1
|
Chen M, Cao Z, Jing B, Chen W, Wen X, Han M, Wang Y, Liao X, Wu Y, Chen T. The production of methyl mercaptan is the main odor source of chicken manure treated with a vertical aerobic fermenter. ENVIRONMENTAL RESEARCH 2024; 260:119634. [PMID: 39029729 DOI: 10.1016/j.envres.2024.119634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The process of harmless treatment of livestock manure produces a large amount of odor, which poses a potential threat to human and livestock health. A vertical fermentation tank system is commonly used for the environmentally sound treatment of chicken manure in China, but the composition and concentration of the odor produced and the factors affecting odor emissions remain unclear. In this study, we investigated the types and concentrations of odors produced in the mixing room (MR), vertical fermenter (VF), and aging room (AR) of the system, and analyzed the effects of bacterial communities and metabolic genes on odor production. The results revealed that 34, 26 and 26 odors were detected in the VF, MR and AR, respectively. The total odor concentration in the VF was 66613 ± 10097, which was significantly greater than that in the MR (1157 ± 675) and AR (1143 ± 1005) (P < 0.001), suggesting that the VF was the main source of odor in the vertical fermentation tank system. Methyl mercaptan had the greatest contribution to the odor produced by VF, reaching 47.82%, and the concentration was 0.6145 ± 0.2164 mg/m3. The abundance of metabolic genes did not correlate significantly with odor production, but PICRUSt analysis showed that cysteine and methionine metabolism involved in methyl mercaptan production was significantly more enriched in MR and VF than in AR. Bacillus was the most abundant genus in the VF, with a relative abundance significantly greater than that in the MR (P < 0.05). The RDA results revealed that Bacillus was significantly and positively correlated with methyl mercaptan. The use of large-scale aerobic fermentation systems to treat chicken manure needs to focused on the production of methyl mercaptan.
Collapse
Affiliation(s)
- Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Cao
- Wen's Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Boyu Jing
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Wenjun Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Han
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Merouani EFO, Ferdowsi M, Buelna G, Jones JP, Benyoussef EH, Malhautier L, Heitz M. Exploring the potential of biofiltration for mitigating harmful gaseous emissions from small or old landfills: a review. Biodegradation 2024; 35:469-491. [PMID: 38748305 DOI: 10.1007/s10532-024-10082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/13/2024] [Indexed: 07/14/2024]
Abstract
Landfills are widely employed as the primary means of solid waste disposal. However, this practice generates landfill gas (LFG) which contains methane (CH4), a potent greenhouse gas, as well as various volatile organic compounds and volatile inorganic compounds. These emissions from landfills contribute to approximately 25% of the total atmospheric CH4, indicating the imperative need to valorize or treat LFG prior to its release into the atmosphere. This review first aims to outline landfills, waste disposal and valorization, conventional gas treatment techniques commonly employed for LFG treatment, such as flares and thermal oxidation. Furthermore, it explores biotechnological approaches as more technically and economically feasible alternatives for mitigating LFG emissions, especially in the case of small and aged landfills where CH4 concentrations are often below 3% v/v. Finally, this review highlights biofilters as the most suitable biotechnological solution for LFG treatment and discusses several advantages and challenges associated with their implementation in the landfill environment.
Collapse
Affiliation(s)
- El Farouk Omar Merouani
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - El-Hadi Benyoussef
- Laboratoire de Valorisation des Énergies Fossiles, École Nationale Polytechnique, 10 Avenue Hassan Badi El Harrach, BP182, 16200, Algiers, Algeria
| | - Luc Malhautier
- Laboratoire des Sciences des Risques, IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
3
|
Tran HT, Binh QA, Van Tung T, Pham DT, Hoang HG, Hai Nguyen NS, Xie S, Zhang T, Mukherjee S, Bolan NS. A critical review on characterization, human health risk assessment and mitigation of malodorous gaseous emission during the composting process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124115. [PMID: 38718963 DOI: 10.1016/j.envpol.2024.124115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH3) and volatile sulfur compounds (VSCs), including hydrogen sulfide (H2S), and methyl mercaptan (CH4S), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold. These compounds are mainly emitted at the thermophilic phase, accounting for over 70% of total gas emissions during the whole process, whereas methane (CH4) and nitrous oxide (N2O) are commonly detected during the mesophilic and cooling phases. Therefore, the human health risk assessment of malodorous gases using various indexes such as ECi (maximum exposure concentration for an individual volatile compound EC), HR (non-carcinogenic risk), and CR (carcinogenic risk) has been evaluated and discussed. Also, several strategies such as maintaining optimal operating conditions, and adding bulking agents and additives (e.g., biochar and zeolite) to reduce malodorous emissions have been pointed out and highlighted. Biochar has specific adsorption properties such as high surface area and high porosity and contains various functional groups that can adsorb up to 60%-70% of malodorous gases emitted from composting. Notably, biofiltration emerged as a resilient and cost-effective technique, achieving up to 90% reduction in malodorous gases at the end-of-pipe. This study offers a comprehensive insight into the characterization of malodorous emissions during composting. Additionally, it emphasizes the need to address these issues on a larger scale and provides a promising outlook for future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Quach An Binh
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Tra Van Tung
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 900000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Viet Nam
| | - Shiyu Xie
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
4
|
Zhang Y, Deng F, Su X, Su H, Li D. Semi-permeable membrane-covered high-temperature aerobic composting: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120741. [PMID: 38522273 DOI: 10.1016/j.jenvman.2024.120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Semi-permeable membrane-covered high-temperature aerobic composting (SMHC) is a suitable technology for the safe treatment and disposal of organic solid waste as well as for improving the quality of the final compost. This paper presents a comprehensive summary of the impact of semi-permeable membranes centered on expanded polytetrafluoroethylene (e-PTFE) on compost physicochemical properties, carbon and nitrogen transformations, greenhouse gas emission reduction, microbial community succession, antibiotic removal, and antibiotic resistance genes migration. It is worth noting that the semi-permeable membrane can form a micro-positive pressure environment under the membrane, promote the uniform distribution of air in the heap, reduce the proportion of anaerobic area in the heap, improve the decomposition rate of organic matter, accelerate the decomposition of compost and improve the quality of compost. In addition, this paper presents several recommendations for future research areas in the SMHC. This investigation aims to guide for implementation of semi-permeable membranes in high-temperature aerobic fermentation processes by systematically compiling the latest research progress on SMHC.
Collapse
Affiliation(s)
- Yanzhao Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fang Deng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiongshuang Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haifeng Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
5
|
Fei F, Wen Z, Zhang J, Xing Y, Zhang H, Li Y. New multi-source waste co-incineration and clustering park operating model for small- and medium-sized city: A case study in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120514. [PMID: 38460330 DOI: 10.1016/j.jenvman.2024.120514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
With improvements in urban waste management to promote sustainable development, an increasing number of waste types need to be sorted and treated separately. Due to the relatively low amount of waste generated in small- and medium-sized cities, separate treatment facilities for each waste type lack scale, waste is treated at a high cost and low efficiency. Therefore, industrial symbiosis principles are suggested to be used to guide collaborative waste treatment system of multi-source solid wastes, and co-incineration is the most commonly used technology. Most existing studies have focused on co-incineration of one certain waste type (such as sludge or medical waste) with municipal solid waste (MSW), but the systematic design and the comprehensive benefits on a whole city and park level have not been widely studied. Taking the actual operation of a multi-source waste co-incineration park in south-central China as an example, this study conducted a detailed analysis of the waste-energy-water metabolism process of MSW, sludge, food waste, and medical waste co-incineration. The environmental and economic benefits were evaluated and compared with the single decentralized waste treatment mode. The results showed that the multi-source waste co-incineration and clustering park operating model was comprehensively superior to the single treatment mode, greenhouse gases and human toxicity indicators were decreased by 11.87% and 295.74%, respectively, and the internal rate of return of the project was increased by 29.35%. This mainly benefits from the synergy of technical system and the economies of scale. Finally, this research proposed policy suggestions from systematic planning and design, technical route selection, and an innovative management mode in view of the potential challenges.
Collapse
Affiliation(s)
- Fan Fei
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zongguo Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, 10084, China.
| | - Jiayue Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, 10084, China.
| | - Yi Xing
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Hongbo Zhang
- Everbright Environmental Protection (China) Ltd, Shenzhen, 518031, China.
| | - You Li
- Everbright Envirotech (China) Ltd, Nanjing, 211100, China.
| |
Collapse
|
6
|
Fang C, Su Y, Zhuo Q, Wang X, Ma S, Zhan M, He X, Huang G. Responses of greenhouse gas emissions to aeration coupled with functional membrane during industrial-scale composting of dairy manure: Insights into bacterial community composition and function. BIORESOURCE TECHNOLOGY 2024; 393:130079. [PMID: 37993066 DOI: 10.1016/j.biortech.2023.130079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Greenhouse gas (GHG) emissions from manure management processes deserve more attention. Using three industrial-scale experiments, this study comprehensively evaluated the effects of different aeration coupled with semi-permeable membrane-covered strategies on the structure and function of bacterial communities and their impact on GHG emissions during dairy manure aerobic composting. The succession of the bacterial communities tended to be consistent for similar aeration strategies. Ruminiclostridium and norank_f__MBA03 were significantly positively correlated with the methane emission rate, and forced aeration coupled with semi-permeable membrane-covered decreased GHG emissions by inhibiting these taxa. Metabolism was the most active function of the bacterial communities, and its relative abundance accounted for 75.69%-80.23%. The combined process also enhanced carbohydrate metabolism and amino acid metabolism. Therefore, forced aeration coupled with semi-permeable membrane-covered represented a novel strategy for reducing global warming potential by regulating the structure and function of the bacterial communities during aerobic composting of dairy manure.
Collapse
Affiliation(s)
- Chen Fang
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province 550025, China; Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qianting Zhuo
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoli Wang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shuangshuang Ma
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Muqing Zhan
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Zhuo Y, He J, Li W, Deng J, Lin Q. A review on takeaway packaging waste: Types, ecological impact, and disposal route. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122518. [PMID: 37678737 DOI: 10.1016/j.envpol.2023.122518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Rapid economic growth and urbanization have led to significant changes in the world's consumption patterns. Accelerated urbanization, the spread of the mobile Internet, and the increasing pace of work globally have all contributed to the demand for the food takeaway industry. The rapid development of the takeaway industry inevitably brings convenience to life, and with it comes great environmental pressure from waste packaging materials. While maintaining the convenience of people's lives, further reducing the environmental pollution caused by takeaway packaging materials and promoting the recycling and reuse of takeaway packaging waste need to attract the attention and concern of the whole society. This review systematically and comprehensively introduces common takeaway food types and commonly used packaging materials, analyzes the impacts of discarded takeaway packaging materials on human health and the ecological environment, summarizes the formulation and implementation of relevant policies and regulations, proposes treatment methods and resourceful reuse pathways for discarded takeaway packaging, and also provides an outlook on the development of green takeaway packaging. Currently, only 20% of waste packaging materials are recycled worldwide, and there is still a need to develop more green takeaway packaging materials and continuously improve relevant policies and regulations to promote the sustainable development of the takeaway industry. The review is conducive to further optimizing the takeaway packaging management system, alleviating the environmental pollution problem, and providing feasible solutions and technical guidance for further optimizing takeaway food packaging materials and comprehensive utilization of resources.
Collapse
Affiliation(s)
- Yu Zhuo
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
8
|
Oviedo-Ocaña ER, Abendroth C, Domínguez IC, Sánchez A, Dornack C. Life cycle assessment of biowaste and green waste composting systems: A review of applications and implementation challenges. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:350-364. [PMID: 37708800 DOI: 10.1016/j.wasman.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Composting is one of the most widely applied methods for recycling organic waste. This process has been proposed as one option that facilitates the reincorporation of materials into the production cycle. However, composting also generates environmental impacts. Life Cycle Assessment (LCA) is the most common approach to evaluate the environmental impacts of a process at different system stages. Nevertheless, applying LCA in composting facilities is challenging due to the extensive information required, the lack of standardization on the initial assumptions, the definition of system boundaries, and the high diversity of existing composting technologies. This paper systematically reviews LCA studies in biowaste and/or green waste composting. The study highlights the challenges that should be met in order to improving the application of LCA to evaluate the environmental impacts of this type or waste treatment strategy. The review protocol used identified 456 papers published between 2010 and 2022. After the screening, 56 papers were selected, read, and thoroughly analyzed. The results show that: i) about 68% of the studies aimed to compare composting with other solid waste management options; ii) there was a wide diversity among the impact categories considered, which predominantly included climate change and ozone depletion; iii) there was no consensus on the functional unit or the system boundaries; iv) the main gaseous emissions studied were ammonia, methane, and nitrogen oxide, which were generally determined by emission factors; v) the avoided environmental impacts associated with the end-product quality and its application as an organic amendment or soil improver were ignored. This work demonstrates the complexity of conducting credible and valid composting LCA studies and proposes seven recommendations for improving the application of this assessment methodology to analyze this waste management alternative.
Collapse
Affiliation(s)
- E R Oviedo-Ocaña
- Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación en Recurso Hídrico y Saneamiento Ambiental - GPH, Carrera 27 Calle 9 Ciudad Universitaria Bucaramanga, Colombia
| | - C Abendroth
- Technische Universität Dresden, Institute of Waste Management and Circular Economy, Pratzschwitzer Str. 15. 01796 Pirna, Germany; Brandenburg Technical University Cottbus-Senftenberg, Faculty of Environment and Natural Sciences, Lehrgebäude 4 A R2.25, Siemens-Halske-Ring 8 03046 Cottbus, Germany
| | - I C Domínguez
- Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación en Recurso Hídrico y Saneamiento Ambiental - GPH, Carrera 27 Calle 9 Ciudad Universitaria Bucaramanga, Colombia
| | - A Sánchez
- Universitat Autònoma de Barcelona, Department of Chemical Engineering, Composting Research Group, 08193, Barcelona, Bellaterra, Spain.
| | - C Dornack
- Technische Universität Dresden, Institute of Waste Management and Circular Economy, Pratzschwitzer Str. 15. 01796 Pirna, Germany
| |
Collapse
|
9
|
Liu X, Cao G, Qiu K, Dong Y, Hu C. Lactobacillus plantarum Decreased Ammonia Emissions through Modulating Cecal Microbiotain Broilers Challenged with Ammonia. Animals (Basel) 2023; 13:2739. [PMID: 37685002 PMCID: PMC10487022 DOI: 10.3390/ani13172739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
Probiotic supplementation has become a prominent method of decreasing ammonia emissions in poultry production. The present study was conducted to investigate the influence of Lactobacillus plantarum on ammonia emission, immune responses, antioxidant capacity, cecal microflora and short chain fatty acids, and serum metabolites in broilers challenged with ammonia. A total of 360 1-day-old yellow-feathered broilers were randomly divided into three treatment groups: birds fed with a basal diet (CON), a basal diet supplemented with ammonia (AN), and a basal diet supplemented with 2.5 × 108 CFU L. plantarum kg-1 and challenged with ammonia (LP). Data showed that L. plantarum supplementation decreased ammonia more than 30% from day 48, and significantly reduced the levels of serum urea nitrogen and ammonia, fecal urease, and ammonium nitrogen compared with those on CON. Compared with AN and CON treatments, LP administration increased (p < 0.05) the concentration of serum immunoglobulin Y (IgY), IgM, and IL-10, as well as the serum total-antioxidant capacity (T-AOC) and GSH-Px, and decreased (p < 0.05) IL-1β, IL-6, and TNF-α. Furthermore, birds supplemented with LP had higher (p < 0.05) cecal contents of short chain fatty acids (SCFAs) than AN birds and had more butyrate than CON birds. Data from 16s high throughput sequencing showed that LP supplementation significantly increased (p < 0.05) the Shannon and Simpson indices of bird cecal microflora, and Alloprevotella dominated the LP birds. The function prediction of cecal microflora indicated that LP treatment significantly increased alanine aspartate and glutamate metabolism, starch and sucrose metabolism, exosome, mismatch repair, homologous recombination, DNA repair and recombination proteins, and amino acid-related enzymes. The serum metabolome showed that LP supplementation significantly changed the aminoacyl-tRNA, pantothenate and acetyl-coenzyme A, arginine, phenylalanine, tyrosine and tryptophan, valine, leucine, and isoleucine biosynthesis; purine, beta-alanine, galactose, histidine, alanine, aspartate and glutamate, glyoxylate and dicarboxylate, pyruvate and thiamine metabolism, melanogenesis, and citrate cycle.
Collapse
Affiliation(s)
- Xiyue Liu
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China;
| | - Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou 310058, China; (G.C.); (K.Q.); (Y.D.)
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Kaifan Qiu
- College of Standardisation, China Jiliang University, Hangzhou 310058, China; (G.C.); (K.Q.); (Y.D.)
| | - Yingkun Dong
- College of Standardisation, China Jiliang University, Hangzhou 310058, China; (G.C.); (K.Q.); (Y.D.)
| | - Caihong Hu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Abdulkareem Hassan A, Mahmoud Al-Qaissi AR. Production of environmentally friendly attractants for the trap flies Megaselia halterata and Lycoriella ingenue parasites on edible mushrooms in Iraq. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Among several tested mushroom-related materials, full-grown compost followed by fermented corn cobs and the compost were the best baits for attracting and catching of both insects M. halterata and L. ingenua. At the same time, there was no effect on attracting insects for the wheat straw, unfermented corn cobs, unfermented bran and water (control). The results proved that the highest attraction in the hunting of the two insects, M. halterata and L. ingenua, was in the treatment of cut fruit bodies for all studied A. bisporus strains, the highest number was 6.49 and 5.43 insects/bait; in the treatment of cut fruits of A.bisporus B62, respectively, At the level of mushroom species, the brown strain of A.bisporus showed the lowest attraction to the studied insects. Chopped fruit bodies and the spawn of some species/strains of oyster mushroom Pleurotus led to the highest interest in insects, followed by the treatment of mashed fruit bodies; the chopped fruits reached the highest attraction of insects for P. eryngii, the number of insects, M. halterata and L. ingenua, was 6.56 and 5.32 insects/bait, respectively. In the combination baits that were made from mixtures of the most efficient treatments resulting from the media and the fruit bodies of the A.bisporus and Pleurotus spp., the results showed that all treatments led to attracting the two insects at a rate of 4.55 - 8.7 insects/bait for M.halterata and 4.06 - 7.82 insects/bait for L. ingenue. The results also showed that there were significant differences in the reduction of both mushrooms A.bisporus and P. ostreatus infection rate by all types of tested baits; the lowest infection rates were in the combination bait treatment, resulting in 1.86 and 2.17%, respectively, compared to the control treatment (without bait) in which the infection rate was 87.3 and 91.25%, respectively.
Keywords: Natural baits, Traps, Mushroom flies, Biological control.
Collapse
|
11
|
Ma X, Li S, Pan R, Wang Z, Li J, Zhang X, Azeem M, Yao Y, Xu Z, Pan J, Zhang Z, Li R. Effect of biochar on the mitigation of organic volatile fatty acid emission during aerobic biostabilization of biosolids and the underlying mechanism. JOURNAL OF CLEANER PRODUCTION 2023; 390:136213. [DOI: 10.1016/j.jclepro.2023.136213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
12
|
Nordahl S, Preble CV, Kirchstetter TW, Scown CD. Greenhouse Gas and Air Pollutant Emissions from Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2235-2247. [PMID: 36719708 PMCID: PMC9933540 DOI: 10.1021/acs.est.2c05846] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 05/25/2023]
Abstract
Composting can divert organic waste from landfills, reduce landfill methane emissions, and recycle nutrients back to soils. However, the composting process is also a source of greenhouse gas and air pollutant emissions. Researchers, regulators, and policy decision-makers all rely on emissions estimates to develop local emissions inventories and weigh competing waste diversion options, yet reported emission factors are difficult to interpret and highly variable. This review explores the impacts of waste characteristics, pretreatment processes, and composting conditions on CO2, CH4, N2O, NH3, and VOC emissions by critically reviewing and analyzing 388 emission factors from 46 studies. The values reported to date suggest that CH4 is the single largest contributor to 100-year global warming potential (GWP100) for yard waste composting, comprising approximately 80% of the total GWP100. For nitrogen-rich wastes including manure, mixed municipal organic waste, and wastewater treatment sludge, N2O is the largest contributor to GWP100, accounting for half to as much as 90% of the total GWP100. If waste is anaerobically digested prior to composting, N2O, NH3, and VOC emissions tend to decrease relative to composting the untreated waste. Effective pile management and aeration are key to minimizing CH4 emissions. However, forced aeration can increase NH3 emissions in some cases.
Collapse
Affiliation(s)
- Sarah
L. Nordahl
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Chelsea V. Preble
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Thomas W. Kirchstetter
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Corinne D. Scown
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Biosciences
Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Energy
& Biosciences Institute, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Winkler J, Matsui Y, Filla J, Vykydalová L, Jiroušek M, Vaverková MD. Responses of synanthropic vegetation to composting facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160160. [PMID: 36375549 DOI: 10.1016/j.scitotenv.2022.160160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Composting facilities are habitats where biological materials are bio-oxidized. Biological waste represents a source of plant species diaspores and may promote changes in the species composition of the surrounding. The studied composting facility is situated in the Bohemian-Moravian Highlands, Czech Republic. Four sites, the composting pile and three habitats nearby were chosen of different use and disturbance conditions. Phytosociological plots were recorded in each of the habitat and the results were processed using multivariate analyses of ecological data. The information about plant species indication values was also analysed: (i) the relationship between soil disturbance and plant species occurrence, (ii) seed dormancy, (iii) seed bank, and (iv) vector of seed dispersion. During the research, 119 plant taxa were found in total. Conditions of the composting process (frequent disturbances, excessive available nutrients, enough water, and supply of new diaspores) represent a challenge for plant species. The presence of plant diaspores in the biowaste is a reason why the fundamental principle of appropriate composting process has to be adhered to. Another important task is to give attention to the methods determining the share of living diaspores in the final compost, which is still missing in practice. Compost might become a vehicle for spreading weeds. The capacity of vegetation to survive and multiply on the premises of composting facilities increases the importance of vegetation monitoring and control of the adjacent areas. The usual occurrence of rural brownfields near composting facilities increases the risk of diaspores being transmitted into biowaste or compost, thus increasing the share of undesirable viable diaspores. Composting facilities generate specific synanthropic conditions for the vegetation. Therefore, the composting facility projects should take into consideration the surrounding areas and vegetation management. It is recommended that the project should include semi-natural vegetation, which can create efficient barriers to the spreading of undesirable ruderal plant species. The novelty of this study is the confirmation that composting facilities and compost become a new factor affecting vegetation, which has been disregarded so far. The link between composting facilities and vegetation has to be included in the legislation related to parameters of compost quality. Moreover, the issue of weeds, their reproductive organs and their spread should be considered in the guidelines for the design, location, construction, and operation of composting facilities.
Collapse
Affiliation(s)
- Jan Winkler
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Yasuhiro Matsui
- Faculty of Environmental and Life Sciences, Faculty of Sciences, Okayama University, Japan.
| | - Jan Filla
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Lucie Vykydalová
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Martin Jiroušek
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02 776 Warsaw, Poland.
| |
Collapse
|
14
|
Raclavská H, Růžičková J, Raclavský K, Juchelková D, Kucbel M, Švédová B, Slamová K, Kacprzak M. Effect of biochar addition on the improvement of the quality parameters of compost used for land reclamation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8563-8581. [PMID: 34716551 DOI: 10.1007/s11356-021-16409-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The 5% addition of biochar in composting in rows contributes significantly to reducing volatile organic compound(VOC) emissions. When composting with the addition of biochar, the average temperature increased by 13 ± 6.7 °C during the whole period, and the thermophilic phase was extended by 11 days. The higher temperature supported a reduction in the time necessary for achieving the biological stability observed by the oxygen uptake rate by more than 10 days. For organic compounds formed by the degradation of easily degradable primary components (proteins), the addition of biochar significantly reduces the release of organic compounds with heterocyclically bound nitrogen (Norg-VOCs) and volatile sulfur compounds (VSCs). The end of the biodegradation process is indicated by a decrease in VOC concentrations below initial values in the input material. This state was achieved in the compost with added biochar after 47 days, while in compost without added biochar, it lasted 60 days.
Collapse
Affiliation(s)
- Helena Raclavská
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Jana Růžičková
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Konstantin Raclavský
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Dagmar Juchelková
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Marek Kucbel
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic.
| | - Barbora Švédová
- Centre ENET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Karolina Slamová
- Institute of Foreign Languages, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
| | - Małgorzata Kacprzak
- Faculty of Infrastructure and Environment, Institute of Environmental Engineering, Czestochowa University of Technology, J.H. Dąbrowskiego 69, 42-201, Czestochowa, Poland
| |
Collapse
|
15
|
Zhou X, Yan Z, Zhou X, Wang C, Liu H, Zhou H. RETRACTED: An assessment of volatile organic compounds pollutant emissions from wood materials: A review. CHEMOSPHERE 2022; 308:136460. [PMID: 36116618 DOI: 10.1016/j.chemosphere.2022.136460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Xihe Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhisong Yan
- Zhejiang Shiyou Timber Co., Ltd., 1111 Shiyuan West Road, Huzhou, Zhejiang, 313009, China
| | - Xiang Zhou
- Sinomaple Furnishing (Jiangsu) Co., Ltd., 99 Fen'an Dong Lu, Wujiang District, Suzhou, Jiangsu, 215200, China
| | - Chengming Wang
- Holtrop & Jansma (Qingdao) Environmental Protection Equipment Co., Ltd., 8 Tongshun Road, High-tech District, Qingdao, Shandong, 266114, China
| | - Hailiang Liu
- Jiangsu Shenmao Plastic Products Co., Ltd., Wood Industrial District, Siyang, Jiangsu, 223798, China
| | - Handong Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
16
|
Sheoran K, Siwal SS, Kapoor D, Singh N, Saini AK, Alsanie WF, Thakur VK. Air Pollutants Removal Using Biofiltration Technique: A Challenge at the Frontiers of Sustainable Environment. ACS ENGINEERING AU 2022; 2:378-396. [PMID: 36281334 PMCID: PMC9585892 DOI: 10.1021/acsengineeringau.2c00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Air pollution is a central problem faced by industries during the production process. The control of this pollution is essential for the environment and living organisms as it creates harmful effects. Biofiltration is a current pollution management strategy that concerns removing odor, volatile organic compounds (VOCs), and other pollutants from the air. Recently, this approach has earned vogue globally due to its low-cost and straightforward technique, effortless function, high reduction efficacy, less energy necessity, and residual consequences not needing additional remedy. There is a critical requirement to consider sustainable machinery to decrease the pollutants arising within air and water sources. For managing these different kinds of pollutant reductions, biofiltration techniques have been utilized. The contaminants are adsorbed upon the medium exterior and are metabolized to benign outcomes through immobilized microbes. Biofiltration-based designs have appeared advantageous in terminating dangerous pollutants from wastewater or contaminated air in recent years. Biofiltration uses the possibilities of microbial approaches (bacteria and fungi) to lessen the broad range of compounds and VOCs. In this review, we have discussed a general introduction based on biofiltration and the classification of air pollutants based on different sources. The history of biofiltration and other mechanisms used in biofiltration techniques have been discussed. Further, the crucial factors of biofilters that affect the performance of biofiltration techniques have been discussed in detail. Finally, we concluded the topic with current challenges and future prospects.
Collapse
Affiliation(s)
- Karamveer Sheoran
- Department
of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department
of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Deepanshi Kapoor
- Department
of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nirankar Singh
- Department
of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Adesh K. Saini
- Department
of Biotechnology, Maharishi Markandeshwar
(Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Walaa Fahad Alsanie
- Department
of Clinical Laboratories Sciences, The Faculty of Applied Medical
Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for
Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
17
|
Khalida A, Arumugam V, Abdullah LC, Abd Manaf L, Ismail MH. Dehydrated Food Waste for Composting: An Overview. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2022; 30:2933-2960. [DOI: 10.47836/pjst.30.4.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Food waste disposal has recently received much attention worldwide due to its major impact on environmental pollution and economic costs. Using high moisture content of food waste has the highest negative environmental impact due to increased greenhouse gas emissions, odor, and leachate. Drying technologies play an important role in reducing the moisture content of food waste, which is necessary for environmental sustainability and safety. The first part of this review highlights that sun-drying is the most cost-effective drying method. However, it has not been widely recommended for food waste management due to several limitations, including the inability to control sunray temperature and the inability to control end-product quality. Thermal drying eliminates moisture from food waste quickly, preventing hydrolysis and biodegradation. Thermal dryers, such as the GAIA GC-300 dryer, and cabinet dryer fitted with a standard tray, are the best alternative to sun drying. The second part of this review highlights that dehydrated food waste products are slightly acidic (4.7–5.1), have a high electrical conductivity (EC) value (4.83–7.64 mS cm-1), with high nutrient content, due to low pH levels, dehydrated food waste is not suitable for direct use as a fertilizer for the plants. So, the dried food waste should be composted before application to the plants because the composting process will dominate the limitation of phytotoxins, anoxia, salinity, and water repellence. Trench compost can be a good choice for decomposing dried organic waste because trench compost relies solely on soil decomposing microorganisms and insects.
Collapse
|
18
|
Duan Z, Lu W, Mustafa MF, Du J, Wen Y. Odorous gas emissions from sewage sludge composting windrows affected by the turning operation and associated health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:155996. [PMID: 35588837 DOI: 10.1016/j.scitotenv.2022.155996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The treatment and disposal of sewage sludge (SL) has long been a challenging task in China. Open windrow composting, coupled with mechanical turning, is preferred in small cities and rural areas, due to low costs and ease of operation. However, the emission of odorous volatile organic compounds (VOCs) from open composting windrows, as well as related health risks, has aroused strong protests from surrounding populations. This study investigated VOC emissions (including hydrogen sulphide) from five open SL composting windrows at a single site, before, during and after turning operations, and across different seasons. As expected, the highest VOC concentration (6676 μg m-3) was measured while turning the windrows, whilst an additional emission peak was observed at all windrows at different times after turning, which was determined by the raw material mixing ratio (SL: woodchips), as well as ambient and windrow temperatures. In general, higher VOCs emissions and odour concentrations were measured in summer, and odour pollution was mainly caused by sulphur and oxygenated compounds, due to their high odour activity values (OAVs). Methyl mercaptan, dimethyl disulphide, dimethyl sulphide, diethyl sulphide, acetaldehyde and ethyl acetate were identified as the odour pollution indicators for the composting facility. The results from a health risk assessment showed that acetaldehyde was the most hazardous compound, with both non-carcinogenic and carcinogenic risks exceeding acceptable levels. The carcinogenic risks of benzene and naphthalene were also above acceptable levels; however, their risks were insignificant at the studied site due to the low concentrations.
Collapse
Affiliation(s)
- Zhenhan Duan
- South China Institute of Environmental Science (SCIES), Ministry of Ecology and Environment (MEE), 510655, Guangdong, PR China; School of Environment, Tsinghua University, 10084 Beijing, PR China.
| | - Wenjing Lu
- School of Environment, Tsinghua University, 10084 Beijing, PR China
| | - Muhammad Farooq Mustafa
- School of Environment, Tsinghua University, 10084 Beijing, PR China; Department of Environmental Design, Health and Nutritional Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Jianwei Du
- South China Institute of Environmental Science (SCIES), Ministry of Ecology and Environment (MEE), 510655, Guangdong, PR China
| | - Yong Wen
- South China Institute of Environmental Science (SCIES), Ministry of Ecology and Environment (MEE), 510655, Guangdong, PR China
| |
Collapse
|
19
|
Liu SH, Lee KY. Performance of a packed-bed anode bio-electrochemical reactor for power generation and for removal of gaseous acetone. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115062. [PMID: 35436710 DOI: 10.1016/j.jenvman.2022.115062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The packed anode bioelectrochemical system (Pa-BES) developed in this study is a type of BES that introduces waste gas into a cathode and then into an anode, thereby providing the cathode with sufficient oxygen and reducing the amount of oxygen to the anode to promote the output of electricity. When the empty-bed residence time was 45 s and the liquid flowrate was 35 mL/s, the system achieved optimal performance. Under these conditions, removal efficiency, mineralization efficiency, voltage output, and power density were 93.86%, 93.37%, 296.3 mV, and 321.12 mW/m3, respectively. The acetone in the waste gas was almost completely converted into carbon dioxide, indicating that Pa-BES can effectively remove acetone and has the potential to be used in practical situations. A cyclic voltammetry analysis revealed that the packings exhibited clear redox peaks, indicating that the Pa-BES has outstanding biodegradation and power generation abilities. Through microbial community dynamics, numerous organics degraders, electrochemically active bacteria, nitrifying and denitrifying bacteria were found, and the spatial distribution of these microbes were identified. Among them, Xanthobacter, Bryobacter, Mycobacteriums and Terrimonawas were able to decompose acetone or other organic substances, with Xanthobacter dominating. Bacterium_OLB10 and Ferruginibacter are the electrochemically active bacteria in Pa-BES, while Ferruginibacter is the most abundant in the main anode, which is responsible for electron collection and transfer.
Collapse
Affiliation(s)
- Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC.
| | - Kun-Yan Lee
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| |
Collapse
|
20
|
Schirmeister CG, Mülhaupt R. Closing the Carbon Loop in the Circular Plastics Economy. Macromol Rapid Commun 2022; 43:e2200247. [PMID: 35635841 DOI: 10.1002/marc.202200247] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Indexed: 11/06/2022]
Abstract
Today, plastics are ubiquitous in everyday life, problem solvers of modern technologies, and crucial for sustainable development. Yet the surge in global demand for plastics of the growing world population has triggered a tidal wave of plastic debris in the environment. Moving from a linear to a zero-waste and carbon-neutral circular plastic economy is vital for the future of the planet. Taming the plastic waste flood requires closing the carbon loop through plastic reuse, mechanical and molecular recycling, carbon capture, and use of the greenhouse gas carbon dioxide. In the quest for eco-friendly products, plastics do not need to be reinvented but tuned for reuse and recycling. Their full potential must be exploited regarding energy, resource, and eco efficiency, waste prevention, circular economy, climate change mitigation, and lowering environmental pollution. Biodegradation holds promise for composting and bio-feedstock recovery, but it is neither the Holy Grail of circular plastics economy nor a panacea for plastic littering. As an alternative to mechanical downcycling, molecular recycling enables both closed-loop recovery of virgin plastics and open-loop valorization, producing hydrogen, fuels, refinery feeds, lubricants, chemicals, and carbonaceous materials. Closing the carbon loop does not create a Perpetuum Mobile and requires renewable energy to achieve sustainability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carl G Schirmeister
- Freiburg Materials Research Center and Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104, Freiburg, Germany
| | - Rolf Mülhaupt
- Sustainability Center, University of Freiburg, Ecker-Str. 4, D-79104, Freiburg, Germany
| |
Collapse
|
21
|
Jia T, Sun S, Zhao Q, Peng Y, Zhang L. Extremely acidic condition (pH<1.0) as a novel strategy to achieve high-efficient hydrogen sulfide removal in biotrickling filter: Biomass accumulation, sulfur oxidation pathway and microbial analysis. CHEMOSPHERE 2022; 294:133770. [PMID: 35101433 DOI: 10.1016/j.chemosphere.2022.133770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Extremely acidic conditions (pH < 1.0) during hydrogen sulfide (H2S) biotreatment significantly reduce the cost of pH regulation; however, there remain challenges to its applications. The present study investigated the H2S removal and biomass variations in biotrickling filter (BTF) under long-term highly acidic conditions. A BTF operated for 144 days at pH 0.5-1.0 achieved an H2S elimination capacity (EC) of 109.9 g/(m3·h) (removal efficiency = 97.0%) at an empty bed retention time of 20 s, with an average biomass concentration at 20.6 g/L-BTF. The biomass concentration at neutral pH increased from 22.3 to 49.5 g/L-BTF within 28 days. In this case, elemental sulfur (S0) accumulated due to insufficient oxygen transfer in biofilm, which aggravated the BTF blockage problem. After long-term domestication under extremely acidic conditions, a mixotrophic acidophilic sulfur-oxidizing bacteria (SOB) Alicyclobacillus (abundance 55.4%) were enriched in the extremely acidic biofilm, while non-aciduric bacteria were eliminated, which maintained the balance of biofilm thickness. Biofilm with optimum thickness ensured oxygen transfer and H2S oxidation, avoiding the accumulation of S0. The BTF performance improved due to the enrichment of active mixotrophic SOB with high abundance under extremely acidic conditions. The mixotrophic SOB is expected to be further enriched under extremely acidic conditions by adding carbohydrates to enhance H2S removal.
Collapse
Affiliation(s)
- Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Shihao Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
22
|
Lu L, Dong D, Yeung M, Sun Z, Xi J. Sustaining low pressure drop and homogeneous flow by adopting a fluidized bed biofilter treating gaseous toluene. CHEMOSPHERE 2022; 291:132951. [PMID: 34826444 DOI: 10.1016/j.chemosphere.2021.132951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
A biofilter treating gaseous VOCs is usually a packed bed system which will encounter bed clogging problems with increased pressure drop and uneven gas flow in the filter bed. In this study, a lab-scale fluidized bed reactor (FBR) was set up treating gaseous toluene and compared with a packed bed reactor (PBR) with the same bed height of 150 cm. During 45 days of operation, the average elimination capacity of the FBR was 242 g m-3∙h-1, similar to that in the PBR (228 g m-3∙h-1) under an inlet toluene concentration of 100-300 mg m-3 and an empty bed residence time (EBRT) of 0.60 s. A better mass transfer was also confirmed in the FBR by molecular residence time distribution measurement. The pressure drop of the PBR increased dramatically and exceeded 8000 Pa m-1 while that of the FBR maintained approximately 200 Pa m-1. On the 40th day, the air flow distribution in the FBR was more homogeneous than that in the PBR. The differences in pressure drop and air flow distribution were due to a much lower and more uniform distribution of biomass in the FBR than that in the PBR. The detached biomass collected from the off-gas of the FBR was almost 13 times of that from the PBR. Similar microbial community structures were observed in both systems, with the dominant bacterial genus Stenotrophomonas and the fungal genera Meyerozyma, Aspergillus. The results in this study demonstrated that the FBR could achieve a more stable performance than a PBR in long-term operation.
Collapse
Affiliation(s)
- Lichao Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dong Dong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Marvin Yeung
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuqiu Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Zheng W, Ma Y, Wang X, Wang X, Li J, Tian Y, Zhang X. Producing high-quality cultivation substrates for cucumber production by in-situ composting of corn straw blocks amended with biochar and earthworm casts. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:179-189. [PMID: 34973573 DOI: 10.1016/j.wasman.2021.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
In-situ composting is an efficient method for the dispose of crop residues. However, the high organic carbon content and low water-holding capacity of corn (Zea mays L.) straw can easily result in a slow composting process with high nutrient loss. In this study, compressed corn straw blocks was a control (S), straw mixed with earthworm casts (SE), straw mixed with biochar (SB), straw mixed with earthworm casts and biochar (SEB) were treatments to determine their effects on in-situ composting performance. In general, compared with S, the thermophilic period was extended by 14, 13 and 3 days in SE, SB and SEB, respectively, reduced nutrient loss, the water holding porosity of SE and SEB increased by 28.67% and 24.03%. Besides, the bacterial Shannon and Pielou's indices of SEB increased by 9.42% and 9.33%, respectively, and the relative abundance of Acinetobacter was increased in SB and SEB. Amino acid metabolism and carbohydrate metabolism were the most abundant metabolic processes in composts. SEB showed not only the highest cucumber yields, but also the highest OQI. The OQI of the CCSBs was significantly and positively correlated with cucumber yields (P < 0.001). These results indicated that the combination of earthworm casts and biochar was more effective than each single additive during in-situ composting of corn straw blocks, and emphasized that the overall quality of CCSBs played pivotal roles in determining the agronomic performance of CCSBs. In addition, the in-situ composting of corn straw blocks could be used to produce high-quality cultivation substrates.
Collapse
Affiliation(s)
- Wende Zheng
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Yongjie Ma
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Xiaodong Wang
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Xingyi Wang
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Jianshe Li
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Yongqiang Tian
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China.
| | - Xueyan Zhang
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China.
| |
Collapse
|
24
|
Chen L, Li W, Zhao Y, Zhou Y, Zhang S, Meng L. Isolation and application of a mixotrophic sulfide-oxidizing Cohnella thermotolerans LYH-2 strain to sewage sludge composting for hydrogen sulfide odor control. BIORESOURCE TECHNOLOGY 2022; 345:126557. [PMID: 34906701 DOI: 10.1016/j.biortech.2021.126557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
To investigate the influences of sulfide oxidizing bacteria on H2S odor control in sewage sludge composting, a facultative chemolithotroph strain was isolated and identified as Cohnella thermotolerans LYH-2. Strain LYH-2 decreased the initially added sulfide by 94.6% when glucose and NH4Cl were used as the optimal energy substrates. The biotransformation of sulfide substrates followed first-order reaction kinetics, and the highest degradation rate constant (0.0537 h-1) and bacterial dry weight (0.745 g/L) were obtained at 300 mg/L of initial sulfide. The C. thermotolerans strain was inoculated as the bacterial agent into the sewage sludge and rice husk composting in forced ventilation composting reactors for 25 d; the bacterial inoculation prolonged the thermophilic period by 2 d, decreased 35.4% of H2S odor emission, and accelerated the composting process compared to the control group. The results demonstrated that C. thermotolerans inoculants effectively controlled H2S emission and promoted maturity in sewage sludge composting.
Collapse
Affiliation(s)
- Li Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yujie Zhou
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, PR China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, PR China
| |
Collapse
|
25
|
Ma J, Chen Z, Wang J, Wang Y, Li L. Diffusion simulation, health risks, ozone and secondary organic aerosol formation potential of gaseous pollutants from rural comprehensive waste treatment plant. CHEMOSPHERE 2022; 286:131857. [PMID: 34392199 DOI: 10.1016/j.chemosphere.2021.131857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive waste treatment plants (CWTPs) are significant sources of gaseous pollutants such as odors, volatile organic compounds (VOCs) and nitrogen oxides (NOx), polluting the environment and endangering human health. This study conducted on-site investigations on gaseous pollutants emissions from different areas of a CWTP. A total of 10 pollutants were identified of which ammonia (11.32 mg/m³ in average) was the main odorous substance, and benzene (19.51 mg/m³ in average) and toluene (42.07 mg/m³ in average) were the main VOCs. The feeding workshop (FW) was considered the main source of gaseous pollutants. The Gaussian plume model demonstrated that the pollution became more serious after spreading in the southeast downwind direction. Occupational exposure risks of on-site workers were mainly attributed to hydrogen sulfide, ammonia, benzene, and toluene, as their hazard index (HI) and lifetime cancer risk (CR) exceeded the recommended occupational safety limits. The gaseous pollutants diffused from CWTP may still pose a potential health risk to residents within a range of up to 7.5 km. The emulation and quantification of ozone formation potential by methods of Propyl-Equiv and MIR demonstrated that the contribution rate of toluene presented in each stage of CWTP exceed 80 %. Toluene was also the largest contributor to secondary organic aerosol with the contribution rate reached 56.34-85.14 %, followed by benzene (14.72-38.52 %). This research provides a basis for the reduction and control of gaseous pollutants in the treatment and disposal of rural domestic waste.
Collapse
Affiliation(s)
- Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zexiang Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| |
Collapse
|
26
|
Ma H, Li F, Niyitanga E, Chai X, Wang S, Liu Y. The Odor Release Regularity of Livestock and Poultry Manure and the Screening of Deodorizing Strains. Microorganisms 2021; 9:microorganisms9122488. [PMID: 34946090 PMCID: PMC8705919 DOI: 10.3390/microorganisms9122488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Human living environments and health are seriously affected by the odor produced from fermentation of livestock and poultry manure. In order to reduce the odor pollution caused by livestock and poultry manure, efficient strains were screened and two methods were tried in this study. The orthogonal test design was used to analyze the gas produced by pig manure under different conditions of temperature, time, wheat straw doping amount and calcium carbonate doping amount. Then, according to ammonia, hydrogen sulfide and comprehensive odor removal effects, the high efficiency of deodorizing strains were screened. The results showed that pig manure produced the least odor when the temperature was 20 °C, added 0% calcium carbonate, 20% wheat straw and waited for 48 h. Three strains were screened to inhibit the odor production of pig manure: Paracoccus denitrificans, Bacillus licheniformis and Saccharomyces cerevisiae, showed that their highest removal rate of ammonia and hydrogen sulfide gas could reach 96.58% and 99.74% among them; while for three strains of end-control pig manure stench: Pichia kudriavzevii, P. denitrificans and Bacillus subtilis, the highest removal rate of ammonia and hydrogen sulfide gas reached 85.91% and 90.80% among them. This research provides bacteria resources as the high-efficiency deodorizing function for the source suppression and the end treatment of the odor gas of pig manure, which has high application value for the control of odor pollution.
Collapse
Affiliation(s)
- Haixia Ma
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China; (H.M.); (S.W.)
| | - Feier Li
- Faculty of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Evode Niyitanga
- Faculty of Engineering, Nanjing Agricultural University, Nanjing 210031, China; (E.N.); (X.C.)
| | - Xicun Chai
- Faculty of Engineering, Nanjing Agricultural University, Nanjing 210031, China; (E.N.); (X.C.)
| | - Shipeng Wang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China; (H.M.); (S.W.)
| | - Yutao Liu
- Faculty of Engineering, Nanjing Agricultural University, Nanjing 210031, China; (E.N.); (X.C.)
- Correspondence:
| |
Collapse
|
27
|
Abstract
Cities are producers of high quantities of secondary liquid and solid streams that are still poorly utilized within urban systems. In order to tackle this issue, there has been an ever-growing push for more efficient resource management and waste prevention in urban areas, following the concept of a circular economy. This review paper provides a characterization of urban solid and liquid resource flows (including water, nutrients, metals, potential energy, and organics), which pass through selected nature-based solutions (NBS) and supporting units (SU), expanding on that characterization through the study of existing cases. In particular, this paper presents the currently implemented NBS units for resource recovery, the applicable solid and liquid urban waste streams and the SU dedicated to increasing the quality and minimizing hazards of specific streams at the source level (e.g., concentrated fertilizers, disinfected recovered products). The recovery efficiency of systems, where NBS and SU are combined, operated at a micro- or meso-scale and applied at technology readiness levels higher than 5, is reviewed. The importance of collection and transport infrastructure, treatment and recovery technology, and (urban) agricultural or urban green reuse on the quantity and quality of input and output materials are discussed, also regarding the current main circularity and application challenges.
Collapse
|
28
|
Fei F, Shen N, De Clercq D, Luo J. Redesign of urban biowaste sustainable management system based on industrial ecology concept: A case study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148425. [PMID: 34182457 DOI: 10.1016/j.scitotenv.2021.148425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Urban biowaste, which refers to the organic fraction of municipal solid waste (MSW), is a predominant type of waste in low- and middle-income countries. Therefore, the sustainable management of urban biowaste is a key problem in solid waste management (SWM). However, treatment technologies usually come with secondary pollution and by-products that need further treatment, which would limit the economic and environmental benefits of the waste management system. The concept of industrial ecology has the potential to be introduced into the waste management field to solve this problem. Based on a practical case study of a city in eastern China, this paper conducted a complete urban biowaste treatment system planning exercise using concepts in industrial ecology. The establishment of the new system has significant economic, environmental and social benefits. The total output value of the project would reach 342 million yuan in 2025, corresponding to 945,000 tons of solid wastes consumed every year, which would significantly reduce the environmental pollution caused by solid waste. More than 700 jobs could also be created. In addition, the establishment of an urban biowaste sustainable management system requires the joint effort of enterprise, government and the public, which in turn requires innovation in business models and management policies. Therefore, a special management committee should be established to promote collaboration among stakeholders, and an online platform that enables end-to-end process supervision covering the entire system, including emergency management mechanisms, needs to be established to ensure the long-term stable operation of various treatment facilities. The results of this paper show that synergies among technologies should be promoted to provide systemic benefit, and that the infrastructure for pollution control should be shared to ensure high utilization.
Collapse
Affiliation(s)
- Fan Fei
- College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 10084, China.
| | - Neng Shen
- School of Economics and management, Fuzhou University, Fuzhou 350108, China.
| | - Djavan De Clercq
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 10084, China.
| | - Jing Luo
- Resource & Environment Industry Department, China International Engineering Consulting Corporation, Beijing 10084, China.
| |
Collapse
|
29
|
Gaseous Emissions from the Composting Process: Controlling Parameters and Strategies of Mitigation. Processes (Basel) 2021. [DOI: 10.3390/pr9101844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organic waste generation, collection, and management have become a crucial problem in modern and developing societies. Among the technologies proposed in a circular economy and sustainability framework, composting has reached a strong relevance in terms of clean technology that permits reintroducing organic matter to the systems. However, composting has also negative environmental impacts, some of them of social concern. This is the case of composting atmospheric emissions, especially in the case of greenhouse gases (GHG) and certain families of volatile organic compounds (VOC). They should be taken into account in any environmental assessment of composting as organic waste management technology. This review presents the relationship between composting operation and composting gaseous emissions, in addition to typical emission values for the main organic wastes that are being composted. Some novel mitigation technologies to reduce gaseous emissions from composting are also presented (use of biochar), although it is evident that a unique solution does not exist, given the variability of exhaust gases from composting.
Collapse
|
30
|
Zhu Z, Yu M, Wu Z, Yan Y, Li S. Evaluation of the absorption performance of new compound absorbents for toluene under extremely high load. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52106-52123. [PMID: 34002312 DOI: 10.1007/s11356-021-14281-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Absorption is an effective way to control volatile organic compound (VOC) industrial air pollution, and the key variable in this process is the selection of suitable liquid absorbents to absorb as many organic pollutants as possible. The objective of this study was to prepare a series of high-efficiency absorbents with different proportions of vegetal oil, mineral oil, and waste engine oil, which can be used for toluene absorption. The absorption efficiency (AE), saturated absorption (SA), and effective absorption time (EAT) of various absorbents were systematically analyzed. The results showed that when the inlet concentration of toluene was 8000 mg/m3 and the inlet flow was 1 L/min, the SA capability of vegetal oil, mineral oil, and waste engine oil was 7.15, 12.43, and 18.16 mg/g, respectively. With the 4000 mg/m3 inlet concentration, the SA of the absorber which was made in the ratio of 2:3:1 was increased to 50.93 mg/g. According to the thermodynamic equilibrium and absorption results, it is proved that the influence of the composition of the absorbent on absorption is greater than viscosity. It is also to be noted that the AE of the composite absorbent can still reach more than 80% after three times of heating and air purification.
Collapse
Affiliation(s)
- Zhongyang Zhu
- School of Ecology and Environment, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Mengqi Yu
- School of Ecology and Environment, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Zhenjun Wu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuxi Yan
- School of Ecology and Environment, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Shunyi Li
- School of Ecology and Environment, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
31
|
Escalona-Durán F, Muñoz-Morales M, Souza FL, Sáez C, Cañizares P, Martínez-Huitle CA, Rodrigo MA. Cobalt mediated electro-scrubbers for the degradation of gaseous perchloroethylene. CHEMOSPHERE 2021; 279:130525. [PMID: 33866102 DOI: 10.1016/j.chemosphere.2021.130525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
This work focuses on the treatment of gaseous perchloroethylene (PCE) using electro-scrubbing with diamond electrodes and cobalt mediators. PCE was obtained by direct desorption from an aqueous solution containing 150 mg L-1, trying to a real pollution case. The electro-scrubber consisted of a packed absorption column connected with an undivided electrochemical cell. Diamond anodes supported on two different substrates (tantalum and silicon) were used and the results indicated that Ta/BDD was more successful in the production of Co (III) species and in the degradation of PCE. Three experimental systems were studied for comparison purposes: absorbent free of Co (III) precursors, absorbent containing Co (III) precursors, and absorbent containing Co (III) precursors undergoing previous electrolysis to the electro-scrubbing to facilitate the accumulation of oxidants. The most successful option was the last, confirming the important role of mediated electrochemical processes in the degradation of PCE. Trichloroacetic acid (TCA) and carbon tetrachloride (CCl4) were found as the primary reaction products and ethyl chloroacetate esters were also identified. A comprehensive mechanism of the processes happening inside electro-scrubber is proposed.
Collapse
Affiliation(s)
- F Escalona-Durán
- Institute of Chemistry, Environmental and Applied Electrochemical Laboratory, Federal University of Rio Grande Do Norte, Lagoa Nova, CEP 59078-970, Natal, RN, Brazil
| | - M Muñoz-Morales
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - F L Souza
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - C Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - C A Martínez-Huitle
- Institute of Chemistry, Environmental and Applied Electrochemical Laboratory, Federal University of Rio Grande Do Norte, Lagoa Nova, CEP 59078-970, Natal, RN, Brazil
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
32
|
Tian S, Zhan S, Lou Z, Zhu J, Feng J, Xiong Y. Electrodeposition synthesis of 3D-NiO1-δ flowers grown on Ni foam monolithic catalysts for efficient catalytic ozonation of VOCs. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Zhang M, Liang W, Tu Z, Li R, Zhang Z, Ali A, Xiao R. Succession of bacterial community during composting: dissimilarity between compost mixture and biochar additive. BIOCHAR 2021; 3:229-237. [DOI: 10.1007/s42773-020-00078-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/13/2020] [Indexed: 08/20/2023]
|
34
|
A Conceptual Framework for Incorporation of Composting in Closed-Loop Urban Controlled Environment Agriculture. SUSTAINABILITY 2021. [DOI: 10.3390/su13052471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Controlled environment agriculture (CEA), specifically advanced greenhouses, plant factories, and vertical farms, has a significant role to play in the urban agri-food landscape through provision of fresh and nutritious food for urban populations. With the push towards improving sustainability of these systems, a circular or closed-loop approach for managing resources is desirable. These crop production systems generate biowaste in the form of crop and growing substrate residues, the disposal of which not only impacts the immediate environment, but also represents a loss of valuable resources. Closing the resource loop through composting of crop residues and urban biowaste is presented. Composting allows for the recovery of carbon dioxide and plant nutrients that can be reused as inputs for crop production, while also providing a mechanism for managing and valorizing biowastes. A conceptual framework for integrating carbon dioxide and nutrient recovery through composting in a CEA system is described along with potential environmental benefits over conventional inputs. Challenges involved in the recovery and reuse of each component, as well as possible solutions, are discussed. Supplementary technologies such as biofiltration, bioponics, ozonation, and electrochemical oxidation are presented as means to overcome some operational challenges. Gaps in research are identified and future research directions are proposed.
Collapse
|
35
|
Li G, Zhu Q, Niu Q, Meng Q, Yan H, Wang S, Li Q. The degradation of organic matter coupled with the functional characteristics of microbial community during composting with different surfactants. BIORESOURCE TECHNOLOGY 2021; 321:124446. [PMID: 33264744 DOI: 10.1016/j.biortech.2020.124446] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to investigate the effects of anionic and cationic surfactants on the physico-chemical properties, organic matter (OM) degradation, bacterial community structure and metabolic function during composting of dairy manure and sugarcane bagasse. The results showed that the surfactant could optimize the composting conditions to promote the degradation of OM. The most OM degradation and humic substances (HS) synthesis were observed in SAS. Firmicutes and Proteobacteria were more abundant in SAS and CTAC, and Actinobacteria in CK. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that SAS and CTAC are more abundant than CK in genes related to metabolism, environmental and genetic information processing. The correlation analysis showed that the dominant bacteria had more significant correlation with environmental factors. In general, the anionic surfactant could better promote the degradation of OM, change the structure of microbial community, and improve the quality of compost.
Collapse
Affiliation(s)
- Gen Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuhui Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailong Yan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
36
|
Tran HT, Lin C, Bui XT, Ngo HH, Cheruiyot NK, Hoang HG, Vu CT. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142250. [PMID: 33207468 DOI: 10.1016/j.scitotenv.2020.142250] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
This article provides a comprehensive review on aerobic composting remediation of soil contaminated with total petroleum hydrocarbons (TPHs). The studies reviewed have demonstrated that composting technology can be applied to treat TPH contamination (as high as 380,000 mg kg-1) in clay, silt, and sandy soils successfully. Most of these studies reported more than 70% removal efficiency, with a maximum of 99%. During the composting process, the bacteria use TPHs as carbon and energy sources, whereas the fungi produce enzymes that can catalyze oxidation reactions of TPHs. The mutualistic and competitive interactions between the bacteria and fungi are believed to sustain a robust biodegradation system. The highest biodegradation rate is observed during the thermophilic phase. However, the presence of a diverse and dynamic microbial community ensures that TPH degradation occurs in the entire composting process. Initial concentration, soil type, soil/compost ratio, aeration rate, moisture content, C/N ratio, pH, and temperature affect the composting process and should be monitored and controlled to ensure successful degradation. Nevertheless, there is insufficient research on optimizing these operational parameters, especially for large-scale composting. Also, toxic and odorous gas emissions during degradation of TPHs, usually unaddressed, can be potential air pollution sources and need further insightful characterization and mitigation/control research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Huu-Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Hong-Giang Hoang
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chi-Thanh Vu
- Department of Civil and Environmental Engineering, The University of Alabama in Huntsville, AL 35899, USA
| |
Collapse
|
37
|
Reyes J, Toledo M, Michán C, Siles JA, Alhama J, Martín MA. Biofiltration of butyric acid: Monitoring odor abatement and microbial communities. ENVIRONMENTAL RESEARCH 2020; 190:110057. [PMID: 32805248 DOI: 10.1016/j.envres.2020.110057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study is to evaluate comparatively the odor removal efficacy of two biofilters operated under different conditions and to identify taxonomically the microbial communities responsible for butyric acid degradation. Both biofiltration systems, which were filled with non-inoculated wood chips and exposed to gas streams containing butyric acid, were evaluated under different operational conditions (gas airflow and temperature) from the physical-chemical, microbiological and olfactometric points of view. The physical-chemical characterization showed the acidification of the packing material and the accumulation of butyric acid during the biofiltration process (<60 days). The removal efficacy was found to be 98-100% during the first 20 days of operation, even at high odor concentration. Changes in the operational temperature increased the odor load factor from 400 to 1400 ouE/m2·s, which led to the reduction of microbiota in the packing material, and a drastic drop of the odor removal efficacy. However, the progressive increase in gas airflow improved the biodegradation efficacy of butyric acid up to 88% with odor loadings as high as 33,000 ouE/m3, while a linear relationship between odor inlet load and removal capacity was also found. The analysis of the microbial community showed that Proteobacteria was the most abundant phylum along the biofiltration time (58-92%) and regardless of the operational conditions. Finally, principal component analysis applied to the physical-chemical and microbiological data set revealed significant differences between the two biofilters under study.
Collapse
Affiliation(s)
- J Reyes
- Chemical Engineering Department, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Marie Curie (C-3), 14071, Córdoba, Spain
| | - M Toledo
- Chemical Engineering Department, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Marie Curie (C-3), 14071, Córdoba, Spain
| | - C Michán
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Severo Ochoa, 14071, Córdoba, Spain
| | - J A Siles
- Chemical Engineering Department, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Marie Curie (C-3), 14071, Córdoba, Spain
| | - J Alhama
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Severo Ochoa, 14071, Córdoba, Spain
| | - M A Martín
- Chemical Engineering Department, University of Cordoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, Building Marie Curie (C-3), 14071, Córdoba, Spain.
| |
Collapse
|
38
|
Lin H, Ye J, Sun W, Yu Q, Wang Q, Zou P, Chen Z, Ma J, Wang F, Ma J. Solar composting greenhouse for organic waste treatment in fed-batch mode: Physicochemical and microbiological dynamics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 113:1-11. [PMID: 32502764 DOI: 10.1016/j.wasman.2020.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Composting is a sustainable means of managing organic waste, and solar composters offer a viable solution in rural areas lacking connection to municipal power supplies. This study tracked the physicochemical and microbiological changes that occur in a solar composting greenhouse during the treatment of food and green cellulosic waste in fed-batch mode, which remain poorly understood. Solar composting greenhouse performed well on waste reduction and nutrient retention, resulting in a 45.0-58.8% decrease in feedstock volume over 12-day composting cycles, a 41% removal in dry matter after three batches of composting, and 29.5%, 252.9% and 96.6% increase in the nitrogen, phosphorus and potassium content respectively after 42 days of composting. Batch feeding and composting jointly influenced microbiological succession by altering the physicochemical properties of compost. The contents of nitrogen and phosphorus, pH, and electrical conductivity significantly accounts for variations in culturable microbial populations. The succession of dominant bacterial genera such as Lactobacillus, Pseudoxanthomonas, Bacillus, and Pseudomonas were closely related to pH, cellulose, NH4+-N, carbon content, and temperature. In addition, Pichia kudriavzevii, Thermomyces lanuginosus, and Scopulariopsis brevicaulis successively became the dominant fungal species during composting. Preliminary compost quality assessments showed that solar composting greenhouse has a high potentiality to transform organic waste into organic fertilizer. Additionally, corresponding purposeful suggestions were proposed for future optimization in this system, mainly from a microbiological aspect.
Collapse
Affiliation(s)
- Hui Lin
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Ye
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanchun Sun
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiaogang Yu
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ping Zou
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhaoming Chen
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinchuan Ma
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Wang
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junwei Ma
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
39
|
Abstract
In recent years, the impending necessity to improve the quality of outdoor and indoor air has produced a constant increase of investigations in the methodologies to remove and/or to decrease the emission of volatile organic compounds (VOCs). Among the various strategies for VOC elimination, catalytic oxidation and recently photocatalytic oxidation are regarded as some of the most promising technologies for VOC total oxidation from urban and industrial waste streams. This work is focused on bimetallic supported catalysts, investigating systematically the progress and developments in the design of these materials. In particular, we highlight their advantages compared to those of their monometallic counterparts in terms of catalytic performance and physicochemical properties (catalytic stability and reusability). The formation of a synergistic effect between the two metals is the key feature of these particular catalysts. This review examines the state-of-the-art of a peculiar sector (the bimetallic systems) belonging to a wide area (i.e., the several catalysts used for VOC removal) with the aim to contribute to further increase the knowledge of the catalytic materials for VOC removal, stressing the promising potential applications of the bimetallic catalysts in the air purification.
Collapse
|