1
|
Asghar A, Lipfert D, Kerpen K, Schmidt TC. Elucidating the inhibitory effects of natural organic matter on the photodegradation of organic micropollutants: Atrazine as a probe compound. CHEMOSPHERE 2024; 352:141390. [PMID: 38325617 DOI: 10.1016/j.chemosphere.2024.141390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Natural organic matter (NOM) is a complex mixture of heterogeneous compounds with varying functional groups and molecular sizes. Understanding the impact of NOM on the generation of photochemically produced reactive intermediates (PPRIs) and their potential inhibitory effects on photolysis has remained challenging due to the variations in the reactivities and concentrations of these functional groups. To address this gap, tannic acid (TA), gallic acid (GA), catechin (CAT), and tryptophan (Trp), were chosen as potential substitutes for NOM. Their effects on the photochemical transformation process were evaluated and compared with the widely used Suwannee River NOM (SRNOM). Atrazine (ATZ) was selected as a probe organic micropollutant (OMP). In this investigation, a significantly higher concentration of HO• was observed compared to O21, and the triplet excited state ( NOM*3). The findings suggest that the substituted phenols, particularly those with carboxylate-substitutions, played a substantial role in HO• formation, while electron-rich moieties acted as antioxidants, consuming NOM*3. Hydroxyl, carboxylic, and amino acid were the active groups for O21 formation. However, the inhibitory effects induced by the NOM surrogates were significant and mainly attributed to the direct photolysis inhibition caused by the inner filter effect. The scope of this work was further extended to include SRNOM, where similar trends with less pronounced formation of PPRIs and inner filter effects were observed. Therefore, this study sheds some light on the role of the functional groups in NOM during photochemical transformations of OMPs, thereby deepening our understanding of their fate in aqueous systems.
Collapse
Affiliation(s)
- Anam Asghar
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany.
| | - Daniel Lipfert
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany
| | - Klaus Kerpen
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Yan J, Brigante M, Mailhot G, Dong W, Wu Y. A comparative study on Fe(III)/H 2O 2 and Fe(III)/S 2O 82- systems modified by catechin for the degradation of atenolol. CHEMOSPHERE 2023; 329:138639. [PMID: 37054842 DOI: 10.1016/j.chemosphere.2023.138639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/15/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The processes of Fe(III) activated persulfate (PS) and H2O2 modified by catechin (CAT) had been shown to be effective in degrading contaminants. In this study, the performance, mechanism, degradation pathways and products toxicity of PS (Fe(III)/PS/CAT) and H2O2 (Fe(III)/H2O2/CAT) systems were compared using atenolol (ATL) as a model contaminant. 91.0% of ATL degradation was reached after 60 min in H2O2 system which was much higher than that in PS system (52.4%) under the same experimental condition. CAT could react directly with H2O2 to produce small amounts of HO• and the degradation efficiency of ATL was proportional to CAT concentration in H2O2 system. However, the optimal CAT concentration was 5 μM in PS system. The performance of H2O2 system was more susceptible to pH than that of PS system. Quenching experiments were conducted indicating that SO4•- and HO• were produced in PS system while HO• and O2•- accounted for ATL degradation in H2O2 system. Seven pathways with nine byproducts and eight pathways with twelve byproducts were put forward in PS and H2O2 systems respectively. Toxicity experiments showed that the inhibition rates of luminescent bacteria were both decreased about 25% after 60 min reaction in two systems. Although the software simulation result showed few intermediate products of both systems were More toxic than ATL, but the amounts of them were 1-2 orders of magnitude lower than ATL. Moreover, the mineralization rates were 16.4% and 19.0% in PS and H2O2 systems respectively.
Collapse
Affiliation(s)
- Jiaying Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yanlin Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Zhang T, Chen Y, Wang T, Liu C, He D, Liu B, Liu Y. Efficient removal of petroleum hydrocarbons from soil by percarbonate with catechin-promoted Fe(III)/Fe(II) redox cycling: Activation of ferrous and roles of ·OH and ·CO 3. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130875. [PMID: 36731317 DOI: 10.1016/j.jhazmat.2023.130875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Advanced oxidation processes are widely used to remove petroleum hydrocarbons from soil, but usually consume large quantities of ferrous and acidify the soil. This study tested an advanced oxidation approach based on percarbonate in laboratory experiments. It removed 88% petroleum hydrocarbons in soil with a pH increase from 8.2 to 10.2. ·OH and ·CO3- were the main reactive species, and degraded 41% and 37% PHCs from soil respectively. The o-dihydroxybenzene structure in catechin was found to reduce ferric to ferrous, and prolong the generation of ·OH from 120 s to over 1800 s. The petroleum hydrocarbons were degraded to intermediates including alkanes and olefins through hydrogen-abstraction by ·OH and ·CO3-, and by dimerization and β-scission of alkyl radicals. These intermediates were then oxidized to CO2 and H2O by ·OH and ·CO3-. The main residual intermediates in the soil were low-molecular-weight n-alkanes and branched alkanes, and they were found to inhibit the growth of oats (Avena sativa L.) much less than the original petroleum hydrocarbons. These findings provide a fundamental basis for designing effective technologies which use percarbonate to remove organic pollutants.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Yuan Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Tao Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Chang Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Dan He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Bin Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Yuanyuan Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Pan Y, Qin R, Hou M, Xue J, Zhou M, Xu L, Zhang Y. The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Xu X, Zhan F, Pan J, Zhou L, Su L, Cen W, Li W, Tian C. Engineering single-atom Fe-Pyridine N 4 sites to boost peroxymonosulfate activation for antibiotic degradation in a wide pH range. CHEMOSPHERE 2022; 294:133735. [PMID: 35085615 DOI: 10.1016/j.chemosphere.2022.133735] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Single-atom Fe catalysts have shown great potential for Fenton-like technology in organic pollutant decomposition. However, the underlying reaction pathway and the identification of Fe active sites capable of activating peroxymonosulfate (PMS) across a wide pH range remain unknown. We presented a novel strategy for deciphering the production of singlet oxygen (1O2) by regulating the Fe active sites in this study. Fe single atoms loaded on nitrogen-doped porous carbon (FeSA-CN) catalysts were synthesized using a cage encapsulation method and compared to Fe-nanoparticle-loaded catalysts. It was discovered that FeSA-CN catalysts served as efficient PMS activators for pollutant decomposition over a wide pH range. Several analytical measurements and density functional theory calculations revealed that the pyridinic N-ligated Fe single atom (Fe-pyridine N4) was involved in the production of 1O2 by the binding of two PMS ions, resulting in an excellent catalytic performance for PMS adsorption/activation. This work has the potential to not only improve the understanding of nonradical reaction pathway but to also provide a generalizable method for producing highly stable PMS activators with high activity for practical wastewater treatment.
Collapse
Affiliation(s)
- Xuyang Xu
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fei Zhan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, PR China; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Pan
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Linghui Su
- Institute of New Energy and Low-Carbon Technology, National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, 610207, PR China
| | - Wanglai Cen
- Institute of New Energy and Low-Carbon Technology, National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, 610207, PR China
| | - Wei Li
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chengcheng Tian
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
6
|
Liu Y, Zhu M, Hu Y, Zhao Y, Zhu C. Photochemical reaction of superoxide radicals with 1-naphthol. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The photochemical reactions between 1-naphthol (1-NP) and the superoxide anion radical (O2•–) were investigated in detail by using 365 nm UV irradiation. The results showed that the conversion rate of 1-NP decreased with the increase of the initial concentration of 1-NP, whereas by increasing the pH and riboflavin concentration, the photochemical reaction was accelerated. The second-order reaction rate constant was estimated to be (3.64 ± 0.17) × 108 L mol−1 s−1. The major photolysis products identified by using gas chromatography – mass spectrometry (GC–MS) were 1,4-naphquinone and 2,3-epoxyresin-2,3-dihydro-1,4-naphquinone, and their reaction pathways were also discussed. An atmospheric model showed that both the bulk water reaction and the heterogeneous surface reaction deserve attention in atmospheric aqueous chemistry.
Collapse
Affiliation(s)
- Ying Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Mengyu Zhu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Yadong Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Yijun Zhao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Chengzhu Zhu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
7
|
Li Y, Shi Y, Huang D, Wu Y, Dong W. Enhanced activation of persulfate by Fe(III) and catechin without light: Reaction kinetics, parameters and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125420. [PMID: 33618272 DOI: 10.1016/j.jhazmat.2021.125420] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
An environmental-friendly plant polyphenol, catechin (CAT), was applied in Fe(III) activated persulfate (PS) system for naproxen (NPX) degradation in this research. Reaction kinetics, parameters, NPX degradation products and reaction mechanism were investigated. Combining the results of quenching experiments as well as Electron Spin Resonance (ESR), it was observed that SO4•- was critical in NPX degradation, and the contribution of HO• was minor in the Fe(III)/CAT/PS system. O2•- was generated during the reaction but did not contribute to NPX degradation. SO4•- and HO• were produced from the PS activation by Fe(II), which was formed from the transient complexing and reduction process between Fe(III) and CAT. The effects of Fe(III), CAT, PS concentration and pH value on NPX degradation were evaluated. Moreover, the mineralization rate was 20.2%, and the toxicity of the treated solution were lower than the initial solution. Nine possible intermediates were determined when using LC-QTOF-MS to analyze, and three degradation pathways were put ward. The results proved that CAT could accelerate the redox cycle of Fe(III)/Fe(II), consequently to strengthen PS activation without light. It was a promising oxidation technology as it offered an energy-saving and hypo-toxic way for refractory organic pollutants treatment, and it was applicable at a comparatively wide pH range.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yahong Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Dingfeng Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yanlin Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
8
|
Dai L, Xu J, Lin J, Wu L, Cai H, Zou J, Ma J. Iodometric spectrophotometric determination of peroxydisulfate in hydroxylamine-involved AOPs: 15 min or 15 s for oxidative coloration? CHEMOSPHERE 2021; 272:128577. [PMID: 34756344 DOI: 10.1016/j.chemosphere.2020.128577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 06/13/2023]
Abstract
In this study, iodometric spectrophotometry, the most-used method for detecting peroxydisulfate (PDS), was modified by increasing the concentration of potassium iodide (KI) for realizing the immediate PDS determination and avoiding the interference of hydroxylamine. Kinetic studies showed that the reaction between PDS and I- to generate the yellow-colored I3- followed the kinetic equation as [Formula: see text] . Detection time of the iodometric spectrophotometry was shortened from 15 min to 15 s when KI concentration was increased from 0.6 M to 4.8 M. Different with the previous iodometric spectrophotometry, the modified method using 4.8 M KI as the indicator was well tolerable to the interference of hydroxylamine at acidic pH conditions. The calibration curve of the modified method showed a well linear relationship (R2 = 0.999) between the absorbance of I3- at 352 nm and PDS concentration in the range of 0-80 μM. The modified method was highly sensitive with the absorptivity of 2.5 × 104 M-1 cm-1 and the limit of detection of 0.11 μM. Moreover, the modified method was successfully applied for monitoring the change of PDS concentration during the degradation of diclofenac with four different PDS-based AOPs, the calculated reaction stoichiometric efficiency (RSE(%)=DiclofenacdegradedPDSconsumed×100%) followed the order as heat/PDS system > hydroxylamine/Fe2+/PDS system > hydroxylamine/Cu2+/PDS system > Fe2+/PDS system.
Collapse
Affiliation(s)
- Lin Dai
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Jiaxin Xu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Jinbin Lin
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Lingbin Wu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Huahua Cai
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jing Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| |
Collapse
|
9
|
Abstract
Photo-induced Advanced Oxidation Processes (AOPs) using H2O2 or S2O82− as radical precursors were assessed for the abatement of six different contaminants of emerging concern (CECs). In order to increase the efficiency of these AOPs at a wider pH range, the catechol organic functional compound was studied as a potential assistant in photo-driven iron-based processes. Different salinity regimes were also studied (in terms of Cl− concentration), namely low salt water (1 g·L−1) or a salt–water (30 g·L−1) matrix. Results obtained revealed that the presence of catechol could efficiently assist the photo-Fenton system and partly promote the photo-induced S2O82− system, which was highly dependent on salinity. Regarding the behavior of individual CECs, the photo-Fenton reaction was able to enhance the degradation of all six CECs, meanwhile the S2O82−-based process showed a moderate enhancement for acetaminophen, amoxicillin or clofibric acid. Finally, a response-surface methodology was employed to determine the effect of pH and catechol concentration on the different photo-driven processes. Catechol was removed during the degradation process. According to the results obtained, the presence of catechol in organic macromolecules can bring some advantages in water treatment for either freshwater (wastewater) or seawater (maritime or aquaculture industry).
Collapse
|
10
|
Miao D, Zhao S, Zhu K, Zhang P, Wang T, Jia H, Sun H. Activation of persulfate and removal of ethyl-parathion from soil: Effect of microwave irradiation. CHEMOSPHERE 2020; 253:126679. [PMID: 32283425 DOI: 10.1016/j.chemosphere.2020.126679] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Advanced persulfate oxidation technology is widely used in organic pollution control of super fund sites. In recent years, microwave radiation has been proven a promising method for persulfate activation. However, most of the prior works were focused on the treatment of polluted water, but there are few reports aiming at contaminated sites, especially the knowledge of using microwave activated persulfate technology to repair pesticide-contaminated sites. In this study, an effective activation/oxidation method for the remediation of pesticide-contaminated soil, i.e., microwave/persulfate, was developed to treat soil containing ethyl-parathion. The concentration of persulfate, reaction temperature, and time were optimised. The results showed that up to 77.32% of ethyl-parathion was removed with the addition of 0.1 mmol·persulfate·g-1 soil under the microwave temperature of 60 °C. In comparison, 19.43% of ethyl-parathion was removed at the same reaction temperature under the condition of water bath activated persulfate. Electron paramagnetic resonance (EPR) spectroscopy combined with spin-trapping technology was used to detect reactive oxidation species, and OH and SO4- were observed in the microwave/persulfate system. Quenching experiments suggested that ethyl-parathion was degraded by the generated OH and SO4-. Paraoxon, phenylphosphoric acid, 4-nitrophenol, dimethyl ester phosphate, and some alkanes were the dominant oxidative products identified by gas chromatography-mass spectrometry (GC-MS) analysis. A possible pathway for ethyl-parathion degradation was proposed in this study. The results obtained serve as the guidance to the development of remediation technologies involving persulfate and microwave for soil contaminated by organic contaminants such as pesticides.
Collapse
Affiliation(s)
- Duo Miao
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Song Zhao
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Kecheng Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Peng Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Tiecheng Wang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China.
| | - Hongwen Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|