collapse
|
7
|
Freshwater salinisation: a research agenda for a saltier world. Trends Ecol Evol 2022; 37:440-453. [DOI: 10.1016/j.tree.2021.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
|
8
|
Silver S, Donini A. Physiological responses of freshwater insects to salinity: molecular-, cellular- and organ-level studies. J Exp Biol 2021; 224:272480. [PMID: 34652452 DOI: 10.1242/jeb.222190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salinization of freshwater is occurring throughout the world, affecting freshwater biota that inhabit rivers, streams, ponds, marshes and lakes. There are many freshwater insects, and these animals are important for ecosystem health. These insects have evolved physiological mechanisms to maintain their internal salt and water balance based on a freshwater environment that has comparatively little salt. In these habitats, insects must counter the loss of salts and dilution of their internal body fluids by sequestering salts and excreting water. Most of these insects can tolerate salinization of their habitats to a certain level; however, when exposed to salinization they often exhibit markers of stress and impaired development. An understanding of the physiological mechanisms for controlling salt and water balance in freshwater insects, and how these are affected by salinization, is needed to predict the consequences of salinization for freshwater ecosystems. Recent research in this area has addressed the whole-organism response, but the purpose of this Review is to summarize the effects of salinization on the osmoregulatory physiology of freshwater insects at the molecular to organ level. Research of this type is limited, and pursuing such lines of inquiry will improve our understanding of the effects of salinization on freshwater insects and the ecosystems they inhabit.
Collapse
Affiliation(s)
- Sydney Silver
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
9
|
Liu W, Feng J, Ma W, Zhou Y, Ma Z. GhCLCg-1, a Vacuolar Chloride Channel, Contributes to Salt Tolerance by Regulating Ion Accumulation in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:765173. [PMID: 34721491 PMCID: PMC8555695 DOI: 10.3389/fpls.2021.765173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 05/14/2023]
Abstract
Soil and freshwater salinization is increasingly becoming a problem worldwide and has adversely affected plant growth. However, most of the related studies have focused on sodium ion (Na+) stress, with relatively little research on chloride ion (Cl-) stress. Here, we found that upland cotton (Gossypium hirsutum) plants accumulated Cl- and exhibited strong growth inhibition under NaCl or KCl treatment. Then, a chloride channel gene (GhCLCg-1) was cloned from upland cotton. Phylogenetic and sequence analyses indicated that GhCLCg-1 was highly homologous to AtCLCg and also have conserved voltage_CLC and CBS domains. The subcellular localization assay showed that GhCLCg-1 was localized on the vacuolar membrane. Gene expression analyses revealed that the expression of GhCLCg-1 increased rapidly in cotton in response to chloride stress (NaCl or KCl), and the transcript levels increased as the chloride stress intensified. The overexpression of GhCLCg-1 in Arabidopsis thaliana changed the uptake of ions with a decrease of the Na+/K+ ratios in the roots, stems, and leaves, and enhanced salt tolerance. In contrast, silencing GhCLCg-1 in cotton plants increased the Cl- contents in the roots, stems, and leaves and the Na+/K+ ratios in the stems and leaves, resulting in compromised salt tolerance. These results provide important insights into the toxicity of chloride to plants and also indicate that GhCLCg-1 can positively regulates salt tolerance by adjusting ion accumulation in upland cotton.
Collapse
Affiliation(s)
- Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Wei Liu,
| | - Junping Feng
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Wenyu Ma
- Weinan Vocational and Technical College, Weinan, China
| | - Yang Zhou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops, College of Horticulture, Hainan University, Haikou, China
| | - Zongbin Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Zongbin Ma,
| |
Collapse
|
10
|
Kruk MK, Mayer B, Nightingale M, Laceby JP. Tracing nitrate sources with a combined isotope approach (δ 15N NO3, δ 18O NO3 and δ 11B) in a large mixed-use watershed in southern Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135043. [PMID: 31759727 DOI: 10.1016/j.scitotenv.2019.135043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Rapid population growth and land-use intensification over the last century have resulted in a substantial increase in nutrient loads degrading marine and freshwater ecosystems worldwide. In mixed-use watersheds, elevated nitrogen loads from wastewater treatment plant (WWTP) effluent or agricultural runoff often drive the eutrophication of waterways. Accordingly, the objective of this research was to identify sources of riverine nitrate (NO3), a deleterious dissolved species of nitrogen, with a combined isotopic tracing technique in the Bow River and the Oldman River in Alberta, Canada. Riverine NO3 and boron (B) concentrations, mean daily flux and δ15NNO3, δ18ONO3, and δ11B values were determined at 17 mainstem sites during high and low discharge periods in 2014 and 2015. The data for mainstem sites were then compared to results for effluent from seven WWTPs, eight synthetic fertilizers, cow manure, and three predominantly agricultural tributary sites to estimate point and non-point NO3 sources. The NO3 flux, δ15NNO3 and δ18ONO3 values indicated the city of Calgary's Bonnybrook WWTP effluent accounts for the majority of the NO3 flux in the Bow River downstream of Calgary. δ15NNO3 and δ11B values in the Bow River highlighted an increase in agricultural NO3 loading downstream of irrigation return-flows. A three-fold decrease in the NO3:B flux ratio indicated NO3-removal processes are active in the lower reaches of the Bow River. For the Oldman River, δ11B values revealed elevated nutrient loading from the Lethbridge WWTP effluent (10% of downstream B flux). Furthermore, the agricultural tributaries contributed 25% of the local B flux to the Oldman River. Overall, δ11B was proven to be an effective co-tracer for discriminating between urban and agricultural sources of NO3 in these large mixed-use watersheds. This combined isotope tracing approach has significant potential to identify point and non-point NO3 sources driving eutrophication around the world.
Collapse
Affiliation(s)
- M K Kruk
- Applied Geochemistry Group, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada; Resource Stewardship Division, Alberta Environment & Parks, Government of Alberta, Calgary, Alberta, Canada.
| | - B Mayer
- Applied Geochemistry Group, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - M Nightingale
- Applied Geochemistry Group, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - J P Laceby
- Resource Stewardship Division, Alberta Environment & Parks, Government of Alberta, Calgary, Alberta, Canada
| |
Collapse
|