1
|
Zhao Y, Kong L, Li S, Zhao Z, Wang N, Pang Y. Research progress on composite material of bismuth vanadate catalyzing the decomposition of Quinolone antibiotics. Sci Rep 2024; 14:1591. [PMID: 38238361 PMCID: PMC10796960 DOI: 10.1038/s41598-024-51485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Since quinolone is a kind of synthetic broad-spectrum antibacterial drugs, with the widespread use of this class of antibiotics, the risk and harm to human health have been attendant to the sewage containing quinolones which are discharged into the environment. Photocatalysis is considered as a promising technology for antibiotic degradation for its strong redox properties and reaction rate. As a metal oxidizing substance, Bismuth vanadate (BiVO4) is such a popular and hot material for the degradation of organic pollutants recently due to its good photocatalytic activity and chemical stability. Numerous studies have confirmed that BiVO4 composites can overcome the shortcomings of pure BiVO4 and cleave the main structure of quinolone under photocatalytic conditions. This paper mainly outlines the research progress on the preparation of BiVO4 composites and the degradation of quinolone antibiotics from the perspective of improving the catalysis and degrading the efficiency mechanism of BiVO4 composites.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Lingyuan Kong
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Shangdong Li
- School of Clinical Medicine Gansu University Of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, People's Republic of China
| | - Zhirui Zhao
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Na Wang
- School of Clinical Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Yunqing Pang
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
2
|
Ni Y, Yue W, Liu F, Bi W, Sun Z, Wu Y. Efficient electrochemical oxidation of cephalosporin antibiotics by a highly active cerium doped PbO2 anode: Parameters optimization, kinetics and degradation pathways. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Yang J, Fang L, Li Z, Meng G, Jia Y, Jiang Y, Lian J, Gan X. Insights into the formation of environmentally persistent free radicals during photocatalytic degradation processes of ceftriaxone sodium by ZnO/ZnIn 2S 4. CHEMOSPHERE 2023; 314:137618. [PMID: 36563725 DOI: 10.1016/j.chemosphere.2022.137618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/03/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
At present, the researches on photocatalysis were mainly focused on the design, improvement and development of catalysts, and less attention was paid to the existing characteristics of environmentally persistent free radicals (EPFRs) during the process of photocatalytic oxidation. In this study, A flower-like Z-type heterojunction ZnO/ZnIn2S4 (ZnO/ZIS) and typical antibiotic ceftriaxone sodium (CS) were taken as study objects, concentrating on the generation characteristics of EPFRs during the degradation of CS by ZnO/ZIS, and clarifying the degradation mechanism of CS in which EPFRs participated. The results showed that the degradation efficiency of 10 mg/L CS by 0.40 g/L ZnO/ZIS reached 85.3% in 150 min under the irradiation of 500 W xenon lamp. It was clear that ·O2- and h+ play major roles in CS degradation by ZnO/ZIS under visible light, and ·OH plays an auxiliary role. Furthermore, the formation mechanism of EPFRs during photocatalytic degradation processes of CS by ZnO/ZIS were first investigated thoroughly via experimental analysis and density functional theory (DFT) calculations. The concentration level of EPFRs centered on oxygen atoms is 1011 spin/mm3, which were generated in the process of degradation of CS by ZnO/ZIS under visible light. The production of EPFRs chiefly includes two procedures: chemical adsorption and transfer of electrons. The adsorption energy of precursor P8 on ZnIn2S4 side is -1.91 eV, the electrons transferred from precursor P8 and P11 to ZnO/ZnIn2S4 heterojunction. Surprisingly, EPFRs have little negative effects on the degradation process of CS by ZnO/ZIS. The study was not only a key field in the development of photocatalysis technology, but also a new way to study the removal mechanism of antibiotics.
Collapse
Affiliation(s)
- Jianhua Yang
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Maanshan, 243002, Anhui, China
| | - Lu Fang
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Guanhua Meng
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Maanshan, 243002, Anhui, China
| | - Yong Jia
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Maanshan, 243002, Anhui, China
| | - Yongbin Jiang
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Maanshan, 243002, Anhui, China
| | - Jianjun Lian
- Anhui University of Technology, School of Energy and Environment, Maanshan, 243002, Anhui, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Maanshan, 243002, Anhui, China
| | - Xinhong Gan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment (MEE) of China, Nanjing, 210042, China.
| |
Collapse
|
4
|
Zhang C, Shi Y, Wang Z, Liu C, Hou Y, Bi J, Wu L. Electrostatic interaction and surface S vacancies synergistically enhanced the photocatalytic degradation of ceftriaxone sodium. CHEMOSPHERE 2023; 311:137053. [PMID: 36332732 DOI: 10.1016/j.chemosphere.2022.137053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
ZnIn2S4 ultrathin 2D nanosheets with a positive surface charge are synthesized by a hydrothermal method and different contents of surface S vacancies are induced via heat treatment of as-prepared ZnIn2S4 (ZIS). As the S vacancies contents increased, the photocatalytic degradation efficiency of ceftriaxone (CTRX) sodium is promoted. Especially, ZIS-300 shows the best degradation efficiency (88.8%) for an initial CTRX concentration of 10 mg L-1 in 2 h. It is found that S vacancies cause the electron density of surface metal atoms (Zn, In) to be decreased, which makes the effective adsorption and activation of ceftriaxone anions through electrostatic adsorption interactions. Meanwhile, S vacancies also serve as active centers to promote the absorption of O2 and gather electrons to form •O2- species. The photogenerated holes quickly transfer to the surface of the catalyst to directly degrade the adsorbed CTRX. Thus, the photocatalytic CTRX degradation efficiency is significantly improved. Finally, a possible mechanism for over defective ZIS is proposed. This work provides a feasible strategy for the efficient degradation of antibiotics from the perspective of electrostatic adsorption and molecule activation.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Yingzhang Shi
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Zhiwen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Cheng Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Jinhong Bi
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China; Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, China.
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China.
| |
Collapse
|
5
|
Naimi-Joubani M, Ayagh K, Tahergorabi M, Shirzad-Siboni M, Yang JK. Design and modeling of diazinon degradation in hydrous matrix by Ni-doped ZnO nanorods under ultrasonic irradiation: process optimization using RSM (CCD), kinetic study, reaction pathway, mineralization, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3527-3548. [PMID: 35947265 DOI: 10.1007/s11356-022-21861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
In first, the Ni-doped ZnO nanorods used as an appeal sonocatalyst was synthesized through co-precipitation method. Afterwards, the crystalline structure, functional groups, surface morphology, and elemental composition were characterized by a set of analysis. Removal of diazinon ((DZ) as a renowned pesticide) was investigated using sonocatalytic performance of US/Ni-doped ZnO system. In this empirical study, response surface methodology (RSM) based central composite design (CCD) was applied for optimization of operational factors. Under the optimum conditions such as initial pH = 5, initial DZ concentration = 15 mg L-1, sonocatalyst dosage = 1 g L-1, and in the presence of organic compounds (oxalic acid, humic acid, and folic acid) = 3 mg L-1, the sonocatalytic degradation of DZ after 15 min was 82.29%. The F-value (6.64) and P-value (< 0.0001) for DZ degradation in the quadratic model imply the proposed model was significant. A-factor (pH) considers as a prominent factor owing to having the highest F-value. In addition, the sonocatalytic data in this study exhibited valid fitting for the first order kinetic model (R2 > 0.98). After six consecutive cycles, the Ni-doped ZnO nanorods could be recyclable for sonocatalytic degradation of DZ. The five main compounds produced during the US/Ni-doped ZnO embracing 2-isopropyl-6-methyl-4-pyrimidinol (IMP), diethyl phosphonate, diazoxon, hydroxyldiazinon, and diazinon methyl ketone are formed in the path of DZ degradation. OFAT style also revealed 99.99% of DZ degradation with 73.26% of mineralization rate in optimum status. The Ni-doped ZnO presented agreeable sonocatalytic facility in the refinement of real water and wastewater matrix. Finally, the results of toxicity evaluation (Daphnia magna) in the sonocatalytic degradation of DZ (by US/Ni-doped ZnO system) showed that the toxicity of the DZ solution lessened under US waves (LC50 and TU 48 h equal to 36.472 and 2.741 volume percent, respectively).
Collapse
Affiliation(s)
- Mohammad Naimi-Joubani
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Kobra Ayagh
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahsa Tahergorabi
- Department of Environmental Health Engineering, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Mehdi Shirzad-Siboni
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran.
| | - Jae- Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, Korea
| |
Collapse
|
6
|
Construction of a dual Z-scheme Cu|Cu2O/TiO2/CuO photocatalyst composite film with magnetic field enhanced photocatalytic activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Fan G, Cai C, Yang S, Du B, Luo J, Chen Y, Lin X, Li X, Wang Y. Sonophotocatalytic degradation of ciprofloxacin by Bi2MoO6/FeVO4 heterojunction: Insights into performance, mechanism and pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Mahmoudi F, Saravanakumar K, Maheskumar V, Njaramba LK, Yoon Y, Park CM. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129074. [PMID: 35567810 DOI: 10.1016/j.jhazmat.2022.129074] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
In the recent years, perovskite oxides are gaining an increasing amount of attention owing to their unique traits such as tunable electronic structures, flexible composition, and eco-friendly properties. In contrast, their catalytic performance is not satisfactory, which hinders real wastewater remediation. To overcome this shortcoming, various strategies are developed to design new perovskite oxide-based materials to enhance their catalytic activities in advanced oxidation process (AOPs). This review article is to provide overview of basic principle and different methods of AOPs, while the strategies to design novel perovskite oxide-based composites for enhancing the catalytic activities in AOPs have been highlighted. Moreover, the recent progress of their synthesis and applications in wastewater remediation (pertaining to the period 2016-2022) was described, and the related mechanisms were thoroughly discussed. This review article helps scientists to have a clear outlook on the selection and design of new effective perovskite oxide-based materials for the application of AOPs. At the end of the review, perspective on the challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Farzaneh Mahmoudi
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Karunamoorthy Saravanakumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Velusamy Maheskumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Ma Y, He D, Borjigin B, Yang X, Wang X, Bai F. Precisely tailoring selectivity via target group’s steered adsorption on Cu2O/tantalate catalysts for hydrogenation of 3‐nitrostyrene. ChemCatChem 2022. [DOI: 10.1002/cctc.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuxuan Ma
- Inner Mongolia University School of Chemistry and Chemical Engineering CHINA
| | - Dan He
- Inner Mongolia University School of Chemistry and Chemical Engineering CHINA
| | | | - Xiaoxue Yang
- Inner Mongolia University School of Chemistry and Chemical Engineering CHINA
| | - Xiaojing Wang
- Inner Mongolia University College of Chemistry and Chemical Engineering Daxue West Rd. 235 010021 Hohhot CHINA
| | - Fenghua Bai
- Inner Mongolia University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
10
|
Fan G, Yang S, Du B, Luo J, Lin X, Li X. Sono-photo hybrid process for the synergistic degradation of levofloxacin by FeVO 4/BiVO 4: Mechanisms and kinetics. ENVIRONMENTAL RESEARCH 2022; 204:112032. [PMID: 34516980 DOI: 10.1016/j.envres.2021.112032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
A novel FeVO4/BiVO4 heterojunction photocatalyst was synthesized by hydrothermal method. The FeVO4/BiVO4 nanostructures were characterized by XRD, SEM, XPS, UV-vis, and photoluminescence spectroscopy. The effects of catalyst dosage, contaminant concentration, initial hydrogen peroxide (H2O2) concentration, and pH value on the degradation of levofloxacin were investigated and several repeated experiments were conducted to evaluate the stability and reproducibility. The optimized process parameters were used for mineralization experiments. Reactive oxygen species, degradation intermediates, and possible catalytic mechanisms were also investigated. The results showed that the sonophotocatalytic performance of the FeVO4/BiVO4 heterojunction catalyst was better than that of sonocatalysis and photocatalysis. In addition, the Type II heterojunction formed by the material still had good stability in the degradation of levofloxacin after 5 cycles. The possible degradation pathway and mechanism of levofloxacin by sonophotocatalysis were put forward. This work develops new sono-photo hybrid process for potential application in the field of wastewater treatment.
Collapse
Affiliation(s)
- Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Shangwu Yang
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Banghao Du
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jing Luo
- Fujian Jinhuang Environmental Sci-Tech Co., Ltd, 350002, Fujian, China
| | - Xin Lin
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Xia Li
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| |
Collapse
|
11
|
Removal of Ciprofloxacin from Wastewater by Ultrasound/Electric Field/Sodium Persulfate (US/E/PS). Processes (Basel) 2022. [DOI: 10.3390/pr10010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Ciprofloxacin (CIP), as a common antibiotic used in human clinical and livestock farming, is discharged into natural water bodies and its concentration has increased in the last years. Its stable chemical structure is difficult to remove by conventional techniques. Residual ciprofloxacin in the environment has become an emerging micropollutant that promotes the generation of resistance genes of bacteria and endangers ecosystem balance and human health. Removal of ciprofloxacin from water by the system of ultrasound/electric field/sodium persulfate (US/E/PS) was investigated. Firstly, CIP degradation affects by different oxidation methods, such as ultrasonic oxidation, electro-oxidation, and persulfate oxidation, and their four combined oxidation methods (ultrasound-activated persulfate oxidation, electro-activated persulfate oxidation, ultrasound-enhanced electro-oxidation, and ultrasound-enhanced electro-activated persulfate oxidation), on the target contaminants were compared. Secondly, the influences of parameters on the CIP degradation by an ultrasound-enhanced electro-activation-persulfate reaction system were investigated. Thirdly, the possible free radical species in the ultrasound-enhanced electro-activation-sulfate reaction system were identified and the dominant free radical species in the system were analyzed. Finally, the samples of CIP in the US/E/PS system were tested by liquid mass spectrometry, and the possible intermediate products and degradation path were speculated. The results indicate that the US/E/PS system is of great potential application value in the removal of organic pollution and environmental purification.
Collapse
|
12
|
Lai YJ, Lee DJ. Solid mediator Z-scheme heterojunction photocatalysis for pollutant oxidation in water: Principles and synthesis perspectives. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Liu P, Wu Z, Abramova AV, Cravotto G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. ULTRASONICS SONOCHEMISTRY 2021; 74:105566. [PMID: 33975189 PMCID: PMC8122362 DOI: 10.1016/j.ultsonch.2021.105566] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 05/15/2023]
Abstract
Antibiotic residues in water are general health and environmental risks due to the antibiotic-resistance phenomenon. Sonication has been included among the advanced oxidation processes (AOPs) used to remove recalcitrant contaminants in aquatic environments. Sonochemical processes have shown substantial advantages, including cleanliness, safety, energy savings and either negligible or no secondary pollution. This review provides a wide overview of the different protocols and degradation mechanisms for antibiotics that either use sonication alone or in hybrid processes, such as sonication with catalysts, Fenton and Fenton-like processes, photolysis, ozonation, etc.
Collapse
Affiliation(s)
- Pengyun Liu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy
| | - Zhilin Wu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy
| | - Anna V Abramova
- Federal State Budgetary Institution of Science N.S. Kurnakov Institute of General Inorganic Chemistry of the Russian Academy of Sciences, GSP-1, V-71, Leninsky Prospekt 31, 119991 Moscow, Russia
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8 Trubetskaya ul, Moscow, Russia.
| |
Collapse
|
14
|
Meng C, Zhao K, Yang M, Liang Y. Hydrothermal preparation of novel rGO-KTaO 3 nanocubes with enhanced visible light photocatalytic activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119352. [PMID: 33401179 DOI: 10.1016/j.saa.2020.119352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
In this study, nanocubes KTaO3-reduced graphene oxide (rGO-KTaO3) photocatalysts were synthesized by a facile hydrothermal method. Different technical methods were carried out to characterize the as-prepared compounds. UV-Vis spectra show that the absorption sideband of the complexes red-shift to visible light region, which enhances the light utilization. Meanwhile, X-ray photoelectron spectroscopy (XPS) reveals that the graphene oxide (GO) in the composite has been partially reduced, leading to more effective electron transport and thus improving the photocatalytic efficiency. Furthermore, photocatalytic degradation efficiency of Methylene blue (MB) and Rhodamine B (RhB) in the presence of rGO-KTaO3 reaches 96% and 98%, which is 10 times of that of KTaO3. The synthesized rGO-KTaO3 has good photocatalytic properties. Moreover, the stability of this photocatalyst is particularly excellent. The detailed mechanism of photocatalysis has been carefully discussed in the article.
Collapse
Affiliation(s)
- Chenxiaoning Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Keyan Zhao
- Beijing Kang Lisheng Pharmaceutical Technology Development Co., Ltd., Beijing 100000, China
| | | | - Yaohua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
15
|
Degradation of norfloxacin in aqueous solution using hydrodynamic cavitation: Optimization of geometric and operation parameters and investigations on mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118166] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Wu Q. Fabrication of black TiO 2-x /NiFe 2O 4 supported on diatomaceous earth with enhanced sonocatalytic activity for ibuprofen mitigation. NANOTECHNOLOGY 2021; 32:055706. [PMID: 33065561 DOI: 10.1088/1361-6528/abc20c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study reports a facile fabrication of black TiO2-x /NiFe2O4 (Ti3+ self-doped titania coupled with nickel ferrite), an efficient sonocatalyst for ibuprofen (IBP) mitigation. Compared with TiO2-x or NiFe2O4, TiO2-x /NiFe2O4 heterojunction displayed higher sonocatalytic activity, and their immobilization onto diatomaceous earth further enhanced mitigation efficiency due to the synergy between adsorption and sonocatalysis. About 96.7% of 10 mg l-1 IBP was removed in 100 min using 0.7 g l-1 catalyst at pH = 6, with the ultrasonic power of 144 W and frequency of 60 KHz. Quenching experiment results demonstrated the roles of reactive species. The intermediates during IBP sono-oxidation were determined by HPLC-MS method, and the acute toxicity was evaluated. Furthermore, the reaction mechanism was proposed. The sonocatalyst revealed excellent reusability, suggesting itself promising for wastewater treatment.
Collapse
Affiliation(s)
- Qiong Wu
- College of Environment, Liaoning University, Shenyang 110036, People's Republic of China
| |
Collapse
|
17
|
Simultaneous removal of ceftriaxone sodium and Cr(VI) by a novel multi-junction (p-n junction combined with homojunction) composite photocatalyst: BiOI nanosheets modified cake-like anatase-rutile TiO2. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114479] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Yi L, Li B, Sun Y, Li S, Qi Q, Qin J, Sun H, Fang D, Wang J. Construction of coated Z-scheme Er3+:Y3Al5O12/Pd-CdS@BaTiO3 sonocatalyst composite for intensifying degradation of chlortetracycline hydrochloride in aqueous solution. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Gholami P, Khataee A, Vahid B, Karimi A, Golizadeh M, Ritala M. Sonophotocatalytic degradation of sulfadiazine by integration of microfibrillated carboxymethyl cellulose with Zn-Cu-Mg mixed metal hydroxide/g-C3N4 composite. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116866] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Wu Q, Zhang Z. Fabrication of black TiO 2−x/CuFe 2O 4 decorated on diatomaceous earth with enhanced sonocatalytic activity for ibuprofen mitigation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01478h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports facile fabrication of black TiO2−x/CuFe2O4 (Ti3+ self-doped titania coupled with copper ferrite), an efficient sonocatalyst for ibuprofen (IBP) mitigation.
Collapse
Affiliation(s)
- Qiong Wu
- College of Environment
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Zhaohong Zhang
- College of Environment
- Liaoning University
- Shenyang 110036
- P. R. China
| |
Collapse
|