1
|
De Marco G, Cristaldi A, Eliso MC, Oliveri Conti G, Galati M, Billè B, Terranova M, Parrino V, Cappello T, Ferrante M, Maisano M. Cellular pathway disturbances elicited by realistic dexamethasone concentrations in gills of mussel Mytilus galloprovincialis as assessed by a multi-biomarker approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104598. [PMID: 39626850 DOI: 10.1016/j.etap.2024.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
The growing usage of glucocorticoids for a variety of diseases raises concerns since these drugs, including the anti-inflammatory dexamethasone (DEX), are frequently found in the environment. The impact of DEX was evaluated on mussels Mytilus galloprovincialis (Lamarck, 1819) by exposure to environmental concentrations (C1: 4 ng/L; C2: 40 ng/L; C3: 400 ng/L; C4: 2000 ng/L), and sampling at 3 (T3), 6 (T6), and 12 (T12) days. A multi-biomarker approach was applied on gills, involved in gas exchange, feed filtering, and osmoregulation. A dose- and time-dependent uptake of DEX was recorded, besides haemocyte infiltration, increased neutral and acid mucopolysaccharides, and a general pro-oxidant effect witnessed by lipid peroxidation and altered antioxidant system. Metabolomics revealed rise in protein turnover and energy demand by fluctuations in free amino acids (alanine, glycine) and energy-related metabolites (succinate, ATP/ADP). It is necessary to reduce DEX dosage from the environment by recovery strategies and effective eco-pharmacovigilance programs.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Antonio Cristaldi
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Maria Concetta Eliso
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale, Naples 80121, Italy
| | - Gea Oliveri Conti
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Mery Terranova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy; Universal Scientific Education and Research Network (USERN).
| | - Margherita Ferrante
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| |
Collapse
|
2
|
Abouda S, Galati M, Oliveri Conti G, Cappello T, Abelouah MR, Romdhani I, Ait Alla A, Ferrante M, Maisano M, Banni M. Metabolomic and biochemical disorders reveal the toxicity of environmental microplastics and benzo[a]pyrene in the marine polychaete Hediste diversicolor. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135404. [PMID: 39098204 DOI: 10.1016/j.jhazmat.2024.135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Recently, the abundance of environmental microplastics (MPs) has become a global paramount concern. Besides the danger of MPs for biota due to their tiny size, these minute particles may act as vectors of other pollutants. This study focused on evaluating the toxicity of environmentally relevant concentrations of MPs (10 and 50 mg/kg sediment) and benzo[a]pyrene (B[a]P, 1 µg/kg sediment), alone and in mixture, for 3 and 7 days in marine polychaete Hediste diversicolor, selected as a benthic bioindicator model. The exposure period was sufficient to confirm the bioaccumulation of both contaminants in seaworms, as well as the potential capacity of plastic particles to adsorb and vehiculate the B[a]P. Interestingly, increase of acidic mucus production was observed in seaworm tissues, indicative of a defense response. The activation of oxidative system pathways was demonstrated as a strategy to prevent lipid peroxidation. Furthermore, the comprehensive Nuclear Magnetic Resonance (NMR)-based metabolomics revealed significant disorders in amino acids metabolism, osmoregulatory process, energetic components, and oxidative stress related elements. Overall, these findings proved the possible synergic harmful effect of MPs and B[a]P even in small concentrations, which increases the concern about their long-term presence in marine ecosystems, and consequently their transfer and repercussions on marine fauna.
Collapse
Affiliation(s)
- Siwar Abouda
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gea Oliveri Conti
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Margherita Ferrante
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| |
Collapse
|
3
|
Polo G, Lionetto F, Giordano ME, Lionetto MG. Interaction of Micro- and Nanoplastics with Enzymes: The Case of Carbonic Anhydrase. Int J Mol Sci 2024; 25:9716. [PMID: 39273668 PMCID: PMC11396312 DOI: 10.3390/ijms25179716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) have emerged as significant environmental pollutants with potential detrimental effects on ecosystems and human health. Several studies indicate their interaction with enzymes; this topic represents a multifaceted research field encompassing several areas of interest from the toxicological and ecotoxicological impact of MPs and NPs on humans and wildlife to the biodegradation of plastics by microbial enzymes. This review aims to provide a critical analysis of the state-of-the-art knowledge of the interaction of MPs and NPs on the enzyme carbonic anhydrase (CA), providing recent insights, analyzing the knowledge gaps in the field, and drawing future perspectives of the research and its application. CA is a widespread and crucial enzyme in various organisms; it is critical for various physiological processes in animals, plants, and bacteria. It catalyzes the reversible hydration of CO2, which is essential for respiration, acid-base balance, pH homeostasis, ion transport, calcification, and photosynthesis. Studies demonstrate that MPs and NPs can inhibit CA activity with mechanisms including adsorption to the enzyme surface and subsequent conformational changes. In vitro and in silico studies highlight the role of electrostatic and hydrophobic interactions in these processes. In vivo studies present mixed results, which are influenced by factors like particle type, size, concentration, and organism type. Moreover, the potentiality of the esterase activity of CA for plastic degradation is discussed. The complexity of the interaction between CA and MPs/NPs underscores the need for further research to fully understand the ecological and health impacts of MPs and NPs on CA activity and expression and glimpses of the potentiality and perspectives in this field.
Collapse
Affiliation(s)
- Gregorio Polo
- Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Elena Giordano
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
4
|
Žurga P, Dubrović I, Kapetanović D, Orlić K, Bolotin J, Kožul V, Nerlović V, Bobanović-Ćolić S, Burić P, Pohl K, Marinac-Pupavac S, Linšak Ž, Antunović S, Barišić J, Perić L. Performance of mussel Mytilus galloprovincialis under variable environmental conditions and anthropogenic pressure: A survey of two distinct farming sites in the Adriatic Sea. CHEMOSPHERE 2024; 364:143156. [PMID: 39178968 DOI: 10.1016/j.chemosphere.2024.143156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Changes in natural conditions and anthropogenic pollutants, alone or in combination, pose a significant challenge to coastal bivalve populations. The susceptibility of economically important bivalves to potential stressors in their farming environment has not been sufficiently investigated, despite the increase in anthropogenic pressure along the coast and the remarkable warming of seawater in recent years. Thus, the aim of this study was to evaluate the performance of mussel (Mytilus galloprovincialis) from two important farming sites in the eastern Adriatic, namely Mali Ston Bay (MSB) and Lim Bay (LB), in relation to variations of seawater parameters, reproductive cycle dynamics and tissue content of potentially harmful pollutants. The complex seasonal and site-specific patterns of chemical pollutants were determined, with tissue levels of metals, As, PAHs and PCBs largely comparable to those previously reported for the Mediterranean region. Concentrations of organochlorinated pesticides were below the level of detection. Significantly higher Cd, As and Hg concentrations were detected in the tissues of the MSB mussels. The reproductive cycle was clearly associated with the bioaccumulation of pollutants. All biochemical response parameters varied to some extent across seasons and/or between farming sites. A very pronounced seasonality was recorded for acetylcholinesterase and glutathione S-transferase activity at both sites. Metallothionein concentration and superoxide dismutase activity were generally steady throughout the study period. The most striking difference between the two sites was recorded for lipid peroxides concentrations which were predominantly significantly higher in the MSB mussels, indicating expressed pro-oxidant conditions at this site. In particular, significant correlations were found between lipid peroxides and the potentially toxic metals (Cd, As, Hg) accumulated in the mussel tissue. Data reported here are valuable as baseline information for further studies related to stress in farmed bivalves caused by oscillations of environmental factors and increasing anthropogenic pressure along the coastline.
Collapse
Affiliation(s)
- Paula Žurga
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Igor Dubrović
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | | | - Karla Orlić
- Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Jakša Bolotin
- Institute for Marine and Coastal Research, University of Dubrovnik, 20000, Dubrovnik, Croatia
| | - Valter Kožul
- Institute for Marine and Coastal Research, University of Dubrovnik, 20000, Dubrovnik, Croatia
| | - Vedrana Nerlović
- University Department of Marine Studies, University of Split, 21000, Split, Croatia
| | | | - Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100, Pula, Croatia
| | - Kalista Pohl
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100, Pula, Croatia
| | | | - Željko Linšak
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Sanda Antunović
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia
| | - Josip Barišić
- University of the West of Scotland, Paisley, PA1 2BE, Scotland, UK
| | - Lorena Perić
- Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
5
|
Udayan G, Giordano ME, Pagliara P, Lionetto MG. Motility of Mytilus galloprovincialis hemocytes: Sensitivity to paracetamol in vitro exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106779. [PMID: 38016241 DOI: 10.1016/j.aquatox.2023.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Pharmaceuticals released into the environment (PiEs) represent an environmental problem of growing concern for the health of ecosystems and humans. An increasing number of studies show that PiEs pose a risk to aquatic organisms. The aim of the present work was to contribute to increasing the knowledge of the effects of PiE on marine biota focusing on the effect of paracetamol on the motility of hemocytes in Mytilus galloprovincialis, a bivalve mollusk species widely utilized as bioindicator organism. Hemocytes are the immunocompetent cells of bivalve mollusks. An early and key stage of mollusk immune response is represented by the recruitment and migration of these cells to the site of infection. Therefore, motility is an intrinsic characteristic of these cells. Here, we first characterized the spontaneous cell movement of M. galloprovincialis hemocytes when plated in a TC-treated polystyrene 96-well microplate. Two different cellular morphotypes were distinguished based on their appearance and motility behavior: spread cells and round-star-shaped cells. The two motility morphotypes were characterized by different velocities as well as movement directness, which were significantly lower in round-star-shaped cells with respect to spread cells. The sensitivity of the motility of M. galloprovincialis hemocytes to paracetamol at different concentrations (0.02, 0.2 and 2 mg/L) was investigated in vitro after 1h and 24h exposure. Paracetamol induced alterations in the motility behavior (both velocity and trajectories) of the hemocytes and the effects were cell-type specific. The study of hemocyte movements at the single cell level by cell tracking and velocimetric parameters analysis provides new sensitive tools for assessing the effects of emerging pollutants at the cellular levels in non-target organisms.
Collapse
Affiliation(s)
- Gayatri Udayan
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy
| | - Maria Elena Giordano
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy
| | - Patrizia Pagliara
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy
| | - Maria Giulia Lionetto
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
6
|
Pazi I, Kucuksezgin F, Gonul LT, Guclusoy H, Akcali B. Metal levels in sediments and caged mussels in one of the industrial zones of the Eastern Aegean Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121161-121174. [PMID: 37952067 DOI: 10.1007/s11356-023-30802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Caged mussels make biomonitoring studies possible with their ability to take up pollutants in the industrial zones. The goal of this study was applied to assess metal levels in the biomonitoring organism Mytillus galloprovincialis Lamark, 1819 for transplantation from three locations for two periods (2016-2018) in the industrial zone of the Eastern Aegean Sea. Metals were also determined in sediments; high concentrations of Hg, As and Zn in surficial sediments of Nemrut Bay can cause hazardous impacts on the aquatic environment with respect to sediment quality guidelines. The highest contamination factor (Cf) was calculated for Hg (Cf = 10), suggesting serious anthropogenic pollution in the study area. According to Pearson product-moment correlation analysis, As is not correlated with other metals due to As mainly originating from natural sources. Hg, Cd, Pb and Cu concentrations increased in the transplanted mussels during a field transplant experiment because of chronic pollution from industrial activities. Cumulative effects of both the oil refinery and shipbreaking industry cause higher uptake of Hg, Cd, Pb and Cu in sampling station 3 as a result of higher exposure levels in transplanted mussels. Mussel consumption was compared with provisional maximum tolerable intake from literature; the estimated provisional intake (EDI) for Cd, Hg and Pb does not exceed maximum levels; however, Cu and Zn exceed reference EDI values. Since Nemrut Bay is heavily influenced by industrialisation, it is not a suitable region for seafood production.
Collapse
Affiliation(s)
- Idil Pazi
- Dokuz Eylül University, Institute Marine Science & Technology, TR-35340, Izmir, Türkiye.
| | - Filiz Kucuksezgin
- Dokuz Eylül University, Institute Marine Science & Technology, TR-35340, Izmir, Türkiye
| | - L Tolga Gonul
- Dokuz Eylül University, Institute Marine Science & Technology, TR-35340, Izmir, Türkiye
| | - Harun Guclusoy
- Dokuz Eylül University, Institute Marine Science & Technology, TR-35340, Izmir, Türkiye
| | - Baris Akcali
- Dokuz Eylül University, Institute Marine Science & Technology, TR-35340, Izmir, Türkiye
| |
Collapse
|
7
|
De Marco G, Eliso MC, Oliveri Conti G, Galati M, Billè B, Maisano M, Ferrante M, Cappello T. Short-term exposure to polystyrene microplastics hampers the cellular function of gills in the Mediterranean mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106736. [PMID: 37913686 DOI: 10.1016/j.aquatox.2023.106736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Plastic is undoubtedly the most useful and versatile polymeric material that man has developed in the last two centuries Despite the societal benefits, plastic is now a serious global issue because it is persistent and may bioaccumulate into aquatic biota as microplastics (MPs). This study was designed to evaluate the daily uptake and cellular effects due to a short-term (up to 72 h) exposure to 3 μm red polystyrene MPs (50 beads/mL) in the gills of the Mediterranean mussel Mytilus galloprovincialis, chosen as model species for its ecological and commercial relevance. After measuring the daily uptake of MPs and detecting their presence within the branchial epithelium at all the exposure time-points (T24, T48, T72), some cleaning mechanisms were observed by neutral and acid mucous secretions at mussel gills. The protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, allowed to comprehensively explore the time-dependent metabolic disorders triggered by MPs in mussel gills over the short-term trial. Specifically, the clear clustering between MP-treated mussel gills and those from control, together with the grouping for experimental time-points as depicted by the Principal Component Analysis (PCA), were due to changes in the amino acids and energy metabolism, disturbances in the osmoregulatory processes, as well as in the cholinergic neurotransmission. Moreover, as evidenced by enzymatic assays, even the oxidative defense systems and lipid metabolism were hampered by MP exposure. Overall, these findings provides the first insights into the early time-dependent mechanisms of toxicity of polystyrene MPs in marine mussels, and underline the potential environment and human health risk posed by MPs contamination.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Concetta Eliso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Gea Oliveri Conti
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Margherita Ferrante
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
8
|
Afsa S, De Marco G, Cristaldi A, Giannetto A, Galati M, Billè B, Conti GO, Ben Mansour H, Ferrante M, Cappello T. Single and combined effects of caffeine and salicylic acid on mussel Mytilus galloprovincialis: Changes at histomorphological, molecular and biochemical levels. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104167. [PMID: 37286067 DOI: 10.1016/j.etap.2023.104167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Caffeine (CAF) and salicylic acid (SA) are frequently detected in waterbody, though information on their biological impact is poor. This work assesses the effects of CAF (5ng/L to 10µg/L) and SA (0.05µg/L to 100µg/L) alone and combined as CAF+SA (5ng/L+0.05µg/L to 10µg/L+100µg/L) on mussel Mytilus galloprovincialis under 12-days exposure by histomorphology of digestive gland and oxidative stress defense at molecular and biochemical levels. Besides evaluating tissue accumulation, absence of histomorphological damage and haemocyte infiltration highlighted activation of defensive mechanisms. Up-regulation of Cu/Zn-sod, Mn-sod, cat and gst combined with increased catalase and glutathione S-transferase activity were found in CAF-exposed mussels, while SA reduced ROS production and mitochondrial activity. CAF+SA exposure induced differential responses, and the integrated biomarker response (IBR) revealed more pronounced effects of SA than CAF. These results enlarge knowledge on pharmaceuticals impact on non-target organisms, emphasizing the need for proper environmental risk assessment.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Cristaldi
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Margherita Ferrante
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
9
|
Lionetto MG. Carbonic Anhydrase and Biomarker Research: New Insights. Int J Mol Sci 2023; 24:ijms24119687. [PMID: 37298637 DOI: 10.3390/ijms24119687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Carbonic anhydrase (CA) is a widespread metalloenzyme with eight genetically distinct families catalyzing the reversible hydration of CO2 to HCO3- and H+ [...].
Collapse
Affiliation(s)
- Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
10
|
Tommasi F, Lyons DM, Pagano G, Oral R, Thomas PJ, Eccles KM, Tez S, Toscanesi M, Giarra A, Siciliano A, Dipierro N, Gjata I, Guida M, Libralato G, Jaklin A, Burić P, Kovačić I, Trifuoggi M. Geospatial pattern of topsoil pollution and multi-endpoint toxicity in the petrochemical area of Augusta-Priolo (eastern Sicily, Italy). CHEMOSPHERE 2023; 333:138802. [PMID: 37146778 DOI: 10.1016/j.chemosphere.2023.138802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
The present study was aimed at identifying geospatial patterns of pollutants including concentrations and toxicity as complex environmental mixtures, in topsoil samples close to petrochemical facilities in the heavily industrialized area of Augusta and Priolo in south-eastern Sicily (Italy). Elemental analysis of soil was conducted by ICP-MS for 23 metals and 16 rare earth elements (REEs). Organic analyses were primarily focused on polycyclic aromatic hydrocarbons (PAHs) (16 parent homologs) and total aliphatic hydrocarbons (C10 - C40). Topsoil samples were tested for toxicity in multiple bioassay models including: 1) developmental defects and cytogenetic anomalies in sea urchin Sphaerechinus granularis early life stages; 2) growth inhibition of diatom Phaeodactylum tricornutum; 3) mortality in nematode Caenorhabditis elegans; and 4) induction of mitotic abnormalities in onion Allium cepa. Samples collected at sites closest to defined petrochemical facilities were highest in select pollutants and correlated with biological effects in different toxicity endpoints. A noteworthy finding was the increased level of total REEs in sites closest to petrochemical facilities, suggesting their contributions to identifying petrochemical sources of pollutants to the environment. The combined data obtained in the different bioassays allowed exploration of geospatial patterns of effect in biota as a function of contaminant levels. In conclusion, this study provides consistent data of soil toxicity, metal and REE contamination at Augusta-Priolo sampling sites, and may provide an appropriate baseline for epidemiological studies on high incidences of congenital birth defects in the area and identification of at-risk localities.
Collapse
Affiliation(s)
- Franca Tommasi
- University of Bari Aldo Moro, Department of Biosciences, Biotechnologies and Environment, I-70125, Bari, Italy
| | - Daniel M Lyons
- Ruđer Bošković Institute, Center for Marine Research, HR-52210, Rovinj, Croatia
| | - Giovanni Pagano
- University of Naples Federico II, Department of Chemical Sciences, I-80126, Naples, Italy.
| | - Rahime Oral
- Ege University, Faculty of Fisheries, TR-35100, Bornova, İzmir, Turkey
| | - Philippe J Thomas
- Environment and Climate Change Canada, Science Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Kristin M Eccles
- National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Durham, NC, 27713, USA
| | - Serkan Tez
- Ege University, Faculty of Fisheries, TR-35100, Bornova, İzmir, Turkey
| | - Maria Toscanesi
- University of Naples Federico II, Department of Chemical Sciences, I-80126, Naples, Italy
| | - Antonella Giarra
- University of Naples Federico II, Department of Chemical Sciences, I-80126, Naples, Italy
| | | | - Nunzio Dipierro
- University of Bari Aldo Moro, Department of Biosciences, Biotechnologies and Environment, I-70125, Bari, Italy
| | - Isidora Gjata
- University of Bari Aldo Moro, Department of Biosciences, Biotechnologies and Environment, I-70125, Bari, Italy
| | - Marco Guida
- University of Naples Federico II, Department of Biology, I-80126, Naples, Italy
| | - Giovanni Libralato
- University of Naples Federico II, Department of Biology, I-80126, Naples, Italy
| | - Andrej Jaklin
- Ruđer Bošković Institute, Center for Marine Research, HR-52210, Rovinj, Croatia
| | - Petra Burić
- Juraj Dobrila University of Pula, HR-52100, Pula, Croatia
| | - Ines Kovačić
- Juraj Dobrila University of Pula, HR-52100, Pula, Croatia
| | - Marco Trifuoggi
- University of Naples Federico II, Department of Chemical Sciences, I-80126, Naples, Italy
| |
Collapse
|
11
|
Calisi A, Giordano ME, Dondero F, Maisano M, Fasulo S, Lionetto MG. Morphological and functional alterations in hemocytes of Mytilus galloprovincialis exposed in high-impact anthropogenic sites. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105988. [PMID: 37080092 DOI: 10.1016/j.marenvres.2023.105988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
The work aimed to study the induction of morphological alterations in M. galloprovincialis in the field and its suitability to be integrated into a sensitive, simple, and cost-effective cell-based multimarker approach for the detection of the stress status induced by pollution in coastal marine environments in view of ecotoxicological biomonitoring and assessment application. Cellular morphometric alterations was paralleled by the analysis of standardized biomarkers such as lysosomal membrane destabilization, and genotoxocity biomarkers such as micronuclei and binuclated cells frequencies were investigated. The study was carried out by means of a transplanting experiment in the field, using caged organisms from an initial population exposed in the field in two multi-impacted coastal sites of the central Mediterranean area, Bagnoli in the eastern Tyrrhenian Sea and Augusta-Melilli-Priolo in the western Ionian Sea. Capo Miseno (NA) for the Tyrrhenian area and Brucoli (ME) for the Ionian area were chosen as control sites. Hemocyte enlargement and filopodial elongation increased frequencies were observed in organisms exposed to the impacted sites. These morphometric alterations showed strong agreement with the lysosomal membrane destabilization and biomarkers of genotoxicity, suggesting their usefulness in detecting the pollutant-induced stress syndrome related to genotoxic damage.
Collapse
Affiliation(s)
- Antonio Calisi
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale-Vercelli, Novara, Alessandria, Viale Michel 11, 15121, Alessandria, Italy.
| | - Maria Elena Giordano
- Department of Biological and Environmental Science and Technologies, Universita del Salento, Via prov.le Lecce-Monteroni, 73100, Lecce, Italy.
| | - Francesco Dondero
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale-Vercelli, Novara, Alessandria, Viale Michel 11, 15121, Alessandria, Italy.
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Salvatore Fasulo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technologies, Universita del Salento, Via prov.le Lecce-Monteroni, 73100, Lecce, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| |
Collapse
|
12
|
Caliani I, Cannicci S, Pretti C, Baratti M, Contini G, Vitale M, Casini S, Fossi MC, Iannucci A, Fratini S. A multidisciplinary integrated approach using Pachygrapsus marmoratus to assess the impact of port activities on mediterranean marine protected areas. CHEMOSPHERE 2023; 312:137129. [PMID: 36356813 DOI: 10.1016/j.chemosphere.2022.137129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The establishment of marine protected areas is considered the main global strategy to halt the loss of marine biodiversity. Since most of marine areas are open systems, this form of habitat protection cannot prevent their contamination due to human activities performed outside of their borders. Innovative approaches to assess the health status of protected marine habitats are therefore needed. Here we developed a multidisciplinary approach that combines ecological characteristics, bioaccumulation of inorganic and organic pollutants, cell damage (micronuclei frequency, nuclear alterations and LPO) and enzymatic (AChE, CAT, IDH, LDH, GST and CAT) markers focused on an intertidal brachyuran crab, Pachygrapsus marmoratus, to assess the impacts of contaminant exposure on Mediterranean coastal habitats. As study sites we selected two protected areas and two sites within industrial ports of the Ligurian Sea. Our results showed that the selected crab species is an excellent bioindicator. Individuals collected in sites with the highest levels of heavy metal pollution showed the highest signals of stress responses at both cellular and enzymatic levels, coupled with a high incidence of the parasite Sacculina carcini, a signal of impairment of their standard development and reproduction cycle. We could also prove that one of the selected marine protected areas showed the same intensity of impact as its adjacent port site. Our multidisciplinary approach proved to be a valuable tool to assess the environmental quality and health of protected and disturbed Mediterranean coastal environments and to inform efficient management and protection schemes for such habitats.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Stefano Cannicci
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy; The Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, Livorno, I-57128, Italy; Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, Pisa, I-56124, Italy.
| | - Mariella Baratti
- Institute of Biosciences and Bioresources, IBBR-CNR, Via Madonna Del Piano 10, Sesto Fiorentino, (FI), I-50019, Italy.
| | - Ginevra Contini
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy.
| | - Matteo Vitale
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Alessio Iannucci
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy.
| | - Sara Fratini
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy.
| |
Collapse
|
13
|
Liang X, Wang X, Cheng J, Zhang X, Wu T. Ag 2Se quantum dots damage the nervous system of nematode Caenorhabditis elegans. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:279-285. [PMID: 35670839 DOI: 10.1007/s00128-022-03560-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Silver selenide quantum dots (Ag2Se QDs), as a novel type of QDs, are valuable in the biomedical application due to their low-toxic and excellent optical property in near infrared region, but the biosafety assessment of Ag2Se QDs is rare. In this study, the findings suggested that the accumulation of Ag2Se QDs in the body of nematodes decreased the lifespan and damaged normal neurobehaviors of Caenorhabditis elegan (C. elegans). Furthermore, Ag2Se QDs caused excessive reactive oxygen species (ROS) productions and altered expressions of several genes associated with redox equilibrium, which might contribute to neurotoxic outcomes in nematode C. elegans. According to this study, it is necessary and important for researchers to pay attention to the biosafety assessment of presumed low-toxic nanomaterials, like Ag2Se QDs, especially on sensitively toxic targets, i.e. the nervous system.
Collapse
Affiliation(s)
- Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, School of Public Health, Ministry of Education, Southeast University, 210009, Nanjing, P. R. China
| | - Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, School of Public Health, Ministry of Education, Southeast University, 210009, Nanjing, P. R. China
| | - Jin Cheng
- Key Laboratory of Environmental Medicine and Engineering, School of Public Health, Ministry of Education, Southeast University, 210009, Nanjing, P. R. China
| | - Xiaomeng Zhang
- Key Laboratory of Environmental Medicine and Engineering, School of Public Health, Ministry of Education, Southeast University, 210009, Nanjing, P. R. China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, School of Public Health, Ministry of Education, Southeast University, 210009, Nanjing, P. R. China.
| |
Collapse
|
14
|
Krikech I, Ranjbar Jafarabadi A, Leermakers M, Le Pennec G, Cappello T, Ezziyyani M. Insights into bioaccumulation and bioconcentration of potentially toxic elements in marine sponges from the Northwestern Mediterranean coast of Morocco. MARINE POLLUTION BULLETIN 2022; 180:113770. [PMID: 35635883 DOI: 10.1016/j.marpolbul.2022.113770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The present research aimed to investigate the concentrations and patterns of six potentially toxic elements (PTEs) in three common sponge species collected along the Moroccan Mediterranean coast, as well as their levels in ambient seawater and sediments. Distinct inter-species variability in PTEs bioaccumulation was observed among the three species, suggesting that sponges have distinct selectivity for assimilating PTEs from the surrounding environment. C. crambe had a higher enrichment capacity for Cu, As, Cr and Ni, while P. ficiformis and C. reniformis exhibited the highest concentration of Cd and Pb, respectively. Interestingly, a similar spatial distribution patterns of PTEs was observed in the three media, with high values occurring in Tangier and Al-Hoceima locations. Overall, our results confirm that sponges reliably reflect the bioavailability of PTEs in their immediate environment, especially C. crambe, whose PTE tissue contents were highly and positively correlated with the contents of all PTEs in the sediments.
Collapse
Affiliation(s)
- Imad Krikech
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004 Larache, Morocco; Laboratoire de Biotechnologie et de Chimie Marines, Université de Bretagne Sud, EA 3884-IUEM, BP 92116, 56321 CS, Lorient, Brittany, France; Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Martine Leermakers
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gaël Le Pennec
- Laboratoire de Biotechnologie et de Chimie Marines, Université de Bretagne Sud, EA 3884-IUEM, BP 92116, 56321 CS, Lorient, Brittany, France
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Mohammed Ezziyyani
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004 Larache, Morocco.
| |
Collapse
|
15
|
Autofluorescence of Model Polyethylene Terephthalate Nanoplastics for Cell Interaction Studies. NANOMATERIALS 2022; 12:nano12091560. [PMID: 35564269 PMCID: PMC9100011 DOI: 10.3390/nano12091560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023]
Abstract
This work contributes to fill one of the gaps regarding nanoplastic interactions with biological systems by producing polyethylene terephthalate (PET) model nanoplastics, similar to those found in the marine environment, by means of a fast top-down approach based on mechanical fragmentation. Their size distribution and morphology were characterized by laser diffraction and atomic force microscopy (AFM). Their autofluorescence was studied by spectrofluorimetry and fluorescence imaging, being a key property for the evaluation of their interaction with biota. The emission spectra of label-free nanoplastics were comparable with those of PET nanoplastics labeled with Nile red. Finally, the suitability of label-free nanoplastics for biological studies was assessed by in vitro exposure with Mytilus galloprovincialis hemolymphatic cells in a time interval up to 6 h. The nanoplastic internalization into these cells, known to be provided with phagocytic activity, was assessed by fluorescence microscopy. The obtained results underlined that the autofluorescence of the model PET nanoplastics produced in the laboratory was adequate for biological studies having the potential to overcome the disadvantages commonly associated with several fluorescent dyes, such as the tendency to also stain other organic materials different from plastics, to form aggregates due to intermolecular interactions at high concentrations with a consequent decrease in fluorescence intensity, and to dye desorption from nanoparticles. The results of the autofluorescence study provide an innovative approach for plastic risk assessment.
Collapse
|
16
|
Afsa S, De Marco G, Giannetto A, Parrino V, Cappello T, Ben Mansour H, Maisano M. Histological endpoints and oxidative stress transcriptional responses in the Mediterranean mussel Mytilus galloprovincialis exposed to realistic doses of salicylic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103855. [PMID: 35342010 DOI: 10.1016/j.etap.2022.103855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Despite the availability of analytic data, little is known about the toxicity of salicylic acid (SA) on aquatic non-target organisms. The present study aimed at evaluating the impact of SA through a short-term exposure of the Mediterranean mussel Mytilus galloprovincialis to five environmentally relevant concentrations of SA. A set of suitable biomarkers was applied at selected time-points on mussel digestive glands, including histological observations and expression of oxidative stress related genes. The obtained results showed a conspicuous hemocytic infiltration among mussel digestive tubules, as confirmed also by a flow cytometric approach that revealed an increase of halinocytes and granulocytes. Interestingly, a significant dose and time dependent decrease in the expression levels of oxidative stress related genes was found in mussels exposed to SA except for the glutathione S-transferase gene that was significantly up-regulated in a time-dependent manner confirming its important role against oxidant species and in the metabolism of pharmaceuticals.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy.
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| |
Collapse
|
17
|
Caliani I, De Marco G, Cappello T, Giannetto A, Mancini G, Ancora S, Maisano M, Parrino V, Cappello S, Bianchi N, Oliva S, Luciano A, Mauceri A, Leonzio C, Fasulo S. Assessment of the effectiveness of a novel BioFilm-Membrane BioReactor oil-polluted wastewater treatment technology by applying biomarkers in the mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106059. [PMID: 34991045 DOI: 10.1016/j.aquatox.2021.106059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/26/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Petrochemical industries and oil refineries are sources of hazardous chemicals into the aquatic environments, and often a leading cause of reduced oxygen availability, thus resulting in adverse effects in biota. This study is an expansion of our previous work on the assessment of the BioFilm-Membrane Bioreactor (BF-MBR) to mitigate the impact of oil-polluted wastewater on marine environments. Specifically, this study evaluated the reduction of selected chemical constituents (hydrocarbons and trace metals) and toxicity related to hypoxia and DNA damage to mussels Mytilus galloprovincialis, before and after treatment of oil-polluted wastewater with the BF-MBR. The application of a multidisciplinary approach provided evidence of the efficiency of BF-MBR to significantly reducing the pollutants load from oily contaminated seawaters. As result, the health status of mussels was preserved by a hypoxic condition due to oily pollutants, as evidenced by the modulation in the gene expression of HIF-1α and PHD and changes in the level of hypotaurine and taurine. Moreover, ameliorative effects in the energy metabolism were also found in mussel gills showing increased levels of glycogen, glucose and ATP, as well as a mitigated genotoxicity was revealed by the Micronucleus and Comet assays. Overall, findings from this study support the use of the BF-MBR as a promising treatment biotechnology to avoid or limiting the compromise of marine environments from oil pollution.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Giuseppe Mancini
- Electric, Electronics and Computer Engineering Department, University of Catania, Catania, Italy
| | - Stefania Ancora
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy.
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Simone Cappello
- Institute for Biological Resources and Marine Biotechnology (IRBIM)-National Research Center, Messina, Italy
| | - Nicola Bianchi
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Sabrina Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Antonella Luciano
- Energy and Sustainable Economic Development - Department for Sustainability, ENEA - Italian National Agency for the New Technologies, Casaccia Research Centre, Rome, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Claudio Leonzio
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Salvatore Fasulo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| |
Collapse
|
18
|
Harayashiki CAY, Sadauskas-Henrique H, de Souza-Bastos LR, Gouveia N, Luna AJ, Ostrensky A, Castro IB. Contamination gradient affects differently carbonic anhydrase activity of mollusks depending on their feeding habits. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:124-133. [PMID: 34748161 DOI: 10.1007/s10646-021-02496-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Aquatic organisms that inhabit coastal areas are often exposed to several contaminants. It is known that the bioaccumulation of contaminants can be amplified according to the species feeding habits and contaminant properties. As a consequence, species can experience different effects to contaminant exposure even if they inhabit the same area. The present study aimed to investigate the activities of carbonic anhydrase (CA), Ca2+-ATPase, and Mg2+-ATPase in different tissues (soft tissue, mantle, and gill) of three mollusk species (Lottia subrugosa, Stramonita brasiliensis, and Crassostrea brasiliana) with different feeding habits (herbivore, carnivore, and filter-feeder, respectively) which were sampled within a known contamination gradient at Santos Estuarine System (Southeastern Brazil). From the three enzymes tested, only CA was affected by the presence of contaminants within the contamination gradient evaluated. In general, the CA activity from the three species were lower in contaminated sites when compared to the reference site. The contrasting CA activity response observed in S. brasiliensis compared to L. subrugosa and C. brasiliana could be related to the tissue-specificity of this enzyme activity and species feeding habits (filter-feeders can accumulate more contaminants than herbivores and even carnivores). Results indicated that C. brasiliana mantle is the most suitable tissue for the use of CA analysis as a biomarker.
Collapse
Affiliation(s)
| | - Helen Sadauskas-Henrique
- Laboratório de Organismos Marinhos e Costeiros (LABOMAC), Universidade Santa Cecília (Unisanta), Santos, SP, Brazil
| | - Luciana Rodrigues de Souza-Bastos
- Laboratório de Toxicologia e Avaliação Ambiental, Instituto de Tecnologia para o Desenvolvimento - LACTEC, Rodovia BR-116, km 98, n° 8813 - Jardim das Américas, 81531-980, Curitiba, PR, Brazil
| | - Nayara Gouveia
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, SP, Brazil
| | - Ana Julya Luna
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, SP, Brazil
| | - Antonio Ostrensky
- Grupo Integrado de Aquicultura e Estudos Ambientais - GIA, Departamento de Zootecnia, Universidade Federal do Paraná, Rua dos Funcionários, n° 1540, Juvevê, 80035-050, Curitiba, PR, Brazil
| | - Italo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, SP, Brazil
| |
Collapse
|
19
|
Nguyen TV, Alfaro A, Frost E, Chen D, Beale DJ, Mundy C. Investigating the biochemical effects of heat stress and sample quenching approach on the metabolic profiling of abalone (Haliotis iris). Metabolomics 2021; 18:7. [PMID: 34958425 DOI: 10.1007/s11306-021-01862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ocean temperatures have been consistently increasing due to climate change, and the frequency of heatwave events on shellfish quality is a growing concern worldwide. Typically, shellfish growing areas are in remote or difficult to access locations which makes in-field sampling and sample preservation of shellfish heat stress difficult. As such, there is a need to investigate in-field sampling approaches that facilitate the study of heat stress in shellfish. OBJECTIVES This study aims to apply a gas chromatography-mass spectrometry (GC-MS) based metabolomics approach to examine molecular mechanisms of heat stress responses in shellfish using abalone as a model, and compare the effects of different quenching protocols on abalone metabolic profiles. METHODS Twenty adult Haliotis iris abalone were exposed to two temperatures (14 °C and 24 °C) for 24 h. Then, haemolymph and muscle tissues of each animal were sampled and quenched with 4 different protocols (liquid nitrogen, dry ice, cold methanol solution and normal ice) which were analyzed via GC-MS for central carbon metabolites. RESULTS The effects of different quenching protocols were only observed in muscle tissues in which the cold methanol solution and normal ice caused some changes in the observed metabolic profiles, compared to dry ice and liquid nitrogen. Abalone muscle tissues were less affected by thermal stress than haemolymph. There were 10 and 46 compounds significantly influenced by thermal stress in muscle and haemolymph, respectively. The changes of these metabolite signatures indicate oxidative damage, disturbance of amino acid and fatty acid metabolism, and a shift from aerobic metabolism to anaerobic pathways. CONCLUSIONS The study provided insights into the heat response of abalone, which could be useful for understanding the effects of marine heatwaves and summer mortality events on abalone. Dry ice appeared to be a suitable protocol, and safer in-field alternative to liquid nitrogen, for quenching of abalone tissues.
Collapse
Affiliation(s)
- Thao V Nguyen
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Andrea Alfaro
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Emily Frost
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Donglin Chen
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecoscience Precinct, Dutton Park, QLD, Australia
| | - Craig Mundy
- IMAS Fisheries and Aquaculture Centre, College of Science and Engineering, University of Tasmania, Taroona, TAS, Australia
| |
Collapse
|
20
|
Le TTY, Nachev M, Grabner D, Garcia MR, Balsa-Canto E, Hendriks AJ, Peijnenburg WJGM, Sures B. Modelling chronic toxicokinetics and toxicodynamics of copper in mussels considering ionoregulatory homeostasis and oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117645. [PMID: 34426373 DOI: 10.1016/j.envpol.2021.117645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Chronic toxicity of copper (Cu) at sublethal levels is associated with ionoregulatory disturbance and oxidative stress. These factors were considered in a toxicokinetic-toxicodynamic model in the present study. The ionoregulatory disturbance was evaluated by the activity of the Na+/K+-ATPase enzyme (NKA), while oxidative stress was presented by lipid peroxidation (LPO) and glutathione-S-transferase (GST) activity. NKA activity was related to the binding of Cu2+ and Na + to NKA. LPO and GST activity were linked with the simulated concentration of unbound Cu. The model was calibrated using previously reported data and empirical data generated when zebra mussels were exposed to Cu. The model clearly demonstrated that Cu might inhibit NKA activity by reducing the number of functional pump sites and the limited Cu-bound NKA turnover rate. An ordinary differential equation was used to describe the relationship between the simulated concentration of unbound Cu and LPO/GST activity. Although this method could not explain the fluctuations in these biomarkers during the experiment, the measurements were within the confidence interval of estimations. Model simulation consistently shows non-significant differences in LPO and GST activity at two exposure levels, similar to the empirical observation.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141, Essen, Germany.
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141, Essen, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141, Essen, Germany
| | - Miriam R Garcia
- Process Engineering Group, Spanish Council for Scientific Research, IIM-CSIC, 36208, Vigo, Spain
| | - Eva Balsa-Canto
- Process Engineering Group, Spanish Council for Scientific Research, IIM-CSIC, 36208, Vigo, Spain
| | - A Jan Hendriks
- Department of Environmental Science, Faculty of Science, Radboud University Nijmegen, 6525 HP, Nijmegen, the Netherlands
| | - Willie J G M Peijnenburg
- Center for Safety of Substances and Products, National Institute for Public Health and the Environment, Bilthoven, 3720 BA, the Netherlands; Institute for Environmental Sciences, Leiden University, 2311 EZ, Leiden, the Netherlands
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141, Essen, Germany
| |
Collapse
|
21
|
Traina A, Ausili A, Bonsignore M, Fattorini D, Gherardi S, Gorbi S, Quinci E, Romano E, Salvagio Manta D, Tranchida G, Regoli F, Sprovieri M. Organochlorines and Polycyclic Aromatic Hydrocarbons as fingerprint of exposure pathways from marine sediments to biota. MARINE POLLUTION BULLETIN 2021; 170:112676. [PMID: 34218035 DOI: 10.1016/j.marpolbul.2021.112676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
To elucidate the dynamics of a suite of organochlorine contaminants (PCBs, HCB), PAHs and Hg and verify the potential of these pollutants as reliable fingerprints of sources, an ensemble of marine sediments and organisms (finfish, shellfish species and Mytilus galloprovincialis) were analysed from the contaminated Augusta Bay (Southern Italy). The Hg and HCB concentration in the sediments exceeded the EQS of the Directive 2000/60/EU. Similarly, ∑PCB and selected PAHs were above the threshold limit set by regulation. The marine organisms showed Hg concentrations above CE 1881/2006. Contaminants in transplanted mussel evidenced an increased accumulation overtime and different distribution patterns between sampling sites. Analysis of the homolog composition of PCB congeners revealed comparable patterns between sediments and marine organisms and offered the opportunity to define a robust fingerprint for tracing contaminants transfer from the abiotic to the biotic compartments. These results were confirmed by the Fluoranthene/Pyrene, Hg and HCB distribution modes.
Collapse
Affiliation(s)
- Anna Traina
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Lungomare Cristoforo Colombo 452, 90149 Palermo, Italy
| | - Antonella Ausili
- Institute for Environmental Protection and Research (ISPRA), Via V. Brancati 60, 00144 Rome, Italy
| | - Maria Bonsignore
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare 3, 91021 Torretta Granitola, Trapani, Italy.
| | - Daniele Fattorini
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Via Brecce Bianche, Monte Dago, 60131 Ancona, Italy
| | - Serena Gherardi
- National Research Council of Italy - Institute of Marine Science (CNR-ISMAR), Calata Porta di Massa, 80133 Naples, Italy
| | - Stefania Gorbi
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Via Brecce Bianche, Monte Dago, 60131 Ancona, Italy
| | - Enza Quinci
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare 3, 91021 Torretta Granitola, Trapani, Italy
| | - Elena Romano
- Institute for Environmental Protection and Research (ISPRA), Via V. Brancati 60, 00144 Rome, Italy
| | - Daniela Salvagio Manta
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Lungomare Cristoforo Colombo 452, 90149 Palermo, Italy
| | - Giorgio Tranchida
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare 3, 91021 Torretta Granitola, Trapani, Italy
| | - Francesco Regoli
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Via Brecce Bianche, Monte Dago, 60131 Ancona, Italy
| | - Mario Sprovieri
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare 3, 91021 Torretta Granitola, Trapani, Italy
| |
Collapse
|
22
|
Pollution Biomarkers in the Framework of Marine Biodiversity Conservation: State of Art and Perspectives. WATER 2021. [DOI: 10.3390/w13131847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Marine biodiversity is threatened by several anthropogenic pressures. Pollution deriving from the discharge of chemical contaminants in the sea represents one of the main threats to the marine environment, influencing the health of organisms, their ability to recover their homeostatic status, and in turn endangering biodiversity. Molecular and cellular responses to chemical pollutants, known as biomarkers, are effect-based methodologies useful for detecting exposure and for assessing the effects of pollutants on biota in environmental monitoring. The present review analyzes and discusses the recent literature on the use of biomarkers in the framework of biodiversity conservation. The study shows that pollution biomarkers can be useful tools for monitoring and assessment of pollution threat to marine biodiversity, both in the environmental quality monitoring of protected areas and the assessment of the health status of species at risk. Moreover, key areas of the research that need further development are suggested, such as the development of omics-based biomarkers specifically addressed to conservation purposes and their validation in the field, the extension of the biomarker study to a wider number of endangered species, and the development of organic guidelines for the application of the biomarker approach in support to conservation policies and management.
Collapse
|
23
|
Harayashiki CAY, Sadauskas-Henrique H, de Souza-Bastos LR, Gouveia N, Pont GD, Ostrensky A, Castro IB. Shell form and enzymatic alterations in Lottia subrugosa (Gastropoda, Lotiidae) transplanted to a contaminated site. MARINE POLLUTION BULLETIN 2021; 164:112075. [PMID: 33515815 DOI: 10.1016/j.marpolbul.2021.112075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Studies have shown that shell morphology and enzymatic activities in mollusks are affected by contaminants exposure. However, the correlation between enzymatic activities and the biomineralization process are not fully understood. The present study used a transplant bioassay and field sampling to evaluate shell measurements and the activities of carbonic anhydrase, Ca2+-ATPase, and Mg2+-ATPase in Lottia subrugosa sampled in Brazilian sites under different contamination levels. Results showed that, in general, shells from the reference site (Palmas) were more rounded than the ones from the contaminated site (Balsa). Effects in enzymatic activities in specimens from transplant bioassay were attributed to the known high contaminant levels present at Balsa. While the lack of enzymatic activity alterations during field sampling was attributed to physiological adaptation to contaminants exposure. Enzymatic activities were not correlated to shell biometric parameters in field sampling, indicating that these enzymes were not related to shell alterations detected in the present study.
Collapse
Affiliation(s)
| | - Helen Sadauskas-Henrique
- Laboratório de Organismos Marinhos e Costeiros (LABOMAC), Universidade Santa Cecília (Unisanta), Santos, SP, Brazil
| | - Luciana Rodrigues de Souza-Bastos
- Laboratório de Toxicologia e Avaliação Ambiental, Instituto de Tecnologia para o Desenvolvimento - LACTEC, Rodovia BR-116, km 98, n° 8813 - Jardim das Américas, 81531-980 Curitiba, PR, Brazil
| | - Nayara Gouveia
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, SP, Brazil
| | - Giorgi Dal Pont
- Grupo Integrado de Aquicultura e Estudos Ambientais, Departamento de Zootecnia, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Juvevê, 80035-050 Curitiba, PR, Brazil
| | - Antonio Ostrensky
- Grupo Integrado de Aquicultura e Estudos Ambientais, Departamento de Zootecnia, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Juvevê, 80035-050 Curitiba, PR, Brazil
| | - Italo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, SP, Brazil
| |
Collapse
|
24
|
Hani YMI, Prud'Homme SM, Nuzillard JM, Bonnard I, Robert C, Nott K, Ronkart S, Dedourge-Geffard O, Geffard A. 1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116048. [PMID: 33190982 DOI: 10.1016/j.envpol.2020.116048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières "CM" in France, Namur "Nam" and Charleroi "Cr" in Belgium). The aim was to test 1H-NMR metabolomics for the assessment of water bodies' quality. The metabolomic approach was combined with a more "classical" one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and 1H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Place du Dr Peyneau, 33120, Arcachon, France.
| | - Sophie Martine Prud'Homme
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | | | - Katherine Nott
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Sébastien Ronkart
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| |
Collapse
|
25
|
Cappello T, De Marco G, Oliveri Conti G, Giannetto A, Ferrante M, Mauceri A, Maisano M. Time-dependent metabolic disorders induced by short-term exposure to polystyrene microplastics in the Mediterranean mussel Mytilus galloprovincialis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111780. [PMID: 33352432 DOI: 10.1016/j.ecoenv.2020.111780] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 05/26/2023]
Abstract
In the modern society, plastic has achieved a crucial status in a myriad of applications because of its favourable properties. Despite the societal benefits, plastic has become a growing global concern due to it is persistence and bioavailability as microplastics (MPs) to aquatic biota. In order to provide mechanistic insights into the early toxicity effects of MPs on aquatic invertebrates, a short-term (up to 72 h) exposure to 3 µm red polystyrene MPs (50 particles/mL) was conducted on marine mussels Mytilus galloprovincialis, selected as model organism for their ability to ingest MPs and their commercial relevance. The use of protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, enabled a comprehensive exploration at fixed exposure time-points (T24, T48, T72) of the impact of MPs accumulated in mussel digestive glands, chosen as the major site for pollutants storage and detoxification processes. In detail, 1H NMR metabolic fingerprints of MP-treated mussels were clearly separated from control and grouped for experimental time-points by a Principal Component Analysis (PCA). Numerous metabolites, including amino acids, osmolytes, metabolites involved in energy metabolism, and antioxidants, participating in various metabolic pathways significantly changed over time in MP-exposed mussel digestive glands related to control, reflecting also the fluctuations in MPs accumulation and pointing out the occurrence of disorders in amino acid metabolism, osmotic equilibrium, antioxidant defense system and energy metabolism. Overall, the present work provides the first insights into the early mechanisms of toxicity of polystyrene MPs in marine invertebrates.
Collapse
Affiliation(s)
- Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene (LIAA) of Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene (LIAA) of Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
26
|
Shi W, Li Y, Dong Y, Xin M, Zhang X, Xu Q. The effect of ocean acidification on the enzyme activity of Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2021; 108:1-6. [PMID: 33197584 DOI: 10.1016/j.fsi.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The influence of ocean acidification (OA) is particularly significant on calcifying organisms. The sea cucumber Apostichopus japonicus is an important cultured calcifying organism in the northern China seas. Little was known about the effects of OA on this economically important species. In this study, individuals from embryo to juveniles stage of A. japonicus, cultured in different levels of acidified seawater, were measured their enzymes activities, including five metabolic enzymes and three immune enzymes. The activity of acid phosphatase (ACP) and alkaline phosphatase (ALP) was significantly lower in the severely acid group (pH 7.1), while the content of lactate dehydrogenase (LDH) was significantly higher. Superoxide dismutase (SOD) and catalase (CAT) were significantly lower in the severely acid group. The multivariate statistical results showed that the significant difference of enzyme assemblage existed among three experimental groups. This study indicated that OA could reduce the biomineralization capacity, influence the anaerobic metabolism and severely affect the immune process of A. japonicas. More researches are needed in the future to reveal the mechanisms of enzyme regulation and expression of A. japonicas underlying mixture environmental stress.
Collapse
Affiliation(s)
- Wenge Shi
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Yixuan Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Yue Dong
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ming Xin
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
27
|
Parisi MG, Pirrera J, La Corte C, Dara M, Parrinello D, Cammarata M. Effects of organic mercury on Mytilus galloprovincialis hemocyte function and morphology. J Comp Physiol B 2020; 191:143-158. [PMID: 32979067 PMCID: PMC7819951 DOI: 10.1007/s00360-020-01306-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/26/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023]
Abstract
Abstract Filter-feeding organisms accumulate xenobiotics and other substances in their tissues. They can be useful as sentinel organisms in biomonitoring of the marine compartment. Bivalve cellular immunity is ensured by phagocytosis and cytotoxic reactions carried out by hemocytes in a network with humoral responses. These can be affected by chemical contaminants in water that can be immunosuppressors also at a low concentration increasing the sensibility to pathogens. This work is an attempt to individuate cellular markers for pollution detection, investigating the effect of methylmercury (CH3HgCl) at different concentrations on the activity and hemocyte morphology of the Mediterranean mussel, Mytilus galloprovincialis. We assessed the effect of three sub-lethal concentrations of the organometal on the cellular morphology, the efficacy of phagocytosis toward yeast cells, the alteration of the lysosomal membrane and the ability to release cytotoxic molecules. The results provide information on the alteration of hemocyte viability, modification of the morphological and cytoskeletal features and besides the cellular spreading, intrinsic ability of motile cells was used as a complementary investigation method. Exposure to the contaminant affected the percentage of phagocytosis and the phagocytosis index. Moreover, morphological and cytoskeleton alteration, caused by the pollutant, leads to reduced ability to incorporate the target and adhere to the substrate and the low ability of cells to retain neutral red could depend on the effects of methylmercury on membrane permeability. These results reinforce the use of the Mediterranean mussel as model for the evaluation of environmental quality in aquatic ecosystems integrating the novel information about hemocyte functions and morphology sensibility to organic mercury. Graphic abstract ![]()
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy.
| | - Jessica Pirrera
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Claudia La Corte
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Mariano Dara
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Daniela Parrinello
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| |
Collapse
|
28
|
Yu D, Peng X, Ji C, Li F, Wu H. Metal pollution and its biological effects in swimming crab Portunus trituberculatus by NMR-based metabolomics. MARINE POLLUTION BULLETIN 2020; 157:111307. [PMID: 32469745 DOI: 10.1016/j.marpolbul.2020.111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Metal pollution in the Bohai Sea in China has posed a potential risk on marine organisms. In this work, crabs (Portunus trituberculatus) were sampled from four sites, namely a reference (site 3934) and three metal-polluted (sites 6151, 6351, and 3562) sites, located in the Bohai Sea. Metal concentrations in crab gill tissues were measured using inductively coupled plasma mass spectrometry. Cu, Zn, and Cd in crab samples from S3562 presented the highest concentrations. Particularly, Cu concentration exceeded the marine biological quality standard II. Cd contents in crab samples from all metal-polluted sites exceeded the marine biological quality standard I. Nuclear magnetic resonance-based metabolomics indicated metal pollution-induced immune stresses in crab samples from all metal-polluted sites. Metal pollution in S6151 and S6351 disturbed energy metabolism through differential pathways. For crab samples from S3562, the metabolic profile suggested that metal pollution mainly induced osmotic stress.
Collapse
Affiliation(s)
- Deliang Yu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Chenglong Ji
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
29
|
Lionetto MG, Caricato R, Giordano ME. Carbonic Anhydrase Sensitivity to Pesticides: Perspectives for Biomarker Development. Int J Mol Sci 2020; 21:ijms21103562. [PMID: 32443560 PMCID: PMC7278955 DOI: 10.3390/ijms21103562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrase (CA) is a widespread metalloenzyme playing a pivotal role in several physiological processes. Many studies have demonstrated the in vitro and in vivo sensitivity of CA to the exposure to several classes of pesticides in both humans and wildlife. This review aims to analyze and to discuss the literature available in this field, providing a comprehensive view useful to foresee perspectives for the development of novel CA-based pesticide biomarkers. The analysis of the available data highlighted the ability of several pesticide molecules to interact directly with the enzyme in humans and wildlife and to inhibit CA activity in vitro and in vivo, with possible alterations of key physiological functions. The analysis disclosed key areas of further research and, at the same time, identified some perspectives for the development of novel CA-based sensitive biomarkers to pesticide exposure, suitable to be used in several fields from human biomonitoring in occupational and environmental medicine to environmental monitoring on non-target species.
Collapse
|
30
|
Attaallah A, Marchionni S, El-Beltagy A, Abdelaziz K, Lorenzini A, Milani L. Cell cultures of the Manila clam and their possible use in biomonitoring and species preservation. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1827052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- A. Attaallah
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - S. Marchionni
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - A. El-Beltagy
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - K. Abdelaziz
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - A. Lorenzini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - L. Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Lu Z, Wang S, Ji C, Shan X, Wu H. Evaluation of metal pollution-induced biological effects in Chinese shrimp Fenneropenaeus chinensis by NMR-based metabolomics. MARINE POLLUTION BULLETIN 2020; 150:110688. [PMID: 31677417 DOI: 10.1016/j.marpolbul.2019.110688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Metal pollution in Laizhou Bay along the Bohai Sea in China has been posing a risk on fishery species and hence may affect seafood quality. In this work, shrimps Fenneropenaeus chinensis were sampled from three sites, namely, a reference (site 6334) and two metal-polluted (sites 6262 and 7262) sites, located in Laizhou Bay. The metal concentrations in shrimp muscle tissues were tested using the ICP-MS technique. The Cr and Cu concentrations were the highest in the shrimp samples from site 7262, exceeding the national seafood safety standard Ⅱ, and the As concentration was much higher than the national seafood safety standard Ⅲ. NMR-based metabolomics indicated that metal pollution induced oxidative and immune stresses, damaged the muscular structure, and disrupted energy metabolism in shrimps at sites 6262 and 7262, in particular disturbed osmotic regulation in shrimps at site 7262. Glycine and serine could serve as biomarkers for Cd in F. chinensis.
Collapse
Affiliation(s)
- Zhen Lu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shuang Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Xiujuan Shan
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
32
|
Ranjbar Jafarabadi A, Dashtbozorg M, Mitra S, Riyahi Bakhtiari A, Mohamadjafari Dehkordi S, Cappello T. Historical sedimentary deposition and ecotoxicological impact of aromatic biomarkers in sediment cores from ten coral reefs of the Persian Gulf, Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133969. [PMID: 31454597 DOI: 10.1016/j.scitotenv.2019.133969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/11/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
The present study determines the levels, vertical distributions, source apportionment and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in ten sediment cores of coral reef in the Persian Gulf, Iran, one of the important oil polluted marine areas in the world. The main purpose of this study was to determine the spatio-vertical distribution pattern of PAHs pollution at the four hot spot zones on the Gulf: dense industrial, medium industrial, urbanized and non-impacted zones over the past few years. Sediment quality and ecological risk were also assessed in order to determine the pollutants of concern. In detail, 23 parent (PPAHs) and 16 alkylated PAHs (APAHs), along with retene and perylene, were determined in sediment cores (0-40 cm depth). The vertical distribution of all PAHs showed a wide variation among sampling stations and depths, with a decreasing trend of concentration from surface to bottom, and a peak at 12 cm. Total concentrations of PPAHs and APAHs ranged from 35 to 1927 ng g-1 dw and 19 to 1794 ng g-1 dw respectively, with the highest concentrations at the industrial zone. The diagnostic ratio for PAHs and perylene (3 to 1277 ng g-1 dw) indicated mixed sources of PAHs, with dominance of petrogenic origins at the industrial zone and natural diagenetic inputs, respectively. The PAH concentration depicted a significant decreasing trend along the length of the core with an abrupt increase within the core length 12-20 cm. Temporal variations in contaminants can be linked to economic, coastal developments and industrial growth. Overall, the baseline data on geographical distribution, congener profiles, sources and vertical deposition of PAHs in the Persian Gulf area would be useful to establish proper monitoring plans for this sensitive ecosystem.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mehdi Dashtbozorg
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soumita Mitra
- Department of Marine Science, University of Calcutta, Calcutta, India
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Shirin Mohamadjafari Dehkordi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|