1
|
Manzoor M, Guan DX, Ma LQ. Plant-microbiome interactions for enhanced crop production under cadmium stress: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178538. [PMID: 39879949 DOI: 10.1016/j.scitotenv.2025.178538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal that has detrimental effects on agriculture crops and human health. Both natural and anthropogenic processes release Cd into the environment, elevating its contents in soils. Under Cd stress, strong plant-microbiome interactions are important in improving crop production, but a systematic review is still missing. This review demonstrates the importance of microbiomes and their interactions with plants in mitigating Cd toxicity and promoting crop growth. Endogenous and exogenous microbiomes play a role to enhance plant's ability to respond to Cd stress. Specifically, the rhizosphere microbiome, which includes plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, endosphere microbiome, and phyllosphere microbiome, are involved in Cd accumulation, immobilization, and translocation, and Cd-induced stress management. The mechanisms underlying these plant-microbiome interactions vary depending on the species and varieties of crops, composition and diversity of the microbiome, and level of Cd stress. Among the microbiome-mediated approaches, biosorption, bioprecipitation, and bioaccumulation are promising for Cd remediation in soil. Additionally, the endosphere microbiome, particularly Cd resistant endophytes, reduces Cd toxicity, increases the expression of Cd efflux genes, and enhances crop growth through regulating crops' antioxidant machinery and endogenous hormones. Furthermore, improved agricultural practices modulate the soil and plant microbiomes, thereby reducing Cd stress and increasing crop productivity.
Collapse
Affiliation(s)
- Maria Manzoor
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Khan M, Nizamani MM, Asif M, Kamran A, He G, Li X, Yang S, Xie X. Comprehensive approaches to heavy metal bioremediation: Integrating microbial insights and genetic innovations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123969. [PMID: 39765072 DOI: 10.1016/j.jenvman.2024.123969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/29/2025]
Abstract
The increasing contamination of ecosystems with heavy metals (HMs) due to industrial activities raises significant jeopardies to environmental health and human well-being. Addressing this issue, recent advances in the field of bioremediation have highlighted the potential of plant-associated microbiomes and genetically engineered organisms (GEOs) to mitigate HMs pollution. This review explores recent advancements in bioremediation strategies for HMs detoxification, with particular attention to omics technologies such as metagenomics, metabolomics, and metaproteomics in deepening the understanding of microbial interactions and their potential for neutralizing HMs. Additionally, Emerging strategies and technologies in GEOs and microorganism-aided nanotechnology have proven to be effective bioremediation tools, particularly for alleviating HM contamination. Despite the promising strategies developed in laboratory settings, several challenges impede their practical application, including ecological risks, regulatory limitations, and public concerns regarding the practice of genetically modified organisms. A comprehensive approach that involves interdisciplinary research is essential to enhance the efficacy and safety of bioremediation technologies. This approach should be coupled with robust regulatory frameworks and active public engagement to ensure environmental integrity and societal acceptance. This review underscores the importance of developing sustainable bioremediation strategies that align with ecological conservation goals and public health priorities.
Collapse
Affiliation(s)
- Mehran Khan
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | | | - Muhammad Asif
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Ali Kamran
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
3
|
Sreelatha L, Ambili AL, Sreedevi SC, Achuthavarier D. Metallothioneins: an unraveling insight into remediation strategies of plant defense mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:405-427. [PMID: 39704973 DOI: 10.1007/s11356-024-35790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Phytoremediation is an eco-friendly, sustainable way to clean up the environment using green plants that effectively remove and degrade pollutants from soil, water, or air. Certain hyperaccumulator plants can effectively mitigate heavy metals, organic compounds, and radioactive substances through absorption, adsorption, and transformation. This method offers a cost-effective and esthetically pleasing alternative to traditional remediation techniques, contributing to the restoration of contaminated ecosystems. Nanophytoremediation entails combining nanotechnology with phytoremediation techniques to improve plant-based environmental cleanup efficiency. Nanoparticles (NPs) or engineered NPs are applied to improve plants' absorption and transport of contaminants. This approach addresses limitations in traditional phytoremediation, offering increased remediation rates and effectiveness, particularly in removing pollutants like heavy metals. This review paper compares traditional phytoremediation and emerging nanophytoremediation, emphasizing their impact on metallothionein proteins in plants. The work reveals how plants get rid of unwanted foreign substances that build up on their bodies and keep homeostasis by using metallothionein proteins. These proteins effectively reduce the effects of these substances without affecting the plant's normal growth. The efficiency, cost-effectiveness, and ecological implications of the phytoremediation technologies in the light of the metallothionein protein action provide insights into optimizing contaminant detoxification strategies for polluted environments.
Collapse
Affiliation(s)
- Lekshmi Sreelatha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Ardra Lekshmi Ambili
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | | | - Deepthi Achuthavarier
- Modelling Program Division, Office of Science and Technology Integration, National Weather Service, NOAA, Silver Spring, MD, USA
| |
Collapse
|
4
|
Chi Y, Wang R, Zhang X, Ma X, Qin T, Zhang D, Chu S, Zhao T, Zhou P, Zhang D. Identification of cadmium-tolerant plant growth-promoting rhizobacteria and characterization of its Cd-biosorption and strengthening effect on phytoremediation: Development of a new amphibious-biocleaner for Cd-contaminated site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123225. [PMID: 39504667 DOI: 10.1016/j.jenvman.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) in decontaminating cadmium-contaminated soil and water is a sustainable and eco-friendly approach. This study aimed to isolate a PGPR strain from the rhizosphere soil of Solanum nigrum and evaluate its potential and mechanisms in remediating Cd-contaminated environments. The results showed that the isolated strain, Klebsiella sp. AW2, can tolerate 240 mg/L Cd2+. Batch biosorption experiments indicated that the optimal conditions for PGPR biosorption were a pH of 5.0, a biosorbent dosage of 1.0 g/L, and a Cd2+ concentration of 10 mg/L, resulting in a biosorption rate of 40.99%. Model fitting results revealed that the Cd biosorption process followed a uniform surface monolayer chemisorption mechanism, likely involving complexation with functional groups such as -NH, -OH, and -C=O, according to Fourier transform infrared spectrometer and desorption experiments. Furthermore, pot experiments demonstrated that PGPR application significantly enhanced the phytoremediation efficiency of Cd-contaminated soil, increasing the phytoextraction ratio by 32.41%. This improvement was primarily achieved by promoting S. nigrum growth and facilitating Cd horizontal transfer from rhizosphere soil to plants through influencing the rhizosphere soil physicochemical properties and Cd2+ influx in roots. In addition, the copy number of the 16S rRNA gene of the PGPR revealed that the PGPR was predominantly localized in the rhizosphere soil, directly leading to increased availability of Cd for plant uptake. Overall, these findings indicate that Klebsiella sp. AW2 is a promising biocleaner for Cd-contaminated environments and provide valuable insights into the application of biosorbents in phytoremediation efforts.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Tian Qin
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Ting Zhao
- Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai, 200240, China; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Zheng H, Yuan C, Bu T, Liu Q, Li J, Wang F, Zhang Y, He L, Gao J. SSA4 Mediates Cd Tolerance via Activation of the Cis Element of VHS1 in Yeast and Enhances Cd Tolerance in Chinese Cabbage. Int J Mol Sci 2024; 25:11026. [PMID: 39456809 PMCID: PMC11507436 DOI: 10.3390/ijms252011026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Identifying key genes involved in Cadmium (Cd) response pathways in plants and developing low-Cd-accumulating cultivars may be the most effective and eco-friendly strategy to tackle the problem of Cd pollution in crops. In our previous study, Stressseventy subfamily A 4 (SSA4) was identified to be associated with Cd tolerance in yeast. Here, we investigated the mechanism of SSA4 in regulating Cd tolerance in yeast. ScSSA4 binds to POre Membrane 34 (POM34), a key component of nuclear pore complex (NPC), and translocates from the cytoplasm to the nucleus, where it regulates the expression of its downstream gene, Viable in a Hal3 Sit4 background 1 (VHS1), resulting in reduced Cd accumulation in yeast cells. Additionally, we identified a Chinese cabbage SSA4 gene, BrSSA4c, which could enhance the Cd tolerance in Chinese cabbage. This study offers new insights into the regulatory mechanisms of Cd tolerance in yeast, a model organism, and paves the way for the genetic enhancement of Cd tolerance in Chinese cabbage.
Collapse
Affiliation(s)
- Han Zheng
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Chao Yuan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China;
| | - Tong Bu
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| | - Qun Liu
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| | - Jingjuan Li
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Fengde Wang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Yihui Zhang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Lilong He
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Jianwei Gao
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| |
Collapse
|
6
|
Wang Y, Zou B, Zuo X, Zou H, Zhang B, Tian R, Feng H. A remote sensing analysis method for soil heavy metal pollution sources at site scale considering source-sink relationships. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174021. [PMID: 38897476 DOI: 10.1016/j.scitotenv.2024.174021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Conventional methods for identifying soil heavy metal (HM) pollution sources are limited to area scale, failing to accurately pinpoint sources at specific sites due to the spatial heterogeneity of HMs in mining areas. Furthermore, these methods primarily focus on existing solid waste polluted dumps, defined as "direct pollution sources", while neglecting existing HM pollution hotspots generated by historical anthropogenic activities (e.g., mineral development, industrial discharges), defined as "potential pollution sources". Addressing this gap, a novel remote sensing analysis method is proposed to identify both direct and potential pollution sources at site scale, considering source-sink relationships. Direct pollution sources are extracted using a supervised classification algorithm on high-resolution multispectral imagery. Potential pollution sources depend on the spatial distribution of HM pollution, mapped using a machine learning model with hyperspectral imagery. Additionally, a source identification algorithm is developed for gridded pollution source analysis. Validated through a case study in a cadmium (Cd)-polluted mine area, the proposed method successfully extracted 21 solid waste polluted dumps with an overall accuracy approaching 90 % and a Kappa coefficient of 0.80. Simultaneously, 4167 HM pollution hotspots were identified, achieving optimal inversion accuracy for Cd (Rv2 = 0.91, RMSEv = 4.27, and RPDv = 3.02). Notably, the spatial distribution patterns of these identified sources exhibited a high degree of similarity. Further analysis employing the identification algorithm indicated that 3 polluted dumps and 258 pollution hotspots were pollution sources for a selected high-value point of Cd content. This innovative method provides a valuable methodological reference for precise prevention and control of soil HM pollution.
Collapse
Affiliation(s)
- Yulong Wang
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Bin Zou
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China.
| | - Xuegang Zuo
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Haijing Zou
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Bo Zhang
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Rongcai Tian
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Huihui Feng
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Zhang L, Zhu Y, Gu H, Lam SS, Chen X, Sonne C, Peng W. A review of phytoremediation of environmental lead (pb) contamination. CHEMOSPHERE 2024; 362:142691. [PMID: 38914287 DOI: 10.1016/j.chemosphere.2024.142691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/23/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
An estimated one billion people globally are exposed to hazardous levels of lead (Pb), resulting in intellectual disabilities for over 600,000 children each year. This critical issue aligns with the expanding worldwide population and the demand for food security, emphasizing the urgency of effectively addressing heavy metal pollution especially from Pb for sustainable development. Phytoremediation, a highly favoured approach in conjunction with conventional physical, chemical, and microbial methods, is a promising approach to mitigating soil and environmental contamination. In this review, we delve into a range of soil pollution mitigation strategies, with focus on the mechanisms that underpin the phytoremediation of environmental Pb. This detailed exploration sheds light on the efficacy and complexities of utilizing plants for the detoxification and removal of lead from contaminated environments. It also examines strategies to enhance phytoremediation by incorporating microbiology, composting, nanotechnology, and foliar spraying. The potential remediation strategies largely depend on the investigation and incorporation of environmentally friendly catalysts, as well as the utilization of innovative methods such as genetic engineering to improve phytoremediation processes. Studies have also shown that biochar has the capability to lower heavy metal concentrations in plant branches by over 50%, without affecting the pH of the soil. Specifically, magnetic biochar (MBC) has been shown to decrease lead levels in plants by up to 42%. Employing these methods showcases an effective strategy to enhance the efficacy of remediation techniques and fosters sustainable solutions to the pervasive issue of Pb pollution, thereby contributing to sustainable development efforts globally.
Collapse
Affiliation(s)
- Lele Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yachen Zhu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Xiangmeng Chen
- College of Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, POBox 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India.
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
8
|
Anwar A, Yuan C, Cui B, Wang L, He L, Gao J. BrMYB116 transcription factor enhances Cd stress tolerance by activating FIT3 in yeast and Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2024; 15:1388924. [PMID: 38911977 PMCID: PMC11190832 DOI: 10.3389/fpls.2024.1388924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 06/25/2024]
Abstract
Cd (cadmium) is a highly toxic heavy metal pollutant often present in soil and detrimentally impacting the production and quality of horticultural crops. Cd affects various physiological and biochemical processes in plants, including chlorophyll synthesis, photosynthesis, mineral uptake and accumulation, and hormonal imbalance, leading to cell death. The MYB family of transcription factors plays a significant role in plant response to environmental influences. However, the role of MYB116 in abiotic stress tolerance remains unclear. In this study, we reported that Chinese cabbage transcription factor BrMYB116 enhanced Cd stress tolerance in yeast. The expression level of BrMYB116 was increased by Cd stress in Chinese cabbage. Additionally, yeast cells overexpressing BrMYB116 showed improved Cd stress tolerance and reduced Cd accumulation. Moreover, we found that BrMYB116 interacted with facilitator of iron transport (FIT3) to enhance Cd stress tolerance. ChIP-qPCR results showed that ScFIT3 was activated through specific binding to its promoter. Additionally, the overexpression of ScFIT3 induced Cd stress tolerance and reduced Cd accumulation in yeast and Chinese cabbage. These results suggest new avenues for plant genomic modification to mitigate Cd toxicity and enhance the safety of vegetable production.
Collapse
Affiliation(s)
- Ali Anwar
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Chao Yuan
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education; School of Life Science, Shandong University, Qingdao, China
| | - Bing Cui
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lixia Wang
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lilong He
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianwei Gao
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
9
|
Boi ME, Fois M, Podda L, Porceddu M, Bacchetta G. Using Mediterranean Native Plants for the Phytoremediation of Mining Sites: An Overview of the Past and Present, and Perspectives for the Future. PLANTS (BASEL, SWITZERLAND) 2023; 12:3823. [PMID: 38005720 PMCID: PMC10674270 DOI: 10.3390/plants12223823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Mining exploitation in the Mediterranean Basin has left evident scars on the environment, and poses serious risks for human health and biodiversity, especially when mine wastes are left abandoned. This review analysed the main issues of metal(loid)s pollution related to mine exploitation in the Mediterranean Basin. Here, a list of Mediterranean native plant species studied for phytoremediation is given and, considering their biological forms, vegetational types, and ecology, we categorised them into halotolerant and hydro/hygrophilous vegetation, annual and perennial meadows, garrigues and maquis, and high maquis and woods. The main conclusions of the review are as follows: (1) plant communities established on mine environments are often rich in endemic taxa which ensure a high biodiversity and landscape value, and can help in the psychophysical health of local inhabitants; (2) political and land management should take greater account of the use of native plants for the remediation of contaminated soils; (3) a multidisciplinary approach that includes, among others, studies on biochemical response to metal(loid)s as well as the application of innovative soil amendments gives better results; (4) phytoextraction applications require a detailed recovery plan that takes into consideration several issues, including the negative influence on biodiversity due to extensive use of monotypic plantations, disposal of harvested hazardous plants, and the risk of phytoextracts entering the food chain; and (5) more studies are necessary to increase knowledge and to detect suitable species-especially halophytic ones-for phytoremediation purposes.
Collapse
Affiliation(s)
| | - Mauro Fois
- Sardinian Germplasm Bank (BG-SAR), Centre for the Conservation of Biodiversity (CCB), Department of Life and Environmental Sciences, University of Cagliari, 09123 Cagliari, Italy; (M.E.B.); (L.P.); (M.P.); (G.B.)
| | | | | | | |
Collapse
|
10
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
11
|
Zeng X, Yang Y, Zhang Q, Zeng C, Deng X, Yuan H, Gong X, Zou D, Zeng Q. Field-scale differences in rhizosphere micro-characteristics of Cichorium intybus, Ixeris polycephala, sunflower, and Sedum alfredii in the phytoremediation of Cd-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115137. [PMID: 37320919 DOI: 10.1016/j.ecoenv.2023.115137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Understanding the intricate interplay between Cd accumulation in plants and their rhizosphere micro-characteristics is important for the selection of plant species with profitable Cd phytoextraction and soil remediation efficiencies. This study investigated the differences in rhizosphere micro-ecological characteristics and Cd accumulation in chicory, Ixeris polycephala, sunflower, and Sedum alfredii in low-moderate Cd-contaminated soil. Data reveal that the dominant organic acids in rhizosphere soil that responded to Cd were oxalic and lactic acids in chicory and Ixeris polycephala, tartaric acid in sunflower, and succinic acid in Sedum alfredii. These unique organic acids could also influence the abundance of specific rhizobacterial communities in rhizosphere soil that were Sphingomonadaceae and Bradyrhizobiaceae in both Sedum alfredii (9.75 % and 2.56 %, respectively) and chicory (8.98 % and 2.82 %, respectively) rhizosphere soil, Xanthomonadaceae in both Sedum alfredii and Ixeris polycephala rhizosphere soil, and Gaiellaceae in chicory rhizosphere soil. In this case, the combined effects of the organic acids and unique rhizobacterial communities by plant species increased the bioavailable concentration of Cd in Sedum alfredii, Ixeris polycephala, and sunflower rhizosphere soil, while decreasing the Cd-DOM concentrations in chicory rhizosphere soil and the water-extractable Cd reduced by 88.02 % compared to the control. Though the capacity for Cd accumulation in the shoots of chicory was weaker than of Sedum alfredii but better than either Ixeris polycephala or sunflower, chicory presented better Cd translocation and harbored Cd mainly as the low toxic chemical form of pectates and proteins-bound Cd and Cd oxalate in its shoot. Generally, chicory, as an economic plant, is suitable for phytoremediation of low-moderate Cd-contaminated soil after Sedum alfredii.
Collapse
Affiliation(s)
- Xinyi Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Yang Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Qiuguo Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Chunyang Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Xiao Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd, Changsha, Hunan 410128, PR China
| | - Xiaomin Gong
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| |
Collapse
|
12
|
Wang N, Ren J, Wang L, Wang Y, Wang Z, Guo D. A preliminary study to explain how Streptomyces pactum (Act12) works on phytoextraction: soil heavy metal extraction, seed germination, and plant growth. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:757. [PMID: 37247015 DOI: 10.1007/s10661-023-11340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Streptomyces pactum (Act12) can both promote plant growth and strengthen heavy metal mobilization. Nevertheless, the mechanisms of how Act12 works during the phytoextraction process are still unknown. The present work investigated whether the metabolites produced by Act12 could influence the seed germination and the growth of potherb mustard and explored its mobilizing effect on soil cadmium (Cd) and zinc (Zn). The results showed that the germination potential and rate of potherb mustard seed treated with Act12 fermentation broth were 1.0- and 0.32-folds higher than those of control, probably due to the interruption of seed dormant stage. We also found that Act12 inoculation not only promoted the dry biomass (6.82%) of potherb mustard, but also increased the leaf chlorophyll (11.8%) and soluble protein (0.35%) production. The boosted seed germination rate under Act12 treatment (up to 63.3%) indicated that Act12 enhanced the resistance of potherb mustard seeds to Cd and Zn and alleviated their physiological toxicity. The generated metabolites during the Act12 fermentation posed positive impact on the availability of soil Cd and Zn. These findings bring new insight into the Act12-assisted phytoextraction of Cd and Zn from contaminated soils.
Collapse
Affiliation(s)
- Nina Wang
- School of Petroleum and Environment Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Jie Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Linlin Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Ze Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Di Guo
- School of Petroleum and Environment Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
13
|
Guo K, Yan L, He Y, Li H, Lam SS, Peng W, Sonne C. Phytoremediation as a potential technique for vehicle hazardous pollutants around highways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121130. [PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
Collapse
Affiliation(s)
- Kang Guo
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
14
|
Kahvecioğlu K, Teğin İ, Yavuz Ö, Saka C. Phosphorus and oxygen co-doped carbon particles based on almond shells with hydrothermal and microwave irradiation process for adsorption of lead (II) and cadmium (II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37946-37960. [PMID: 36576627 DOI: 10.1007/s11356-022-24968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
In this study, the production of activated carbon based on almond shells by microwave heating with KOH activation and then the modification of activated carbon with phosphorus and oxygen as a result of hydrothermal heating with phosphoric acid were carried out to increase the Cd(II) and Pb(II) adsorption efficiency. The resulting materials were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric/differential thermal analyzer (TG-DTA), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and nitrogen adsorption. Adsorption performance, kinetics and thermodynamics of phosphorus, and oxygen-doped activated carbons were evaluated. The results showed that the adsorption of both Cd(II) and Pb(II) on phosphorus and oxygen-doped activated carbons obeyed the Langmuir isotherm and pseudo-second-order kinetics. The adsorption capacity values (Qm) obtained from the Langmuir isotherm for Cd(II) and Pb(II) adsorption were 185.18 mg/g and 54.64 mg/g, respectively. At the same time, the adsorption mechanism of Pb(II) and Cd(II) on the respective adsorbents was evaluated. As a result of phosphorus and oxygen atoms, Lewis base sites on carbon atoms and Lewis acid sites on phosphorus atoms are likely to form on the surface. These Lewis base sites can act as important active sites in adsorption reactions, especially of positively charged Pb(II) and Cd(II) ions.
Collapse
Affiliation(s)
| | - İbrahim Teğin
- Faculty of Science and Letters, Siirt University, Siirt, Turkey
| | - Ömer Yavuz
- Faculty of Education, Dicle University, Diyarbakır, Turkey
| | - Cafer Saka
- Faculty of Health Sciences, Siirt University, Siirt, Turkey.
| |
Collapse
|
15
|
Lu Y, Lin H, Zhang Y, Dong Y. Highly efficient preferential adsorption of Pb(II) and Cd(II) from aqueous solution using sodium lignosulfonate modified illite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26191-26207. [PMID: 36355240 DOI: 10.1007/s11356-022-23807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, sodium lignosulfonate modified illite (LS-ILT), an environmentally friendly adsorbent, was prepared by hydrothermal modification. An extensive study of Pb(II) and Cd(II) adsorption behavior and the mechanisms were conducted by evaluating the effects of initial pH value, sorbents dosage, and initial concentration of Pb(II) and Cd(II). Results showed that the adsorption characteristics of Pb(II) and Cd(II) by LS-ILT were well described by quasi-second-order kinetics and the Freundlich model, and the maximum adsorption capacity of Pb(II) and Cd(II) was 42.3 mg/g and 17.0 mg/g, respectively. The optimal application conditions for adsorption equilibrium were the dosage of 4 g/L and reaction pH = 5.5-5.8. The adsorption stability of Pb(II) by LS-ILT was better than that of Cd(II), and most of the existence of coexisting cations had no obvious inhibitory effect on the removal of Pb(II) and Cd(II). Furthermore, the dynamic adsorption results showed that LS-ILT can meet the ultra-low emission standard, and the adsorption capacity could maintain over 50% after four cycles, further providing certain guiding significance for the treatment of wastewater with ultra-low concentrations of heavy metals Pb(II) and Cd(II).
Collapse
Affiliation(s)
- Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Ye Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
16
|
Sharma JK, Kumar N, Singh NP, Santal AR. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1076876. [PMID: 36778693 PMCID: PMC9911669 DOI: 10.3389/fpls.2023.1076876] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/06/2023] [Indexed: 05/14/2023]
Abstract
The contamination of soils with heavy metals and its associated hazardous effects are a thrust area of today's research. Rapid industrialization, emissions from automobiles, agricultural inputs, improper disposal of waste, etc., are the major causes of soil contamination with heavy metals. These contaminants not only contaminate soil but also groundwater, reducing agricultural land and hence food quality. These contaminants enter the food chain and have a severe effect on human health. It is important to remove these contaminants from the soil. Various economic and ecological strategies are required to restore the soils contaminated with heavy metals. Phytoremediation is an emerging technology that is non-invasive, cost-effective, and aesthetically pleasing. Many metal-binding proteins (MBPs) of the plants are significantly involved in the phytoremediation of heavy metals; the MBPs include metallothioneins; phytochelatins; metalloenzymes; metal-activated enzymes; and many metal storage proteins, carrier proteins, and channel proteins. Plants are genetically modified to enhance their phytoremediation capacity. In Arabidopsis, the expression of the mercuric ion-binding protein in Bacillus megaterium improves the metal accumulation capacity. The phytoremediation efficiency of plants is also enhanced when assisted with microorganisms, biochar, and/or chemicals. Removing heavy metals from agricultural land without challenging food security is almost impossible. As a result, crop selections with the ability to sequester heavy metals and provide food security are in high demand. This paper summarizes the role of plant proteins and plant-microbe interaction in remediating soils contaminated with heavy metals. Biotechnological approaches or genetic engineering can also be used to tackle the problem of heavy metal contamination.
Collapse
Affiliation(s)
| | - Nitish Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - N. P. Singh
- Centre for Biotechnology, M. D. University, Rohtak, India
- *Correspondence: Anita Rani Santal, ; N. P. Singh,
| | - Anita Rani Santal
- Department of Microbiology, M. D. University, Rohtak, India
- *Correspondence: Anita Rani Santal, ; N. P. Singh,
| |
Collapse
|
17
|
Chi Y, You Y, Wang J, Chen X, Chu S, Wang R, Zhang X, Yin S, Zhang D, Zhou P. Two plant growth-promoting bacterial Bacillus strains possess different mechanisms in affecting cadmium uptake and detoxification of Solanum nigrum L. CHEMOSPHERE 2022; 305:135488. [PMID: 35764116 DOI: 10.1016/j.chemosphere.2022.135488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 05/22/2023]
Abstract
Microorganisms affect cadmium (Cd) extraction by hyperaccumulators to varying degrees, but the potential mechanism has not been completely studied. Here, two plant growth-promoting bacteria (PGPB, Bacillus paranthracis NT1 and Bacillus megaterium NCT-2) were assessed for their influence on Cd uptake by Solanum nigrum L. and their influence mechanisms. The results showed that both two strains could regulate phytohormones secretion, alleviate oxidative stress and promote S. nigrum growth when exposed to Cd (dry weight was significantly increased by 21.51% (strain NCT-2) and 21.23% (strain NT1) compared with the control, respectively). Additionally, strain NCT-2 significantly elevated the translocation factor (TF) and bioconcentration factor (BCF), and thus significantly facilitated total Cd uptake by 41.80% of S. nigrum, whereas strain NT1 significantly reduced the BCF and TF, resulting in insignificant effect on total Cd uptake of S. nigrum compared with the control. Results of qPCR illustrated that the two strains influenced the detoxification of Cd in S. nigrum by affecting the expression of antioxidant enzyme genes and gene PDR2. Moreover, the differential expression of heavy metal transport genes IRT1 and HMA may lead to the difference of Cd accumulation in S. nigrum. Principal component analysis and Pearson correlation coefficient analysis further verified the positive roles of salicylic acid and indole-3-acetic acid on Cd detoxification of S. nigrum, and the positive correlation relationship between transportation of Cd from underground to shoot, plant biomass and Cd uptake. Altogether, our results demonstrated that these two PGPB have great potential in helping plants detoxify Cd and could provide insights into the mechanism of PGPB-assisted phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yimin You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
18
|
Pan X, Zhang S, Li T, Ouyang J, Gong G, Wang G, Xu X, Pu Y, Long L, Jia Y. Response of microbiomes with different abundances to removal of metal fractions by soil washing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113862. [PMID: 35835071 DOI: 10.1016/j.ecoenv.2022.113862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Toxic metal contamination causes a great threat to soil ecosystem and human health. Soil washing is a fast practice for removing metals, but its influences on microbial diversity and the stability of soil ecosystem remain unknown. In this study, ethylenediaminetetraacetic acid (EDTA), citric acid (CA), and fermented pineapple peel residue (FPP) were used as representatives of chelates, low molecular organic acids and biological materials to wash Pb-polluted soils, and their impacts on microbial community were investigated. Washing with these agents effectively removed Pb, but altered microbial community structure. After washing with EDTA, CA, and FPP, 3-8 bacterial phyla and 1 fungal phylum greatly increased, while 7-20 bacterial and 0-6 fungal phyla severely decreased or even disappeared. The alterations of different microbiomes were closely related to soil metal fractions. The labile metal fraction had negative effects on most bacteria and fungi, but also showed positive influences on Actinobacteria, Patescibacteria, and Fusobacteria. The moderately stable and stable fractions were nontoxic to the most microbes, but still harmful to Patescibacteria and Deinococcus-Thermus. These findings provide new insights for the effects of soil washing remediation and toxicity of metal fractions on the microbiomes with different abundance.
Collapse
Affiliation(s)
- Xiaomei Pan
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China; Chengdu Agricultural College, Wenjiang 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, China.
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, China
| | - Jinyi Ouyang
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, China
| | - Guoshu Gong
- College of Agronomy, Sichuan Agricultural University, Wenjiang 611130, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yongxia Jia
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China
| |
Collapse
|
19
|
Luo Y, Liao M, Zhang Y, Xu N, Xie X, Fan Q. Cadmium resistance, microbial biosorptive performance and mechanisms of a novel biocontrol bacterium Paenibacillus sp. LYX-1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68692-68706. [PMID: 35543785 DOI: 10.1007/s11356-022-20581-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel biocontrol bacterium was isolated and identified as Paenibacillus sp. LYX-1 from soils in the peach orchard. Both Cd2+ resistance and biosorption behavior of strain LYX-1 was explored. Meanwhile, the Cd2+ resistance and biosorption mechanisms were further identified by Cd-resistant genes, SEM-EDS, FTIR, XPS, and TEM analysis. The results showed that strain LYX-1 could resist 50 mg/L Cd2+ and had the CzcD gene responsible for Cd2+ efflux. Under pH 8.0 and at a dose of 1.0 g/L sorbent dose, the removal efficiencies of living and dead cells were as high as 90.39% and 75.67% at 20 mg/L Cd2+, respectively. For the adsorption isotherm test, results revealed that both Langmuir (R2 = 0.9704) and Freundlich (R2 = 0.9915) model could describe the Cd2+ biosorption well for living strain LYX-1. The maximum equilibrium biosorption capacities of living and dead biomass were 30.6790 and 24.3752 mg/g, respectively. In the adsorption kinetic test, the adsorption process of both living and dead strain LYX-1 all satisfied the pseudo-second kinetic equation. A desorption study showed that strain LYX-1 sorbents could be recycled and regenerated by eluents efficiently. SEM-EDS analysis reflected that Cd2+ was bound to the cell wall. Besides, the biosorption process was controlled by chemisorption with the participation of the -OH, -NH, -C = O, O = C-O, C-N, S2-, and phosphate functional groups on the cell surface of strain LYX-1, which were identified by FTIR and XPS. Bioaccumulation also made a contribution to the Cd2+ removal during the biosorption process of living sorbent. The above results indicated that strain LYX-1 had higher Cd2+ tolerance and Cd2+ removal capacity. This strain exhibits promising application to the removal of Cd2+ in the Cd-contaminated environment.
Collapse
Affiliation(s)
- Yixin Luo
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No. 866, Hangzhou, 310058, China
| | - Min Liao
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No. 866, Hangzhou, 310058, China.
| | - Yuhao Zhang
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No. 866, Hangzhou, 310058, China
| | - Na Xu
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No. 866, Hangzhou, 310058, China
| | - Xiaomei Xie
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China
- National Demonstration Center for Experimental Environmental and Resources Education (Zhejiang University), Yuhangtang Road No. 866, Hangzhou, 310058, China
| | - Qiyan Fan
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China
- National Demonstration Center for Experimental Environmental and Resources Education (Zhejiang University), Yuhangtang Road No. 866, Hangzhou, 310058, China
| |
Collapse
|
20
|
Effects of Different Native Plants on Soil Remediation and Microbial Diversity in Jiulong Iron Tailings Area, Jiangxi. FORESTS 2022. [DOI: 10.3390/f13071106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phytoremediation is an important solution to heavy metal pollution in soil. However, the impact of plants on microbial communities in contaminated soil also requires attention. Community-level physiological profiling (CLPP) based on the Biolog™ EcoPlate and high-throughput sequencing were used to study the soil microbial community in this article. The rhizosphere and bulk soil samples of six native species were collected from the iron mine tailings on Jiulong Mountain, Jiangxi Province. According to the average well color development (AWCD), all plants improved the activity and diversity of the contaminated soil microbial community to varying degrees. Cunninghamia lanceolate is considered to have good effects and led to the appearance of Cunninghamia lanceolata > Zelkova schneideriana > Toona ciliata > Alnus cremastogyne > Cyclobalanopsis myrsinifolia > Pinus elliottii. The Shannon–Wiener diversity index and principal component analysis (PCA) show that the evenness and dominance of soil microbial communities of several plants are structurally similar to those of uncontaminated soil (UNS). The results of high-throughput sequencing indicated that the bacterial community diversity of C. lanceolata, A. cremastogyne, and P. elliottii is similar to UNS, while fungal community diversity is different from UNS. C. lanceolata has a better effect on soil nutrients, C. myrsinifolia and P. elliottii may have a better effect on decreasing the Cu content. The objective of this study was to assess the influence of native plants on microbial communities in soils and the soil remediation capacity. Mortierellomycota was the key species for native plants to regulate Cu and microbial community functions. Native plants have decisive influence on microbial community diversity.
Collapse
|
21
|
Raklami A, Meddich A, Oufdou K, Baslam M. Plants-Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int J Mol Sci 2022; 23:5031. [PMID: 35563429 PMCID: PMC9105715 DOI: 10.3390/ijms23095031] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Rapid industrialization, mine tailings runoff, and agricultural activities are often detrimental to soil health and can distribute hazardous metal(loid)s into the soil environment, with harmful effects on human and ecosystem health. Plants and their associated microbes can be deployed to clean up and prevent environmental pollution. This green technology has emerged as one of the most attractive and acceptable practices for using natural processes to break down organic contaminants or accumulate and stabilize metal pollutants by acting as filters or traps. This review explores the interactions between plants, their associated microbiomes, and the environment, and discusses how they shape the assembly of plant-associated microbial communities and modulate metal(loid)s remediation. Here, we also overview microbe-heavy-metal(loid)s interactions and discuss microbial bioremediation and plants with advanced phytoremediation properties approaches that have been successfully used, as well as their associated biological processes. We conclude by providing insights into the underlying remediation strategies' mechanisms, key challenges, and future directions for the remediation of metal(loid)s-polluted agricultural soils with environmentally friendly techniques.
Collapse
Affiliation(s)
- Anas Raklami
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre Agro-Biotech URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
22
|
Wang F, Wu P, Shu L, Huang D, Liu H. High-efficiency adsorption of Cd(II) and Co(II) by ethylenediaminetetraacetic dianhydride-modified orange peel as a novel synthesized adsorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25748-25758. [PMID: 34846656 DOI: 10.1007/s11356-021-17501-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The treatment of heavy metal (HM) wastewater is a critical and considerable challenge. Fruit peel-based HM adsorption is a promising way for the water pollution control and the reuse of agricultural waste. In this study, a novel adsorbent based on orange peel was synthesized for the first time by introducing abundant -COO groups with ethylenediaminetetraacetic dianhydride (EDTAD) to eliminate Cd(II) and Co(II) of sewage solution. The synthesized adsorbent displayed excellent adsorption capacity of 51.020 and 40.486 mg/g for Cd(II) and Co(II), respectively, and the adsorption equilibrium was achieved within 5 min, following the Langmuir isotherm model and the pseudo-second-order model. Surface characterization of adsorbents by scanning electron microscopy-energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy confirmed that ion exchange, complexation, and physical adsorption could occur during the adsorption process. The rapid and highly efficient adsorption performance suggests EDTAD-modified synthesized orange peel possesses great potential for HM removal from sewage systems.
Collapse
Affiliation(s)
- Fanghui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Peng Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Lin Shu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Di Huang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, China.
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
23
|
Kurniawan SB, Ramli NN, Said NSM, Alias J, Imron MF, Abdullah SRS, Othman AR, Purwanti IF, Hasan HA. Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon 2022; 8:e08995. [PMID: 35399376 PMCID: PMC8983376 DOI: 10.1016/j.heliyon.2022.e08995] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022] Open
Abstract
Bioaugmentation, the addition of cultured microorganisms to enhance the currently existing microbial community, is an option to remediate contaminated areas. Several studies reported the success of the bioaugmentation method in treating heavy metal contaminated soil, but concerns related to the applicability of this method in real-scale application were raised. A comprehensive analysis of the mechanisms of heavy metal treatment by microbes (especially bacteria) and the concerns related to the possible application in the real scale were juxtaposed to show the weakness of the claim. This review proposes the use of bioaugmentation-assisted phytoremediation in treating heavy metal contaminated soil. The performance of bioaugmentation-assisted phytoremediation in treating heavy metal contaminated soil as well as the mechanisms of removal and interactions between plants and microbes are also discussed in detail. Bioaugmentation-assisted phytoremediation shows greater efficiencies and performs complete metal removal from soil compared with only bioaugmentation. Research related to selection of hyperaccumulator species, potential microbial species, analysis of interaction mechanisms, and potential usage of treating plant biomass after treatment are suggested as future research directions to enhance this currently proposed topic.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Jahira Alias
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia
- Corresponding author.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
- Corresponding author.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
24
|
Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, Ali I, Naz I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. CHEMOSPHERE 2022; 291:132979. [PMID: 34801572 DOI: 10.1016/j.chemosphere.2021.132979] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 05/22/2023]
Abstract
Phytoremediation is an effective, green and economical technique. Different types of phytoremediation methods can be used for the reduction of heavy metal contaminations, such as phytoextraction, phytovolatilization, phytostabilization and phytofiltration. The biomass of plants and the bioavailability of heavy metals in soil are the key factors affecting the efficiency of phytoremediation. It's worth noting that the low remediation efficiency and the lack of effective disposal methods for contaminated biomass have limited its development and application. At present, biological, physical, chemical, agronomic and genetic approaches have been used to enhance phytoremediation. Disposal methods of contaminated biomass usually include pyrolysis, incineration, composting and compaction. They are effective, but are costly and have security problems. Improper disposal of contaminated biomass can lead to leaching of heavy metals. The leaching possibility of different forms of heavy metal in plants is different. Hence, it has great significance to explore the different forms of heavy metals in plants which can help to explore appropriate disposal methods. According to the challenges of phytoremediation, we put forward some views and recommendations for the sustainable and rapid development of phytoremediation technology.
Collapse
Affiliation(s)
- Xing Shen
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiawei Yang
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Lin Sun
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Department of Environmental Engineering, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Imran Ali
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452, Saudi Arabia.
| |
Collapse
|
25
|
Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. Lead (Pb) removal from contaminated water using constructed wetland planted with Scirpus grossus: Optimization using response surface methodology (RSM) and assessment of rhizobacterial addition. CHEMOSPHERE 2022; 291:132952. [PMID: 34798103 DOI: 10.1016/j.chemosphere.2021.132952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is one of the toxic heavy metals that pollute the environment as a result of industrial activities. This study aims to optimize Pb removal from water by using horizontal free surface flow constructed wetland (HFSFCW) planted with Scirpus grossus. Optimization was conducted using response surface methodology (RSM) under Box-Behnken design with the operational parameters of initial Pb concentration, retention time, and aeration. Optimization results showed that 37 mg/L of initial Pb concentration, 32 days of retention time, and no aeration were the optimum conditions for Pb removal by using the systems. Validation test was run under two different conditions, namely, non-bioaugmented and bioaugmented with rhizobacteria (Bacillus cereus, B. pumilus, B. subtilis, Brevibacillus choshinensis, and Rhodococcus rhodochrous). Results of the validation test showed that Pb removal in water achieved 99.99% efficiency with 0.2% error from the RSM prediction, while the adsorption of Pb by plants reached 5160.18 mg/kg with 10.6% error from the RSM prediction. The bioaugmentation of the five rhizobacterial species showed a slight improvement in Pb removal from water and Pb adsorption by plants. However, no significant improvement was achieved (p < 0.05). Overall results suggested that operating the HFSFCW under optimum conditions with no bioaugmentation might be a feasible choice for the treatment of Pb-contaminated water.
Collapse
Affiliation(s)
- Bieby Voijant Tangahu
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia.
| | - Hassan Basri
- Department of Civil and Structural Engineering, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Malaysia
| | - Mushrifah Idris
- Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Malaysia
| | - Nurina Anuar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Muhammad Mukhlisin
- Department of Civil Engineering, Politeknik Negeri Semarang, 50275, Semarang, Indonesia
| |
Collapse
|
26
|
Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is a heavy metal present in atmosphere, rocks, sediments, and soils without a known role in plants. It is relatively mobile and can easily enter from soil into groundwater and contaminate the food chain. Its presence in food in excess amounts may cause severe conditions in humans, therefore prevention of cadmium entering the food chain and its removal from contaminated soils are important steps in preserving public health. In the last several years, several approaches for Cd remediation have been proposed, such as the use of soil amendments or biological systems for reduction of Cd contamination. One of the approaches is phytoremediation, which involves the use of plants for soil clean-up. In this review we summarized current data on the use of different plants in phytoremediation of Cd as well as information about different approaches which have been used to enhance phytoremediation. This includes data on the increasing metal bioavailability in the soil, plant biomass, and plant accumulation capacity as well as seed priming as a promising novel approach for phytoremediation enhancing.
Collapse
|
27
|
Saha L, Tiwari J, Bauddh K, Ma Y. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front Microbiol 2021; 12:731723. [PMID: 35002995 PMCID: PMC8733405 DOI: 10.3389/fmicb.2021.731723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.
Collapse
Affiliation(s)
- Lala Saha
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Li S, Zhu Q, Luo J, Shu Y, Guo K, Xie J, Xiao F, He S. Application Progress of Deinococcus radiodurans in Biological Treatment of Radioactive Uranium-Containing Wastewater. Indian J Microbiol 2021; 61:417-426. [PMID: 34744197 DOI: 10.1007/s12088-021-00969-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023] Open
Abstract
Radioactive uranium wastewater contains a large amount of radionuclide uranium and other heavy metal ions. The radioactive uranium wastewater discharged into the environment will not only pollute the natural environment, but also threat human health. Therefore, the treatment of radioactive uranium wastewater is a current research focus for many researchers. The treatment in radioactive uranium wastewater mainly includes physical, chemical and biological methods. At present, the using of biological treatment to treat uranium in radioactive uranium wastewater has been gradually shown its superiority and advantages. Deinococcus radiodurans is a famous microorganism with the most radiation resistant to ionizing radiation in the world, and can also resist various other extreme pressures. D. radiodurans can be directly used for the adsorption of uranium in radioactive waste water, and it can also transform other functional genes into D. radiodurans to construct genetically engineered bacteria, and then applied to the treatment of radioactive uranium containing wastewater. Radionuclides uranium in radioactive uranium-containing wastewater treated by D. radiodurans involves a lot of mechanisms. This article reviews currently the application of D. radiodurans that directly or construct genetically engineered bacteria in the treatment of radioactive uranium wastewater and discusses the mechanism of D. radiodurans in bioremediation of uranium. The application of constructing an engineered bacteria of D. radiodurans with powerful functions in uranium-containing wastewater is prospected.
Collapse
Affiliation(s)
- Shanshan Li
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Qiqi Zhu
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Jiaqi Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Yangzhen Shu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Kexin Guo
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Jingxi Xie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Fangzhu Xiao
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Shuya He
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
29
|
Sbaraini N, Tomazett MV, Penteriche AB, Gonçales RA, Camargo MDS, Bailão AM, Borges CL, Schrank A, Soares CMDA, Staats CC. An efficient Agrobacterium tumefaciens-mediated transformation method for Simplicillium subtropicum (Hypocreales: Cordycipitaceae). Genet Mol Biol 2021; 44:e20210073. [PMID: 34606563 PMCID: PMC8489804 DOI: 10.1590/1678-4685-gmb-2021-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
Filamentous fungi are the organisms of choice for most industrial biotechnology. Some species can produce a variety of secondary metabolites and enzymes of commercial interest, and the production of valuable molecules has been enhanced through different molecular tools. Methods for genetic manipulation and transformation have been essential for the optimization of these organisms. The genus Simplicillium has attracted increased attention given several potential biotechnological applications. The Simplicillium genus harbors several entomopathogenic species and some isolates have been explored for bioremediation of heavy metal contaminants. Furthermore, the myriad of secondary metabolites isolated from Simplicillium spp. render these organisms as ideal targets for deep exploration and further biotechnological mining possibilities. However, the lack of molecular tools hampered the exploration of this genus. Thus, an Agrobacterium tumefaciens-mediated transformation method was established for Simplicillium subtropicum, employing the far-red fluorescent protein TURBOFP635/Katushka, as a visual marker, and the selection marker SUR gene, that confers resistance to chlorimuron ethyl. Notably, one round of transformation using the established method yielded almost 400 chlorimuron resistant isolates. Furthermore, these transformants displayed mitotic stability for, at least, five generations. We anticipate that this method can be useful for deep molecular exploration and improvement of strains in the Simplicillium genus.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil.,Rede Avançada em Biologia Computacional (RABICÓ), Petrópolis, RJ, Brazil
| | - Mariana Vieira Tomazett
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Goiânia, GO, Brazil
| | - Augusto Bartz Penteriche
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Relber Aguiar Gonçales
- University of Minho, School of Medicine, Life and Health Sciences Research Institute (ICVS), Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Matheus da Silva Camargo
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Alexandre Melo Bailão
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Goiânia, GO, Brazil
| | - Clayton Luiz Borges
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Goiânia, GO, Brazil
| | - Augusto Schrank
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil.,Rede Avançada em Biologia Computacional (RABICÓ), Petrópolis, RJ, Brazil
| | - Célia Maria de Almeida Soares
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Goiânia, GO, Brazil
| | - Charley Christian Staats
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil.,Rede Avançada em Biologia Computacional (RABICÓ), Petrópolis, RJ, Brazil
| |
Collapse
|
30
|
Li Y, Yang K, Gao W, Han Q, Zhang J. A spectral characteristic analysis method for distinguishing heavy metal pollution in crops: VMD-PCA-SVM. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119649. [PMID: 33744840 DOI: 10.1016/j.saa.2021.119649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Exploring the characteristics and types of heavy metal pollution in crops has important implications for food security and human health. In this study, a method for distinguishing heavy metal-polluted elements in corn leaves was proposed. Based on the spectral data obtained from corn leaves polluted by Cu and Pb, the spectra were divided into four characteristic regions. Variational mode decomposition (VMD) was used to decompose the first-order differential spectrum, and the characteristic analysis was transformed from the spectral domain to the frequency domain. Each modal component was processed separately using principal components analysis (PCA) according to the different characteristic regions to obtain the main information on the pollution characteristics, and then a two-dimensional space was constructed to identify the differential characteristics of corn under Cu and Pb stress visually. Finally, the support vector machine (SVM) classifier was used to get the classification line model to distinguish Cu and Pb pollution. This method was named VMD-PCA-SVM. The results show that the method can highlight the spectral response characteristics of heavy metal pollution, which is expected to guide the rapid and non-destructive identification of heavy metal pollution in crops and the formulation of remediation strategies.
Collapse
Affiliation(s)
- Yanru Li
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Keming Yang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China.
| | - Wei Gao
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Qianqian Han
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jianhong Zhang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| |
Collapse
|
31
|
Fan T, Liu R, Pan D, Liu Y, Ye W, Lu H, Kianpoor Kalkhajeh Y. Accumulation and subcellular distribution of cadmium in rygegrass induced by Aspergillus niger TL-F2 and Aspergillus flavus TL-F3. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:263-270. [PMID: 34101523 DOI: 10.1080/15226514.2021.1932734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although plant growth-promoting fungi can greatly accelerate the ryegrass bioaccumulation of cadmium (Cd), the underlying mechanisms are not yet well documented. Therefore, we performed a 20-days hydroponic experiment to investigate the effects of Aspergillus niger TL-F2 (A. niger TL-F2) and Aspergillus flavus TL-F3 (A. flavus TL-F3) on accumulation/subcellular distribution of Cd by annual ryegrass Dongmu 70 at different Cd concentrations (0, 2.5, and 5 mg L-1). Results indicated that both fungal strains promoted ryegrass biomass/growth by about 60%. Furthermore, we found that ryegrass roots (17.8-37.1 μg pot-1) had a significantly higher capability for Cd uptake than the shoots (1.66-5.45 μg pot-1) (p < 0.05). Of total Cd in ryegrass plants, 44-67% was in soluble form, 24-37% was in cell wall, and 8.5-25.5% was in organelles. Compared with non-fungus ryegrass, cell wall and soluble Cd fractions in fungus-inoculated roots increased and decreased by 13.5-44% and 21.5-26.4%, respectively. Besides, fungus inoculation generally increased the content of cell wall and soluble Cd fractions in ryegrass shoots. Altogether, the study concludes that inoculation of fungus in ryegrass is a promising approach to improve phytoremediation of Cd contaminated environments.Novelty statement Previous study by Han et al. (2018) examined the resistance of ryegrass plant to Cd stress after its inoculation with Aspergillus aculeatus. In this study, using a hydroponic experiment, we examined the effects of co-application of two species of Aspergillus fungi. i.e. A. niger TL-F2 and A. flavus TL-F3 on ryegrass growth/biomass, Cd absorption by ryegrass shoots and roots, and subcellular distribution of Cd in ryegrass roots and shoots.
Collapse
Affiliation(s)
- Ting Fan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ru Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Dandan Pan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yalou Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hongjuan Lu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yusef Kianpoor Kalkhajeh
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
32
|
Sharma P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. BIORESOURCE TECHNOLOGY 2021; 328:124835. [PMID: 33618184 DOI: 10.1016/j.biortech.2021.124835] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 05/12/2023]
Abstract
The aim of this review to address the plant-associated bacteria to enhance the phytoremediation efficiency of the heavy metals from polluted sites and it is also highlighted advances for the application in wastewater treatment. Plant-associated bacteria have potential to encourage the plant growth and resistance under stress conditions. Such bacteria could enhance plant growth by controlling growth hormone, nutrition security, producing siderophore, secondary metabolites, and improving the antioxidant enzymes system. This review also explores the concepts and applications of bacteria assisted phytoremediation, addressing aspects that affect phytoremediation and pathways for restoration. Significant review issues relating to production and application of bacteria for improvement of bioremediation were established and presented for possible future research. Bacteria assisted phytoremediation is cost-effective strategy and metal sequestration mechanism that hold high metal biosorption capacities. This also takes into consideration the current state of technology implementations and proposals for prospective clean-up studies.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow 226 025, Uttar Pradesh, India
| |
Collapse
|
33
|
Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04301-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractToxic metal contamination of soil is a major environmental hazard. Chemical methods for heavy metal's (HMs) decontamination such as heat treatment, electroremediation, soil replacement, precipitation and chemical leaching are generally very costly and not be applicable to agricultural lands. However, many strategies are being used to restore polluted environments. Among these, phytoremediation is a promising method based on the use of hyper-accumulator plant species that can tolerate high amounts of toxic HMs present in the environment/soil. Such a strategy uses green plants to remove, degrade, or detoxify toxic metals. Five types of phytoremediation technologies have often been employed for soil decontamination: phytostabilization, phytodegradation, rhizofiltration, phytoextraction and phytovolatilization. Traditional phytoremediation method presents some limitations regarding their applications at large scale, so the application of genetic engineering approaches such as transgenic transformation, nanoparticles addition and phytoremediation assisted with phytohormones, plant growth-promoting bacteria and AMF inoculation has been applied to ameliorate the efficacy of plants as candidates for HMs decontamination. In this review, aspects of HMs toxicity and their depollution procedures with focus on phytoremediation are discussed. Last, some recent innovative technologies for improving phytoremediation are highlighted.
Collapse
|
34
|
Sharma P, Tripathi S, Chaturvedi P, Chaurasia D, Chandra R. Newly isolated Bacillus sp. PS-6 assisted phytoremediation of heavy metals using Phragmites communis: Potential application in wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 320:124353. [PMID: 33202343 DOI: 10.1016/j.biortech.2020.124353] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
This work aimed to study Bacillus sp. PS-6 assisted phytoremediation of metals from pulp and paper industry wastewater as a novel green technique for the removal of metals of wastewater. Results revealed that heavy metal (mg L-1) contents in wastewater were reduced after in-situ phytoremediation for Fe, Cu, Zn, Cd, Mn, Ni, Pb, and As. Phragmites communis showed higher potential for the enrichment of Fe, Cu, Zn, Cd, Mn, Ni, Pb, and As in its rhizomes, roots, and shoots compared to leaves. The strain produced indole acetic acid, siderophores, and hydrolytic and ligninolytic enzymes, and resulted in nutrients solubilization. Results offer potential basis for the removal of metals from pulp and paper industry wastewater at large scale and prevention of pollution.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow (A Central University) 226025, Uttar Pradesh, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow (A Central University) 226025, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow (A Central University) 226025, Uttar Pradesh, India.
| |
Collapse
|
35
|
Abstract
Biosorption is a variant of sorption techniques in which the sorbent is a material of biological origin. This technique is considered to be low cost and environmentally friendly, and it can be used to remove pollutants from aqueous solutions. The objective of this review is to report on the most significant recent works and most recent advances that have occurred in the last couple of years (2019–2020) in the field of biosorption. Biosorption of metals and organic compounds (dyes, antibiotics and other emerging contaminants) is considered in this review. In addition, the use and possibilities of different forms of biomass (live or dead, modified or immobilized) are also considered.
Collapse
|
36
|
Feng T, He X, Zhuo R, Qiao G, Han X, Qiu W, Chi L, Zhang D, Liu M. Identification and functional characterization of ABCC transporters for Cd tolerance and accumulation in Sedum alfredii Hance. Sci Rep 2020; 10:20928. [PMID: 33262396 PMCID: PMC7708633 DOI: 10.1038/s41598-020-78018-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Cd is one of the potential toxic elements (PTEs) exerting great threats on the environment and living organisms and arising extensive attentions worldwide. Sedum alfredii Hance, a Cd hyperaccumulator, is of great importance in studying the mechanisms of Cd hyperaccumulation and has potentials for phytoremediation. ATP-binding cassette sub-family C (ABCC) belongs to the ABC transporter family, which is deemed to closely associate with multiple physiological processes including cellular homeostasis, metal detoxification, and transport of metabolites. In the present work, ten ABCC proteins were identified in S. alfredii Hance, exhibiting uniform domain structure and divergently clustering with those from Arabidopsis. Tissue-specific expression analysis indicated that some SaABCC genes had significantly higher expression in roots (Sa23221 and Sa88F144), stems (Sa13F200 and Sa14F98) and leaves (Sa13F200). Co-expression network analysis using these five SaABCC genes as hub genes produced two clades harboring different edge genes. Transcriptional expression profiles responsive to Cd illustrated a dramatic elevation of Sa14F190 and Sa18F186 genes. Heterologous expression in a Cd-sensitive yeast cell line, we confirmed the functions of Sa14F190 gene encoding ABCC in Cd accumulation. Our study performed a comprehensive analysis of ABCCs in S. alfredii Hance, firstly mapped their tissue-specific expression patterns responsive to Cd stress, and characterized the roles of Sa14F190 genes in Cd accumulation.
Collapse
Affiliation(s)
- Tongyu Feng
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Xuelian He
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Renying Zhuo
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Guirong Qiao
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Xiaojiao Han
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Wenmin Qiu
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Linfeng Chi
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Mingying Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
| |
Collapse
|
37
|
Duan D, Tong J, Xu Q, Dai L, Ye J, Wu H, Xu C, Shi J. Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115546. [PMID: 32892024 DOI: 10.1016/j.envpol.2020.115546] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Though the interaction between humic acid (HA) and heavy metals has been widely reported, the effects of HA on the toxicity of heavy metals to plants are still in debate. In this study, the regulation mechanisms of HA on Pb stress in tea plant (Camellia sinensis L.) was investigated through hydroponic experiments, and the experimental results were explained by using transmission electron microscope (TEM), scanning transmission X-ray microscopes (STXM) and isobaric tags for relative and absolute quantitation (iTRAQ) differential proteomics. Significant alleviation of Pb stress was found with HA coexistence. TEM results showed that HA greatly mitigated the damage of cells caused by Pb stress. Compared with sole Pb treatment, the addition of HA increased the contents of pectin and pectic acid in the cell wall by 10.5% and 30.5%, while arabinose (Ara) and galactose (Gal) decreased by 20.5% and 15.9%, respectively, which were beneficial for increasing Pb adsorption capacity of the cell wall and promoting cell elongation. Moreover, iTRAQ differential proteomics analysis proved that HA strengthened the antioxidant system, promoted the synthesis of cell wall, and stabilized protein and sulfur-containing substance metabolism in molecular level. Notably, the concentration of calcium (Ca) in the cell wall of HA coexistence treatment was 47.4% higher than Pb treatment. STXM results also indicated that the distribution of Ca in the cell wall was restored with the presence of HA. This might promote the formation of the egg-box model, thus alleviating Pb stress in cells. Our results reveal the regulation mechanisms of HA on Pb detoxification in plants and provide useful information for improving the safety of agricultural products.
Collapse
Affiliation(s)
- Dechao Duan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Towards Environment Co., Ltd, Hangzhou, 310012, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Luying Dai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; CETHIK Research Institute, Hangzhou, 310012, China
| | - Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Towards Environment Co., Ltd, Hangzhou, 310012, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
38
|
Jin Z, Xie L, Zhang T, Liu L, Black T, Jones KC, Zhang H, Wang X, Jin N, Zhang D. Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114419. [PMID: 32220774 DOI: 10.1016/j.envpol.2020.114419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Fungi-associated phytoremediation is an environmentally friendly and cost-efficient approach to remove potential toxic elements (PTEs) from contaminated soils. Many fungal strains have been reported to possess PTE-biosorption behaviour which benefits phytoremediation performance. Nevertheless, most studies are limited in rich or defined medium, far away from the real-world scenarios where nutrients are deficient. Understanding fungal PTE-biosorption performance and influential factors in soil environment can expand their application potential and is urgently needed. This study applied attenuated total reflection Fourier-transform infrared (ATR-FTIR) coupled with phenotypic microarrays to study the biospectral alterations of a fungal strain Simplicillium chinense QD10 and explore the mechanisms of Cd and Pb biosorption. Both Cd and Pb were efficiently adsorbed by S. chinense QD10 cultivated with 48 different carbon sources and the biosorption efficiency achieved >90%. As the first study using spectroscopic tools to analyse PTE-biosorption by fungal cells in a high-throughput manner, our results indicated that spectral biomarkers associated with phosphor-lipids and proteins (1745 cm-1, 1456 cm-1 and 1396 cm-1) were significantly correlated with Cd biosorption, suggesting the cell wall components of S. chinense QD10 as the primary interactive targets. In contrast, there was no any spectral biomarker associated with Pb biosorption. Addtionally, adsorption isotherms evidenced a Langmuir model for Cd biosorption but a Freundlich model for Pb biosorption. Accordingly, Pb and Cd biosorption by S. chinense QD10 followed discriminating mechanisms, specific adsorption on cell membrane for Cd and unspecific extracellular precipitation for Pb. This work lends new insights into the mechanisms of PTE-biosorption via IR spectrochemical tools, which provide more comprehensive clues for biosorption behaviour with a nondestructive and high-throughput manner solving the traditional technical barrier regarding the real-world scenarios.
Collapse
Affiliation(s)
- Zhongmin Jin
- College of Agriculture, Forestry and Life Science, Qiqihar University, Qiqihar, 161006, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Lin Xie
- College of Agriculture, Forestry and Life Science, Qiqihar University, Qiqihar, 161006, PR China
| | - Tuo Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, PR China
| | - Lijie Liu
- College of Agriculture, Forestry and Life Science, Qiqihar University, Qiqihar, 161006, PR China
| | - Tom Black
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Xinzi Wang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Naifu Jin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
39
|
Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. BIOLOGY 2020; 9:biology9070177. [PMID: 32708065 PMCID: PMC7407403 DOI: 10.3390/biology9070177] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants’ development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.
Collapse
|
40
|
Abstract
Removal of aquatic cadmium ions using biochar is a low-cost method, but the results are usually not satisfactory. Modified biochar, which can be a low-cost and efficient material, is urgently required for Cd-polluted water and soil remediation. Herein, poplar bark (SB) and poplar sawdust (MB) were used as raw materials to prepare modified biochar, which is rich in N- and S- containing groups, i.e., TSBC-600 and TMBC-600, using a co-pyrolysis method with thiourea. The adsorption characteristics of Cd2+ in simulated wastewater were explored. The results indicated that the modification optimized the surface structure of biochar, Cd2+ adsorption process by both TSBC-600 and TMBC-600 was mainly influenced by the initial pH, biochar dosage, and contact time, sthe TSBC-600 showed a higher adsorption capacity compared to TMBC-600 under different conditions. The Langmuir adsorption isotherm model and pseudo-second-order kinetic model were more consistent with the adsorption behavior of TSBC-600 and TMBC-600 to Cd2+, the maximum adsorption capacity of TSBC-600 and TMBC-600 calculated by the Langmuir adsorption isotherm model was 19.998 mg/g and 9.631 mg/g, respectively. The modification method for introducing N and S into biochar by the co-pyrolysis of biomass and thiourea enhanced the removal rate of aquatic cadmium ions by biochar.
Collapse
|