1
|
Malaie S, Pourakbar L, Siavash Moghaddam S, Xiao J, Khezrnejad N. Phytoremediation of mercury-contaminated Soil by Vigna radiata L. plant in companion with bacterial and fungal biofertilizers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55549-55561. [PMID: 39231843 DOI: 10.1007/s11356-024-34910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mercury is one of the most toxic pollutants that has drawn the attention of scientists. This study investigates the phytoremediation capabilities of Vigna radiata L. in conjunction with microbial biostimulators. The inoculated seeds were cultivated in soil under controlled greenhouse conditions. The concentration of Hg, biomass, and photosynthetic pigments was investigated under amendment factor including EDTA, bacterial, fungal (Mycorrhiza and Trichoderma), biochar, and combined levels, as well as the pollution factor with three levels of HgCl2 as two factorial experiments. Results showed that Plant Growth-Promoting Microorganisms (PGPMs) influenced mercury absorption and distribution in different plant organs. Aside from biochar, all stimulators increased the plant's Hg concentration. Although EDTA greatly increased mercury accumulation in plants, it reduced biomass. Fungal and bacterial treatments increased total mercury in the plant but decreased its concentration in the leaves. The combination of bacteria and fungi resulted in the highest mercury absorption, while the biochar in combination with PGPMs produced the greatest biomass. Analysis of mercury concentration in seeds indicated that V radiata effectively prevented its contamination in seeds. The results disclosed that microbial combinations of bacteria and fungi could increase the plant's potential to cope with heavy metal pollution. This improvement is due to the different roles of these two organisms, like nitrogen fixation by bacteria and phosphorus absorption by mycorrhiza fungi. Moreover, biochar as a soil amendment and microorganism carrier was noticed. Finally, considering the plant's inherent capacity to stabilize mercury in the roots, phytostabilization with the benefit of combined levels of biochar and microorganisms can be introduced as the best approach.
Collapse
Affiliation(s)
- Shirwan Malaie
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran
| | - Latifeh Pourakbar
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran.
| | - Sina Siavash Moghaddam
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Nabi Khezrnejad
- Department of Plant Protection, Mahabad Branch, Islamic Azad University, Mahabad, Iran
| |
Collapse
|
2
|
Lu J, Li Y, Wang B, Hou B, Du G, Si H. Analysis of the adsorption and fixation process of ammonium nitrogen in arable soil by biochar based on molecular dynamics simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172815. [PMID: 38679089 DOI: 10.1016/j.scitotenv.2024.172815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The ammonia nitrogen in arable land soil is susceptible to environmental and anthropogenic influences, leading to nutrient loss. This study utilized indoor soil column leaching experiments, combined with adsorption mathematical models, traditional characterization methods, and molecular dynamics simulation methods, to analyze the effects of biochar on changes in ammonium ions in different soil layers and leachate of arable land soil. The study found that applying biochar at a ratio of 10 % to arable land soil could effectively increase the ammonium ion content in the 0-10 cm soil layer by 1.57-2.36 times and reduce loss by 44.83-72.27 %. The adsorption and fixation process of biochar is controlled by electrostatic attraction and ion exchange processes. Interactions between molecules, electrostatic forces, and system internal energy also have certain effects on the process. Near the structure of C6H12O6, there are low-energy adsorption sites for ammonium ions, which can provide the energy required for electrostatic attraction. Structures such as C5H10O5, C-S-H, C-SO3, and C4H7NO4 respectively play roles in physical adsorption or chemical adsorption through displacement reactions, electron exchange, and other forms. The adsorption free energy is -394,590.84 kcal/mol, indicating stable adsorption and a process that tends to interact with the biochar surface. This study addresses issues such as the easy loss of ammonia nitrogen in arable land soil and the unclear adsorption mechanism of biochar on ammonium ions, providing a theoretical basis for the field of environmental science.
Collapse
Affiliation(s)
- Jikai Lu
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China
| | - Yan Li
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China.
| | - Bing Wang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Bingyan Hou
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China
| | - Guotai Du
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China
| | - Hongyu Si
- Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan 250014, Shandong, China.
| |
Collapse
|
3
|
Shabir R, Li Y, Megharaj M, Chen C. Biopolymer as an additive for effective biochar-based rhizobial inoculant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169263. [PMID: 38092216 DOI: 10.1016/j.scitotenv.2023.169263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Biochar is an efficient and inexpensive carrier for bacteria that stimulate plant development and growth. In this study, different biopolymer additives (cellulose, xanthan gum, chitin and tryptone) were tested with different addition ratios (1:0.1, 1:0.5 and 1:1) on further enhancing biochar capacity for supporting the growth and activity of Bradyrhizobium japonicum (CB1809). We utilized pine wood biochar (PWBC) pyrolyzed at 400 °C as the base inoculum carrier. The shelf life and survival rate of CB1809 were counted using the colony-forming unit (CFU) method for up to 120 days. Peat served as a standard reference material against which all treatments were compared. Subsequent experiments evaluated the ability of carrier inoculants to promote Glycine max L. (soybean) plant growth and nodulation under different watering regimes, i.e., 55 % water holding capacity (WHC) (D0), 30 % WHC (D1) and, 15 % WHC (D2) using sandy loam soil. Results revealed that among different additives; xanthan gum with 1:0.5 to PWBC [PWBC-xanthan gum(1:0.5)] was observed as a superior formulation in supporting rhizobial shelf life and survival rate of CB1809. In pot experiments, plants with PWBC-xanthan gum(1:0.5) formulation showed significant increase in various physiological characteristics (nitrogenase activity, chlorophyll pigments, membrane stability index, and relative water content), root architecture (root surface area, root average diameter, root volume, root tips, root forks and root crossings), and plant growth attributes (shoot/root dry biomass, shoot/root length, and number of nodules). Additionally, a reduced enrichment of isotopic signatures (δ13C, δ15N) was observed in plants treated with PWBC-xanthan gum(1:0.5), less enrichment of δ15N indicates an inverse link to nodulation and nitrogenase activity, while lower δ13C values indicates effective water use efficiency by plants during drought stress. These results suggest that biopolymers supplementation of the PWBC is useful in promoting shelf life or survival rate of CB1809.
Collapse
Affiliation(s)
- Rahat Shabir
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yantao Li
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mallavarapu Megharaj
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Chengrong Chen
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
4
|
Chen X, Jiang SF, Hu ZY, Chen S, Jiang H. Biotoxicity attenuation and the underlying physicochemical mechanism of biochar aged under simulated natural environmental conditions. CHEMOSPHERE 2024; 350:141029. [PMID: 38159735 DOI: 10.1016/j.chemosphere.2023.141029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Biochar (BC), with the benefits of enhancing soil fertility, absorbing heavy metals, carbon sequestration, and mitigating the greenhouse effect, has been extensively used for soil remediation. However, the long-term changes in the biotoxicity of BC under complex environmental conditions, which are the key factors influencing the sustainable application of BC in soil, are still unclear. Herein, the biotoxicity of BC aged with various processes, including dry‒wet cycle (DW) aging, freeze‒thaw cycle (FT) aging, ultraviolet irradiation (UV) aging, and low molecular weight organic acid (OA) aging, was systematically investigated by Escherichia coli (E. coli) culture experiments. The toxicity attenuation rate (%·week-1) was proposed to more concisely and clearly compare the influence of different aging methods on BC toxicity. The results indicated that after 5 weeks of aging, the toxicity attenuation rate during the four aging modes followed the order OA aging > FT aging > UV aging > DW aging. BC was nontoxic after 1 week of OA aging, 4 weeks of FT aging, 7 weeks of UV aging, and 14 weeks of DW aging. Spectroscopic characterizations revealed that humic acids in the dissolved organic matter of BC were the main reason for the biotoxicity. In addition, the attenuation of environmentally persistent free radicals on BC during aging was also an important factor for reducing environmental toxicity. This work provides insight into the detoxification mechanism of the BC aging process under ordinary environmental conditions and guidance for the safe application of BC in soil.
Collapse
Affiliation(s)
- Xia Chen
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shun-Feng Jiang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Zi-Ying Hu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shuo Chen
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Xiu L, Gu W, Sun Y, Wu D, Wang Y, Zhang H, Zhang W, Chen W. The fate and supply capacity of potassium in biochar used in agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165969. [PMID: 37541494 DOI: 10.1016/j.scitotenv.2023.165969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/07/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
We used chemical extraction, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) to study the potassium (K) in biochar prepared from corn straw at different temperatures (300 °C, 500 °C, 700 °C and 900 °C). The characteristics of biochar were analyzed through Fourier transform infrared spectroscopy (FTIR) and specific surface area analysis. We found that the potassium in biochar can be divided into water soluble potassium, exchangeable potassium, non-exchangeable potassium, and insoluble potassium according to the availability of agricultural potassium. The fate of potassium in straw changed as follows: with increasing pyrolysis temperature, the proportion of the sum of exchangeable and non-exchangeable potassium decreased, and the proportions of insoluble and lost potassium increased. The total, water soluble and exchangeable potassium contents in biochar were highest at 700 °C. The non-exchangeable and insoluble potassium contents were highest at 300 °C and 900 °C, respectively. Kinetics experiments were conducted to determine the different fates of potassium released from biochar at different temperatures; pot experiments were also undertaken. The release of different forms of potassium in biochar at different temperatures is mainly dominated by heterogeneous diffusion. Biochar increased not only the content of different forms of potassium in soil but also the potassium content of soybean stems and leaves. We calculated the potassium supply capacity of biochar by two strategies, measurements of the potassium content in biochar and the conversion rate of potassium in straw during pyrolysis. The most active and efficient potassium supply capacities were 33.60 g·kg-1 and 9.53 g·kg-1 at 700 °C and 300 °C, respectively. Biochar provides readily available (water soluble and exchangeable) potassium and a long-term (non-exchangeable) potassium supply to soil.
Collapse
Affiliation(s)
- Liqun Xiu
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenqi Gu
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Sun
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Di Wu
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuning Wang
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Honggui Zhang
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiming Zhang
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
| | - Wenfu Chen
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
6
|
Xu M, Sun Q, Liu Q, He G, Wang C, He K. Biochar Decreases Fertilizer Leaching and Promotes Miscanthus Growth in Saline-Alkaline Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3649. [PMID: 37896112 PMCID: PMC10609680 DOI: 10.3390/plants12203649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Biochar has been widely reported to improve soil conditions and affect plant growth. However, its effectiveness is limited by soil type and production technology. Considering the application effect of biochar in saline alkali soil, there is currently a lack of in-depth mechanism explanations in the research. Therefore, we designed an experiment to explore the effect of biochar on plant growth in saline alkali soil and conducted soil column experiments in a greenhouse environment using composite inorganic fertilizer (NPK). The results showed that biochar significantly affected the distribution of soil nutrient content at different depths, with a significant increase in fertility levels in the surface and middle layers and a decrease in fertility levels in deep soils. Compared to using fertilizers alone, the combined use of biochar and fertilizers further expands the enrichment effect and significantly reduces the leaching of fertilizers into deeper layers. At the same time, the application of biochar also improved soil properties, including an increase in electrical conductivity and organic matter content, as well as an increase in soil enzyme activity. On the other hand, the application of biochar also increases the activity of antioxidant enzymes and the content of osmoregulation substances in plants, reducing the environmental stress that plants are subjected to. Therefore, our results indicate that biochar can reduce the leaching of fertilizers into deep soil layers, improve soil properties, and promotes the growth of Miscanthus in saline alkali soils.
Collapse
Affiliation(s)
- Manlin Xu
- Shandong Peanut Research Institute, Qingdao 266100, China; (M.X.); (Q.S.)
| | - Qiqi Sun
- Shandong Peanut Research Institute, Qingdao 266100, China; (M.X.); (Q.S.)
| | - Qiangbo Liu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China;
| | - Guo He
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, China;
| | - Congpeng Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China;
| | - Kang He
- Shandong Peanut Research Institute, Qingdao 266100, China; (M.X.); (Q.S.)
| |
Collapse
|
7
|
Kumari R, Suman K, Karmakar S, Mishra V, Lakra SG, Saurav GK, Mahto BK. Regulation and safety measures for nanotechnology-based agri-products. Front Genome Ed 2023; 5:1200987. [PMID: 37415849 PMCID: PMC10320728 DOI: 10.3389/fgeed.2023.1200987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
There is a wide range of application for nanotechnology in agriculture, including fertilizers, aquaculture, irrigation, water filtration, animal feed, animal vaccines, food processing, and packaging. In recent decades, nanotechnology emerged as a prospective and promising approach for the advancement of Agri-sector such as pest/disease prevention, fertilizers, agrochemicals, biofertilizers, bio-stimulants, post-harvest storage, pheromones-, and nutrient-delivery, and genetic manipulation in plants for crop improvement by using nanomaterial as a carrier system. Exponential increase in global population has enhanced food demand, so to fulfil the demand markets already included nano-based product likewise nano-encapsulated nutrients/agrochemicals, antimicrobial and packaging of food. For the approval of nano-based product, applicants for a marketing approval must show that such novel items can be used safely without endangering the consumer and environment. Several nations throughout the world have been actively looking at whether their regulatory frameworks are suitable for handling nanotechnologies. As a result, many techniques to regulate nano-based products in agriculture, feed, and food have been used. Here, we have contextualized different regulatory measures of several countries for nano-based products in agriculture, from feed to food, including guidance and legislation for safety assessment worldwide.
Collapse
Affiliation(s)
- Ritika Kumari
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| | - Kalpana Suman
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, India
- Department of Environmental Studies, Ram Lal Anand College, University of Delhi, Delhi, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, India
| | | | - Gunjan Kumar Saurav
- Department of Zoology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Binod Kumar Mahto
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| |
Collapse
|
8
|
Cheng J, Zhang J, Xiao X, Yuan Y, Liao X, Shi B, Zhang S. Potassium assisted pyrolysis of Chinese Baijiu distillers' grains to prepare biochar as controlled-release K fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163814. [PMID: 37121329 DOI: 10.1016/j.scitotenv.2023.163814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
A novel K-loaded biochar as controlled-release K fertilizer was prepared through K assisted pyrolysis of distillers' grains (DGs, typical solid-byproducts of Chinese Baijiu) under different atmospheres (N2 and CO2) and temperatures (400 and 800 °C). The fabricated DGs-based biochar exhibited high K loading (200.20-232.33 mg/g), and the release kinetics and column leaching experiments suggested that K-loaded biochar exhibited excellent controlled release performance in a long term. Compared with other biochar, the K-loaded biochar prepared at CO2 and 400 °C has lower cumulative release ratio of 82.35 %, and could retain the durative K release at ~0.5 % for 25 d. The release kinetics suggested that the K release behavior was dominated by dissolution, electrostatic attraction, adsorption, confinement effect, and chemical interaction. Furthermore, pot experiments revealed that K-loaded biochar could promote the growth of Komatsuna, in which the fresh weight and chlorophyll relative content of Komatsuna cultivated with biochar prepared at CO2 and 400 °C reached 0.146 g and 41.95 after 25 d growth, respectively. The above results suggested that the K-loaded biochar exhibited excellent utilization potential as a controlled-release K fertilizer, facilitating the sustainable development and resource valorization of Baijiu industry.
Collapse
Affiliation(s)
- Jiali Cheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiaming Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiao Xiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xuepin Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Suyi Zhang
- Luzhou Laojiao Group Co., Ltd., Luzhou 646000, China
| |
Collapse
|
9
|
Chakraborty R, Mukhopadhyay A, Paul S, Sarkar S, Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160859. [PMID: 36526196 DOI: 10.1016/j.scitotenv.2022.160859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Fertilizers are indispensable agri-inputs to accomplish the growing food demand. The injudicious use of conventional fertilizer products has resulted in several environmental and human health complications. To mitigate these problems, nanocomposite-based fertilizers are viable alternative options. Nanocomposites, a novel class of materials having improved mechanical strength, barrier properties, and mechanical and thermal stability, are suitable candidates to develop eco-friendly slow/controlled release fertilizer formulations. In this review, the use of different nanocomposite materials developed for nutrient management in agriculture has been summarized with a major focus on their synthesis and characterization techniques, and application aspects in plant nutrition, along with addressing constraints and future opportunities of this domain. Further detailed studies on nanocomposite-based fertilizers are required to evaluate the cost-effective synthesis methods, in-depth field efficacy, environmental fate, stability, etc. before commercialization in the field of agriculture. The present review is expected to help the policy makers and all the stakeholders in the large-scale commercialization and application of nanocomposite-based smart fertilizer products with greater societal acceptance and environmental sustainability in near future.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Arkadeb Mukhopadhyay
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhadip Paul
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhasis Sarkar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
10
|
Zhao Z, Wang B, Feng Q, Chen M, Zhang X, Zhao R. Recovery of nitrogen and phosphorus in wastewater by red mud-modified biochar and its potential application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160289. [PMID: 36414073 DOI: 10.1016/j.scitotenv.2022.160289] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
A large amount of wastewater containing nitrogen, phosphorus, and fluorine produces in the production of phosphate fertilizer. In this study, to simultaneously recover nitrogen and phosphorus from phosphorus-containing wastewater and realize the resource utilization of red mud and rape straw, red mud-modified rape straw biochar (RM/RSBC) was prepared by facile one step, and the physicochemical properties were characterized by Zeta potential, SEM-EDS, BET specific surface area (SSA), FTIR, XRD, and XPS. The adsorption performance and mechanisms of ammonium and phosphate onto RM/RSBC were explored through static, fixed-bed column adsorption, and practical wastewater experiments. The results showed that pH = 3.0 and 8.0 were favorable for the removal of phosphate and ammonium, respectively. The main adsorption mechanisms of ammonium and phosphate were the interaction between ammonium and surface functional groups and surface precipitation, respectively. The removal efficiencies of ammonium and phosphate by fixed-bed column adsorption mainly depended on the addition amount of RM/RSBC, the concentration of ammonium and phosphate, and the flow rate. The results of the germination experiment showed that adding > 0.5 wt% of RM/RSBC loaded with ammonium and phosphate promoted the growth of mung beans. This study shows that RM/RSBC can not only recover ammonium and phosphate in wastewater, but also realize the resource utilization of red mud and rape straw.
Collapse
Affiliation(s)
- Zhipeng Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xueyang Zhang
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Ruohan Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Li J, Ali A, Su J, Huang T, Zhai Z, Xu L. Synergistic removal of nitrate by a cellulose-degrading and denitrifying strain through iron loaded corn cobs filled biofilm reactor at low C/N ratio: Capability, enhancement and microbiome analysis. BIORESOURCE TECHNOLOGY 2023; 369:128433. [PMID: 36473584 DOI: 10.1016/j.biortech.2022.128433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Optimization of nitrate removal rate under low carbon-to-nitrogen ratio has always been one of the research hotspots. Biofilm reactor based on functional carrier and using interspecific synergic effect of strains provides an insight. In this study, iron-loaded corn cob was used as a functional carrier that can contribute to the cellulose degradation, iron cycling, and collaborative denitrification process of microorganisms. During biofilm reactor operation, the maximum nitrate removal efficiency was 99.30% and could reach 81.73% at no carbon source. Dissolved organic carbon and carrier characterization showed that strain ZY7 promoted the release of carbon source. The crystallinity of cellulose I and II in carrier of experimental group increased by 31.26% and decreased by 21.83%, respectively, in comparison to the control group. Microbial community showed the synergistic effect among different strains. The vitality and metabolic activity of the target microorganisms in bioreactor were increased through interspecific bacterial cooperation.
Collapse
Affiliation(s)
- Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenyu Zhai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
12
|
Chen W, Wu Z, Liu C, Zhang Z, Liu X. Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt, and promote radish growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114509. [PMID: 36621032 DOI: 10.1016/j.ecoenv.2023.114509] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Bacillus subtilis as microbial fertilizers contribute to avoiding the harmful effects of traditional agricultural fertilizers and pesticides. However, there are many restrictions on the practical application of fertilizers. In this study, microbial biochar formulations (BCMs) were prepared by loading biochar with B. subtilis SL-44. Pot experiments were conducted to evaluate the effects of the BCMs on soil fertility, Fusarium wilt control, and radish plant growth. The application of BCMs dramatically improved soil properties and favored plant growth. Compared with SL-44 and biochar treatments, the BCMs treatments increased radish plant physical-chemical properties and activities of several enzymes in the soil. What's more, Fusarium wilt incidence had decreased by 59.88%. In addition, the BCMs treatments exhibited a significant increase in the abundance of bacterial genera in the rhizosphere soil of radish. Therefore, this study demonstrated that BCMs may be an eco-friendly strategy for improving soil fertility, reducing Fusarium wilt, and promoting radish plant growth.
Collapse
Affiliation(s)
- Wumei Chen
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| | - Changhao Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Ziyan Zhang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| |
Collapse
|
13
|
Shabir R, Li Y, Zhang L, Chen C. Biochar surface properties and chemical composition determine the rhizobial survival rate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116594. [PMID: 36347218 DOI: 10.1016/j.jenvman.2022.116594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Biochar may be potentially used as a rhizobial carrier due to its specific chemical compositions and surface properties, but the relationship between these properties and rhizobial survival rate is largely unknown. Here, we analysed the physicochemical characteristics and carrier potential of six types of biochars made from various feedstocks at 600 °C using slow pyrolysis method, and results were compared with conventional carrier material peat. Liquid suspension of Bradyrhziobium japonicum CB1809 was used to inoculate all the carrier materials. Shelf life and survival rate was determined via colony forming unit (CFU) method for up to 90 days under two storage temperature conditions (28 °C and 38 °C). The determined physicochemical characteristics of biochars were categorized into major elements, trace elements, relative ratios, surface morphology, functional groups, and key basic properties; and their interaction to shelf life was analysed using hypothesis-oriented structure equation modelling (path analysis). Results revealed that different types of biochars had different capacity to impact on shelf life due to their different physicochemical properties. Among all biochars pine wood BC was the most suitable carrier with the highest counts of 10.11 Log 10 CFU g-1 and 9.76 Log 10 CFU g-1 at the end of 90 days at 28 °C and 38 °C storage, respectively. Path analysis revealed that rhizobial shelf life was largely explained by total carbon (TC), manganese (Mn), specific surface area (SSA), pore size, CO (ketonic carbon), and O-CO (carboxyl carbon) functional groups, and all these indicators exhibited positive direct impact on shelf life. Pinewood BC showed the highest values of Mn, SSA, pore size and functional groups (CO and O-CO), contributing to its highest rhizobial shelf life and survival rate among other biochars and peat tested.
Collapse
Affiliation(s)
- Rahat Shabir
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yantao Li
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Leiyi Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
14
|
Chen Y, Hassan M, Nuruzzaman M, Zhang H, Naidu R, Liu Y, Wang L. Iron-modified biochar derived from sugarcane bagasse for adequate removal of aqueous imidacloprid: sorption mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4754-4768. [PMID: 35974268 PMCID: PMC9892118 DOI: 10.1007/s11356-022-22357-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/28/2022] [Indexed: 06/05/2023]
Abstract
Adsorption has been considered as a promising remediation technology to separate organic and inorganic agrochemicals from contaminated soil and water. Low-cost adsorbents, including waste derived materials, clay composites, biochar, and biochar modified materials, have attracted enormous attention for the removal of organic contaminants, including pesticides. In this study, iron-modified base-activated biochar (FeBBC) was prepared by pyrolysis (at 400 °C for 1 h) of iron-doped base (KOH) activated sugarcane bagasse for the removal of a widely used insecticide, namely imidacloprid (IMI) from water. The maximum adsorption capacity of the adsorbent (FeBBC) was calculated as 10.33 (± 1.57) mg/g from Langmuir isotherm model. The adsorbents could remove up to ~ 92% of IMI from aqueous solution at 23.8 mg/L IMI. Experimental data fitted well with the Freundlich model and pseudo-second-order model, demonstrating physisorption, as well as chemosorption, contributed to the sorption process. Even at highly acidic/basic solution pH, the FeBBC could remove substantial amount of IMI demonstrating hydrophobic interaction and pore diffusion play vital role for removal of IMI. The slight improving of IMI sorption with increasing solution pH indicated the sorption was also facilitated through ionic interaction alongside physical sorption. However, physical sorption including hydrophobic interaction and pore-filling interaction plays a vital role in the sorption of IMI.
Collapse
Affiliation(s)
- Yongliang Chen
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Masud Hassan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
| | - Md Nuruzzaman
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
- Cooperative Research Centre for High Performance Soil (CRC SOIL), IDB Building, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Huiming Zhang
- Electron Microscope and X-Ray (EMX) Unit, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
- Cooperative Research Centre for High Performance Soil (CRC SOIL), IDB Building, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Ling Wang
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, Fu Y, He C, Muhoza B, Brahushi F, Bolan N, Jiang X, Ok YS, Rinklebe J, Schaeffer A, Zhu YG, Tiedje JM, Xing B. Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16546-16566. [PMID: 36301703 PMCID: PMC9730858 DOI: 10.1021/acs.est.2c02976] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 05/06/2023]
Abstract
The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field. Plant-microbe interactions further promote the efficacy of phytoremediation, with plant growth-promoting bacteria (PGPB) often used to assist the remediation of organic pollutants. However, the efficiency of microbe-assisted phytoremediation can be impeded by (i) high concentrations of secondary toxins, (ii) the absence of a suitable sink for these toxins, (iii) nutrient limitations, (iv) the lack of continued release of microbial inocula, and (v) the lack of shelter or porous habitats for planktonic organisms. In this regard, biochar affords unparalleled positive attributes that make it a suitable bacterial carrier and soil health enhancer. We propose that several barriers can be overcome by integrating plants, PGPB, and biochar for the remediation of organic pollutants in soil. Here, we explore the mechanisms by which biochar and PGPB can assist plants in the remediation of organic pollutants in soils, and thereby improve soil health. We analyze the cost-effectiveness, feasibility, life cycle, and practicality of this integration for sustainable restoration and management of soil.
Collapse
Affiliation(s)
- Leilei Xiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
| | - Marc Redmile-Gordon
- Department
of Environmental Horticulture, Royal Horticultural
Society, Wisley, Surrey GU23 6QB, U.K.
| | - Scott X. Chang
- Department
of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yuhao Fu
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Zhejiang University, Hangzhou 310058, China
| | - Bertrand Muhoza
- College
of Food Science, Northeast Agricultural
University, Harbin, Heilongjiang 150030, China
| | - Ferdi Brahushi
- Department
of Agroenvironment and Ecology, Agricultural
University of Tirana, Tirana 1029, Albania
| | - Nanthi Bolan
- School of
Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Xin Jiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sik Ok
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic
of Korea
| | - Jörg Rinklebe
- Department
of Soil and Groundwater Management, Bergische
Universität, 42285 Wuppertal, Germany
| | - Andreas Schaeffer
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
- School
of the Environment, State Key Laboratory of Pollution Control and
Resource Reuse, Nanjing University, 210023 Nanjing, China
- Key
Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Chongqing University, 400045 Chongqing, China
| | - Yong-guan Zhu
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Key
Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State
Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| | - James M. Tiedje
- Center
for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Lu J, Luo Y, Huang J, Hou B, Wang B, Ogino K, Zhao J, Si H. The effect of biochar on the migration theory of nutrient ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157262. [PMID: 35820527 DOI: 10.1016/j.scitotenv.2022.157262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
As the acidification of arable soils increases, the utilization of nutrient ions such as N, P, and K decreases substantially. It causes environmental pollution and reduces crop yields. Through previous studies, acidified soil amendments have problems such as easy-retrograde and unclear mechanism. Therefore, in this study, biochar prepared by pyrolysis using peanut shells was used as a green amendment for acidified soil. Biochar with 0, 5 and 10 % biochar ratios were applied to the acidified soil, and the improvement and mechanism were investigated via experiments and software simulations. Analysis of the software simulation results revealed that biochar had the highest unit adsorption of K+ through physical adsorption at 820.38 mg/g. This was followed by PO43-, NO3-, and NH4+ as 270.51, 235.65 and 130.93 mg/g, respectively. These ions were controlled by both electrostatic and ion-exchange adsorption processes. During the improvement, the 10 % biochar ratio group performed the best with a 65.32 % reduction in the outlet volume, and the accumulated levels of nutrient ions in the leachate dropped by 48.40-68.28 % and increased by 437.80-913.87 % in the surface soil. Nutrient ion levels decreased gradually with the increase of soil depth, which agreed with the software simulation results. This study found that applying biochar to acidified soils can provide a solution to low nutrient utilization efficiency and unclear improvement mechanism of acidified soils, and provide a partial theoretical basis for the large-scale application of biochar. Future research on biochar for soil carbon sink and microbial expansion can be strengthened to contribute to environmental protection and multi-level utilization of energy.
Collapse
Affiliation(s)
- Jikai Lu
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China; Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan 250014, Shandong, China
| | - Yina Luo
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China
| | - Junlin Huang
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China
| | - Bingyan Hou
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China
| | - Bing Wang
- Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan 250014, Shandong, China; Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan.
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Jian Zhao
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, China.
| | - Hongyu Si
- Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan 250014, Shandong, China.
| |
Collapse
|
17
|
Marmiroli M, Caldara M, Pantalone S, Malcevschi A, Maestri E, Keller AA, Marmiroli N. Building a risk matrix for the safety assessment of wood derived biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156265. [PMID: 35643132 DOI: 10.1016/j.scitotenv.2022.156265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Biochar is recognized as an efficient amendment and soil improver. However, environmental and quality assessments are needed to ensure the sustainability of its use in agriculture. This work considers the biochar's chemical-physical characterization and its potential phyto- and geno-toxicity, assessed with germination and Ames tests, obtaining valuable information for a safe field application. Three biochar types, obtained from gasification at different temperatures of green biomasses from the Tuscan-Emilian Apennines (in Italy), were compared through a broad chemical, physical and biological evaluation. The results obtained showed the relevance of temperature in determining the chemical and morphological properties of biochar, which was shown with several analytical techniques such as the elemental composition, water holding capacity, ash content, but also with FTIR and X-ray spectroscopies. These techniques showed the presence of different relevant surface aliphatic and aromatic groups. The procedures for evaluating the potential toxicity using seeds germination and Ames genotoxicity assay highlights that biochar does not cause detrimental effects when it enters in contact with soil, micro- and macro-organisms, and plants. The genotoxicity test provided a new highlight in evaluating biochar environmental safety.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Serena Pantalone
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Alessio Malcevschi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106-5131, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy.
| |
Collapse
|
18
|
Mukherjee S, Sarkar B, Aralappanavar VK, Mukhopadhyay R, Basak BB, Srivastava P, Marchut-Mikołajczyk O, Bhatnagar A, Semple KT, Bolan N. Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119609. [PMID: 35700879 DOI: 10.1016/j.envpol.2022.119609] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Numerous harmful chemicals are introduced every year in the environment through anthropogenic and geological activities raising global concerns of their ecotoxicological effects and decontamination strategies. Biochar technology has been recognized as an important pillar for recycling of biomass, contributing to the carbon capture and bioenergy industries, and remediation of contaminated soil, sediments and water. This paper aims to critically review the application potential of biochar with a special focus on the synergistic and antagonistic effects on contaminant-degrading microorganisms in single and mixed-contaminated systems. Owing to the high specific surface area, porous structure, and compatible surface chemistry, biochar can support the proliferation and activity of contaminant-degrading microorganisms. A combination of biochar and microorganisms to remove a variety of contaminants has gained popularity in recent years alongside traditional chemical and physical remediation technologies. The microbial compatibility of biochar can be improved by optimizing the surface parameters so that toxic pollutant release is minimized, biofilm formation is encouraged, and microbial populations are enhanced. Biocompatible biochar thus shows potential in the bioremediation of organic contaminants by harboring microbial populations, releasing contaminant-degrading enzymes, and protecting beneficial microorganisms from immediate toxicity of surrounding contaminants. This review recommends that biochar-microorganism co-deployment holds a great potential for the removal of contaminants thereby reducing the risk of organic contaminants to human and environmental health.
Collapse
Affiliation(s)
- Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | | | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, India
| | - B B Basak
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387310, India
| | | | - Olga Marchut-Mikołajczyk
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Ul. Stefanowskiego 2/22, 90-537, Łódź, Poland
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI-50130, Finland
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
19
|
Experiment and Model Study on the Destination of 3,5,6-Trichloro-2-pyridinol in the Purple Soil of Southwestern China with a High Ratio of Biochar Applied. SUSTAINABILITY 2022. [DOI: 10.3390/su14148712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
3,5,6-Trichloro-2-pyridinol (TCP), the main degradation production of the pesticide chlorpyrifos and the herbicide triclopyr, features anti-degradation and high water solubility that challenge the in situ prevention of the migration of TCP from soils to water bodies. Biochar is a widely used amendment, but previous studies focused on the low content of biochar application that restricted the off-site prevention. In this study, therefore, both experiments and models were employed to explore the destination of TCP in purple soil, an Entisol with low organic matter content, large pores, and high water conductivity in southwestern China with a high ratio of biochar applied. Soil columns were homogeneously packed by mixing biochar at 0, 1%, 2%, 3%, 4%, 5%, 7.5%, 10%, 15%, and 20%, then the impulsive input of the breakthrough curves was used to explore the adsorption and desorption process of TCP, and the release of adsorbed TCP was traced by Br−. Following the dynamic outflow during the adsorption processes was simulated using the cumulative distribution function of gamma distribution, and the release of TCP was simulated by coupling the mass balance equation and first-order decay kinetics equation. The results revealed that the adsorption ability of the soil increased exponentially with the content of mixed biochar, implying a much larger increment at high content. For the removal rate of 90%, e.g., the increment was about 20 mg/kg when the content of biochar was raised from 15% to 20%, while it was about 7 mg/kg when the content was raised from 0 to 5%. The dynamic release and the unreleasable TCP could be well simulated by the first-order decay kinetics equation and the logarithmic model, respectively. The releasable TCP showed an increase–decrease pattern, and the maximum was observed at a 5% biochar content. These results above will provide a systematic experimental scheme, model support, and data reference to control organic pollutants with high solubility, stability, and strong migration using biochar in an off-site pattern such as an ecological ditch system.
Collapse
|
20
|
Wang Z, Chen H, Zhu Z, Xing S, Wang S, Chen B. Low-temperature straw biochar: Sustainable approach for sustaining higher survival of B. megaterium and managing phosphorus deficiency in the soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154790. [PMID: 35341849 DOI: 10.1016/j.scitotenv.2022.154790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Inoculation of phosphate-solubilizing bacteria (PSB) is a sustainable approach to increase the available P content in soils for crop production. This application, however, is constrained by the low survival rate of PSB in the field. Biochar, a carbon-rich biomaterial with a well-developed porous structure, has recently emerged as an appealing option to maintain the population size of inoculants in the soil. The efficacy of biochar as a PSB carrier is primarily determined by its physicochemical properties, which are dominated by the feedstocks and the pyrolysis temperatures. This study demonstrated a comprehensive assessment of the efficacy of straw-derived biochars prepared from different feedstocks (i.e., crop straws from cotton, peanut, maize, soybean, and wheat) and pyrolysis temperatures (i.e., 300 and 600 °C). We employed B. megaterium carrying green fluorescence protein and evaluated its survival rate and phosphate-solubilizing performance in various inoculated biochars that have distinct physicochemical properties. Our results showed that the pyrolysis temperature is more determinant of the beneficial effect of straw biochar than the feedstock species. Cotton straw biochar pyrolyzed at low temperature (i.e., 300 °C) sustained a survival rate of 6.17% for the B. megaterium and thereby entailed a significant increase in available P in soil by 30.05 mg kg-1 soil, which were nearly 18-fold and 8-fold higher than that of the no carrier treatment respectively. The performance of biochar-assisted PSB was dominant-negatively affected by the increasing pH, ash content, surface area, and total pore volume of biochar, while larger H/C ratio, water holding capacity, pore size, and surface hydrophobicity were predominantly conducive to the colonization and survival of PSB. The results of this study were expected to provide valuable guidance for biochar preparation in practice to enhance the survival and activity of PSB and maximize the utility of PSB as sustainable phosphorus fertilizer with economic applicability.
Collapse
Affiliation(s)
- Zhe Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Hui Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - SuFang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - ShuGuang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
21
|
Salomon MJ, Watts-Williams SJ, McLaughlin MJ, Bücking H, Singh BK, Hutter I, Schneider C, Martin FM, Vosatka M, Guo L, Ezawa T, Saito M, Declerck S, Zhu YG, Bowles T, Abbott LK, Smith FA, Cavagnaro TR, van der Heijden MG. Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. iScience 2022; 25:104636. [PMID: 35800760 PMCID: PMC9254352 DOI: 10.1016/j.isci.2022.104636] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Microbial inoculants containing arbuscular mycorrhizal (AM) fungi are potential tools in increasing the sustainability of our food production systems. Given the demand for sustainable agriculture, the production of such inoculants has potential economic value and has resulted in a variety of commercial inoculants currently being advertised. However, their use is limited by inconsistent product efficacy and lack of consumer confidence. Here, we propose a framework that can be used to assess the quality and reliability of AM inoculants. First, we set out a range of basic quality criteria which are required to achieve reliable inoculants. This is followed by a standardized bioassay which can be used to test inoculum viability and efficacy under controlled conditions. Implementation of these measurements would contribute to the adoption of AM inoculants by producers with the potential to increase sustainability in food production systems.
Collapse
Affiliation(s)
- Matthias J. Salomon
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - Stephanie J. Watts-Williams
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - Michael J. McLaughlin
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - Heike Bücking
- University of Missouri, Division of Plant Sciences, Columbia, MO 65211, USA
| | - Brajesh K. Singh
- Global Centre for Land-Based Innovation, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, SA 2747, Australia
| | | | | | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
| | - Miroslav Vosatka
- The Institute of Botany, Czech Academy of Sciences, Zamek 1, 25243 Pruhonice, Czech Republic
| | - Liangdong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 1st Beichen West Rd., Chaoyang District, Beijing 100101, China
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | | | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 3, 1348 Louvain-la-Neuve, Belgium
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Timothy Bowles
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA 94720, USA
| | - Lynette K. Abbott
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - F. Andrew Smith
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - Timothy R. Cavagnaro
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - Marcel G.A. van der Heijden
- Plant-Soil-Interaction Group, Institute for Sustainability Science, Agroscope, Zürich, 8046 Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zürich 8008, Switzerland
| |
Collapse
|
22
|
An N, Zhang L, Liu Y, Shen S, Li N, Wu Z, Yang J, Han W, Han X. Biochar application with reduced chemical fertilizers improves soil pore structure and rice productivity. CHEMOSPHERE 2022; 298:134304. [PMID: 35301997 DOI: 10.1016/j.chemosphere.2022.134304] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Biochar is an efficient amendment to improve soil quality and crop productivity, but the potential of biochar as a substitute for chemical fertilizers is still unknown. Here we conducted a 6-year field experiment to investigate how partial substitution of biochar to NPK fertilizers affect soil quality and rice yield in the northeast of China. The experiment included three treatments: Control (B0: NPK fertilizers only: 240 kg N ha-1, 52 kg P ha-1, and 100 kg K ha-1); Low-input biochar (B1.5: 95% N, 89% P, 75% K + 1.5 t biochar ha-1 year-1); and High-input biochar (B3.0: 90% N, 78% P, 50% K + 3.0 t biochar ha-1 year-1). The amounts of NPK application in the biochar treatments were determined according to an equivalent method. We evaluated the soil pore structure characteristics via a CT technology, and investigated soil nutrients, plant biomass, root growth, and grain yields. The results showed that, after the 6-year application, the soil pore structure and rice productivity of B1.5 were significantly improved in compared to those of B0 and B3.0. B1.5 had similar soil available NPK contents, but 6.6% higher rice yield as compared to B0, because of increased root length density (33.2%) and aboveground biomass (10.2%). B1.5 also increased soil macroporosity (>100 μm) (141.4%), fraction dimension (8.4%), and pore connectivity (16.6%) in compared with those of B0. However, B3.0 showed the lowest rice yield due to lower soil available N content (19.2%), macroporosity (28.5%), fraction dimension (5.5%), and pore connectivity (85.3%) than B0. This study demonstrated that a moderate NPK fertilizer replacement by biochar could be an effective practice that improves soil quality, increases rice growth and yield, and reduces the input of chemical fertilizers for rice production.
Collapse
Affiliation(s)
- Ning An
- College of Land and Environment, Shenyang Agriculture University, Shenyang, Liaoning, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Lei Zhang
- College of Land and Environment, Shenyang Agriculture University, Shenyang, Liaoning, China
| | - Yaxian Liu
- College of Land and Environment, Shenyang Agriculture University, Shenyang, Liaoning, China
| | - Si Shen
- College of Land and Environment, Shenyang Agriculture University, Shenyang, Liaoning, China
| | - Na Li
- College of Land and Environment, Shenyang Agriculture University, Shenyang, Liaoning, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Zhengchao Wu
- Analytical Instrumentation Center, Shenyang Agriculture University, Shenyang, Liaoning, China
| | - Jinfeng Yang
- College of Land and Environment, Shenyang Agriculture University, Shenyang, Liaoning, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Wei Han
- College of Land and Environment, Shenyang Agriculture University, Shenyang, Liaoning, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China.
| | - Xiaori Han
- College of Land and Environment, Shenyang Agriculture University, Shenyang, Liaoning, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China.
| |
Collapse
|
23
|
Samoraj M, Mironiuk M, Witek-Krowiak A, Izydorczyk G, Skrzypczak D, Mikula K, Baśladyńska S, Moustakas K, Chojnacka K. Biochar in environmental friendly fertilizers - Prospects of development products and technologies. CHEMOSPHERE 2022; 296:133975. [PMID: 35182533 DOI: 10.1016/j.chemosphere.2022.133975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
According to the circular economy concept, the production of fertilizers should be closed in a loop, which prevents excessive emissions and harmful effects to the environment. Biological wastes are problematic to collect and transport. They undergo a biological transformation that causes greenhouse gases emission and sanitary hazards. Biomass sources used for organic or organo-mineral fertilizers must be free of pathogens and rich in macro and microelements. Solid residues can be processed thermally. Biochar is a carbon produced by biomass pyrolysis without oxygen presence and has been used for many years to improve soil quality and enhance the efficiency of fertilization. There are many research works on the use of biochar in fertilization. This study is also extended by the latest developments and technologies from the patent database (recent year) and biochar-based fertilizers market. To the best of our knowledge, there is no such review currently available in scientific databases. Based on the collected data, the best method of biochar management was proposed - soil application. Biochar applied to soil has several advantages: it improves soil structure and its sorption capacity, enhances soil-nutrient retention and water-holding capacity, immobilizes contaminants from soil (sorption), reduces greenhouse gas emissions and soil nutrient leaching losses while stimulating the growth of a plant.
Collapse
Affiliation(s)
- Mateusz Samoraj
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland.
| | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Sylwia Baśladyńska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
| |
Collapse
|
24
|
Losacco D, Tumolo M, Cotugno P, Leone N, Massarelli C, Convertini S, Tursi A, Uricchio VF, Ancona V. Use of Biochar to Improve the Sustainable Crop Production of Cauliflower ( Brassica oleracea L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1182. [PMID: 35567183 PMCID: PMC9103171 DOI: 10.3390/plants11091182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
In agriculture, biochar (B) application has been suggested as a green technology to reduce nitrate pollution from agricultural origins and improve crop yield. The agronomic impact of B use on soil has been extensively studied, while knowledge of its possible effects on horticultural cultivation is still scarce. A greenhouse experiment was conducted to evaluate the effect of using biochar in soils treated with two different rates of nitrogen fertilizers on soil properties and nitrogen (N) leachate. This study also investigated the vegetative parameters during the crop growing season of Brassica oleracea L. var. botrytis. Soil mesocosms were set up to test the following treatments: untreated/control (C); normal dose of N fertilizer (130 kg N ha-1) (ND); ND+B; high dose of N fertilizer (260 kg N ha-1) (HD); and HD+B. Principal component analysis and cluster analysis were exploited to assess biochar's ability to reduce nitrate leaching and enhance soil-vegetative properties. Biochar addition affected the soil chemical properties of the fertilized microcosms (ND and HD). Biochar increased the NH4+ content in HD soil and the NO3- content in ND soil by 26 mg/L and 48.76 mg/L, respectively. The results showed that biochar application increased the marketable cauliflower yield. In ND+B and HD+B, the curd weight was 880.68 kg and 1097.60 kg, respectively. In addition, a small number of nitrogenous compounds in the leachate were quantified in experimental lines with the biochar. Therefore, biochar use improves the marketable yield of horticulture, mitigating the negative impacts associated with the mass use of N fertilizers in agriculture.
Collapse
Affiliation(s)
- Daniela Losacco
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (M.T.); (N.L.); (C.M.); (V.F.U.)
- Department of Biology, University of Bari, 70126 Bari, BA, Italy; (P.C.); (A.T.)
| | - Marina Tumolo
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (M.T.); (N.L.); (C.M.); (V.F.U.)
- Department of Biology, University of Bari, 70126 Bari, BA, Italy; (P.C.); (A.T.)
| | - Pietro Cotugno
- Department of Biology, University of Bari, 70126 Bari, BA, Italy; (P.C.); (A.T.)
| | - Natalia Leone
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (M.T.); (N.L.); (C.M.); (V.F.U.)
| | - Carmine Massarelli
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (M.T.); (N.L.); (C.M.); (V.F.U.)
| | | | - Angelo Tursi
- Department of Biology, University of Bari, 70126 Bari, BA, Italy; (P.C.); (A.T.)
| | - Vito Felice Uricchio
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (M.T.); (N.L.); (C.M.); (V.F.U.)
| | - Valeria Ancona
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (M.T.); (N.L.); (C.M.); (V.F.U.)
| |
Collapse
|
25
|
Gillingham MD, Gomes RL, Ferrari R, West HM. Sorption, separation and recycling of ammonium in agricultural soils: A viable application for magnetic biochar? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151440. [PMID: 34742971 PMCID: PMC8811483 DOI: 10.1016/j.scitotenv.2021.151440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 05/24/2023]
Abstract
Recent research on the magnetisation of biochar, a carbon-based material that can be used as a sorbent, has opened novel opportunities in the field of environmental remediation, as incorporating magnetic particles into biochar can simplify subsequent separation. This could offer a sustainable circular economy-based solution in two areas of waste management; firstly, pyrolysis of agricultural waste for magnetic biochar synthesis could reduce greenhouse gas emissions derived from traditional agricultural waste processing, such as landfill and incineration, while secondly, application of magnetic biochar to remove excess nitrogen from soils (made possible through magnetic separation) could provide opportunities for this pollutant to be used as a recycled fertiliser. While sorption of pollutants by magnetic biochar has been researched in wastewater, few studies have investigated magnetic biochar use in polluted soils. Nitrogen pollution (e.g. NH4+), stemming from agricultural fertiliser management, is a major environmental and economic issue that could be significantly reduced before losses from soils occur. This review demonstrates that the use of magnetic biochar tailored to NH4+ adsorption has potential to remove (and recycle for reuse) excess nitrogen from soils. Analysis of research into recovery of NH4+ by sorption/desorption, biochar magnetisation and biochar-soil interactions, suggests that this is a promising application, but a more cohesive, interdisciplinary approach is called for to elucidate its feasibility. Furthermore, research shows variable impacts of biochar upon soil chemistry and biology, such as pH and microbial diversity. Considering wide concerns surrounding global biodiversity depletion, a more comprehensive understanding of biochar-soil dynamics is required to protect and support soil ecosystems. Finally, addressing research gaps, such as optimisation and scaling-up of magnetic biochar synthesis, would benefit from systems thinking approaches, ensuring the many complex considerations across science, industry, policy and economics are connected by circular-economy principles.
Collapse
Affiliation(s)
- Max D Gillingham
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom.
| | - Rachel L Gomes
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca Ferrari
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Helen M West
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Singh G, Ramadass K, Sooriyakumar P, Hettithanthri O, Vithange M, Bolan N, Tavakkoli E, Van Zwieten L, Vinu A. Nanoporous materials for pesticide formulation and delivery in the agricultural sector. J Control Release 2022; 343:187-206. [DOI: 10.1016/j.jconrel.2022.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
|
27
|
Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L, Chang SX, Zhang L, Rinklebe J, Yuan Z, Zhu Q, Xiang L, Tsang DC, Xu L, Jiang X, Liu J, Wei N, Kästner M, Zou Y, Ok YS, Shen J, Peng D, Zhang W, Barceló D, Zhou Y, Bai Z, Li B, Zhang B, Wei K, Cao H, Tan Z, Zhao LB, He X, Zheng J, Bolan N, Liu X, Huang C, Dietmann S, Luo M, Sun N, Gong J, Gong Y, Brahushi F, Zhang T, Xiao C, Li X, Chen W, Jiao N, Lehmann J, Zhu YG, Jin H, Schäffer A, Tiedje JM, Chen JM. Technologies and perspectives for achieving carbon neutrality. Innovation (N Y) 2021; 2:100180. [PMID: 34877561 PMCID: PMC8633420 DOI: 10.1016/j.xinn.2021.100180] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Global development has been heavily reliant on the overexploitation of natural resources since the Industrial Revolution. With the extensive use of fossil fuels, deforestation, and other forms of land-use change, anthropogenic activities have contributed to the ever-increasing concentrations of greenhouse gases (GHGs) in the atmosphere, causing global climate change. In response to the worsening global climate change, achieving carbon neutrality by 2050 is the most pressing task on the planet. To this end, it is of utmost importance and a significant challenge to reform the current production systems to reduce GHG emissions and promote the capture of CO2 from the atmosphere. Herein, we review innovative technologies that offer solutions achieving carbon (C) neutrality and sustainable development, including those for renewable energy production, food system transformation, waste valorization, C sink conservation, and C-negative manufacturing. The wealth of knowledge disseminated in this review could inspire the global community and drive the further development of innovative technologies to mitigate climate change and sustainably support human activities.
Collapse
Affiliation(s)
- Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhizhang Yuan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Faming Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Li
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Yin
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Huang
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yuhao Fu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Linjuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jörg Rinklebe
- Department of Soil and Groundwater Management, Bergische Universität Wuppertal, Wuppertal 42285, Germany
| | - Zuoqiang Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinggong Zhu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266273, China
| | - Ning Wei
- Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig 04318, Germany
| | - Yang Zou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jianlin Shen
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dailiang Peng
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Damià Barceló
- Catalan Institute for Water Research ICRA-CERCA, Girona 17003, Spain
| | - Yongjin Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Wei
- The Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hujun Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu-bin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiao He
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxing Zheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Anhui 230031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, University of Western Australia, Crawley 6009, Australia
| | - Xiaohong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changping Huang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sabine Dietmann
- Institute for Informatics (I), Washington University, St. Louis, MO 63110-1010, USA
| | - Ming Luo
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yulie Gong
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ferdi Brahushi
- Department of Agro-environment and Ecology, Agricultural University of Tirana, Tirana 1029, Albania
| | - Tangtang Zhang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cunde Xiao
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xianfeng Li
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfu Chen
- Shenyang Agricultural University, Shenyang 110866, China
| | - Nianzhi Jiao
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and, Xiamen 361005, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361101, China
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Johannes Lehmann
- School of Integrative Plant Science, Section of Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA
- Institute for Advanced Studies, Technical University Munich, Garching 85748, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongguang Jin
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jing M. Chen
- Department of Geography and Planning, University of Toronto, Ontario, Canada, M5S 3G3
| |
Collapse
|
28
|
Harindintwali JD, Zhou J, Muhoza B, Wang F, Herzberger A, Yu X. Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112856. [PMID: 34051535 DOI: 10.1016/j.jenvman.2021.112856] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/12/2021] [Accepted: 05/19/2021] [Indexed: 05/22/2023]
Abstract
To meet the ever-growing human demands for food, fuel, and fiber, agricultural activities have dramatically altered the global carbon (C) and nitrogen (N) cycles. These biogeochemical cycles along with water, phosphorus, and sulfur cycles are fundamental features of life on Earth. Human alteration of the global N cycle has had both positive and negative outcomes. To efficiently feed a growing population, crop-livestock production systems have been developed, however, these systems also contribute significantly to environmental pollution and global climate change. Management of agricultural waste (AW) and the application of N fertilizers are central to the issues of greenhouse gas (GHG) emissions and nutrient runoff that contributes to the eutrophication of water bodies. If managed properly, AW can provide nutrients for plants and contribute to the conservation of soil health. In order to achieve the long-term conservation of agricultural production systems, it is important to promote the proper recycling of AW in agroecosystems and to minimize the reliance on chemical N fertilizers. Composting is one of the sustainable and effective approaches for recycling AW in agriculture. However, the conventional composting process is dilatory and produces compost with low N content compared to chemical N fertilizers. For this reason, comprehensive research is required to improve the composting process and the N content of the soil organic amendments. This work aims to explore the beneficial effects of the integrated application of biochar and specific C and N cycling microorganisms to the composting process and the quality of the composted products. In pursuit of replacing chemical N fertilizers with bio/organic fertilizers, we further discussed the power of the combined application of compost, biochar, and N-fixing bacteria in agricultural production systems. The knowledge of smart integration of AW and microorganisms in agriculture could solve the main agricultural and environmental problems associated with human-induced flows of C and N. Building upon the knowledge disseminated in review to further extensive research will pave the way for better management of agricultural production systems and sustainable C and N cycling in agriculture.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| | - Jianli Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Bertrand Muhoza
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, 150028, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Anna Herzberger
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Xiaobin Yu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| |
Collapse
|
29
|
Videgain-Marco M, Marco-Montori P, Martí-Dalmau C, Jaizme-Vega MDC, Manyà-Cervelló JJ, García-Ramos FJ. The Effects of Biochar on Indigenous Arbuscular Mycorrhizae Fungi from Agroenvironments. PLANTS 2021; 10:plants10050950. [PMID: 34068692 PMCID: PMC8150396 DOI: 10.3390/plants10050950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
The effects of biochar on soil–plant–microorganisms systems are currently being extensively investigated. Considering that arbuscular mycorrhizal fungi (AMF) play an essential role in nutrient dynamics, the present study aims at understanding vine shoot-derived biochar effects on AMF activity and the impact of their multiplication in soils on water-stress resistance of plants. Three agronomic tests were performed in greenhouse pots. The first experiment evaluated the effects of three factors: final pyrolysis temperature for biochar production (400 °C and 600 °C), application rate (0 weight-wt.- % as a control, 1.5 wt. %, and 3.0 wt. %) and texture of the growing media (sandy-loam and clay-loam origin) on AMF, microbial communities and phosphatase activity. In the second experiment, an indigenous consortium of AMF was multiplied through the solid substrate method and sorghum as a trap plant with biochar addition. This process was compared to a control treatment without biochar. Obtained inocula were tested in a third experiment with lettuce plants under different water irrigation conditions. Results from the first experiment showed a general increase in AMF activity with the addition of the biochar produced at 400 °C in the sandy-loam texture substrate. Results of the second experiment showed that the biochar addition increased AMF root colonization, the number of AMF spores and AMF infective potential. Results of the third experiment showed that biochar-derived AMF inoculum increased AMF root colonization, AMF spores, dry biomass and the SPAD index in a lettuce crop under low-water irrigation conditions.
Collapse
Affiliation(s)
- María Videgain-Marco
- Departamento de Ciencias Agrarias y del Medio Natural, EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, E-22071 Huesca, Spain; (C.M.-D.); (F.J.G.-R.)
- Correspondence: ; Tel.: +34-974292656
| | - Pedro Marco-Montori
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Unidad de Recursos Forestales, Avenida Montañana 930, E-50059 Zaragoza, Spain;
| | - Clara Martí-Dalmau
- Departamento de Ciencias Agrarias y del Medio Natural, EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, E-22071 Huesca, Spain; (C.M.-D.); (F.J.G.-R.)
| | - María del Carmen Jaizme-Vega
- Departamento de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Carretera de El Boquerón s/n, Valle Guerra, La Laguna, E-38270 Tenerife, Spain;
| | - Joan Josep Manyà-Cervelló
- Thermochemical Processes Group, Aragón Institute of Engineering Research (I3A), EPS, University of Zaragoza, Carretera de Cuarte s/n, E-22071 Huesca, Spain;
| | - Francisco Javier García-Ramos
- Departamento de Ciencias Agrarias y del Medio Natural, EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, E-22071 Huesca, Spain; (C.M.-D.); (F.J.G.-R.)
- Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, E-22071 Huesca, Spain
| |
Collapse
|
30
|
Harindintwali JD, Zhou J, Yang W, Gu Q, Yu X. Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111020. [PMID: 32810706 DOI: 10.1016/j.ecoenv.2020.111020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 05/22/2023]
Abstract
Over the past 30 years, the ever-rising demands of the modern and growing population have led to the rapid development of agricultural and industrial sectors worldwide. However, this expansion has exposed the environment to various pollutants including heavy metal (HM)s. Almost all HMs are serious toxicants and can pose serious health risks to living organisms in addition to their bioaccumulative and non-biodegradable nature. Different techniques have been developed to restore the ecological functions of the HM-contaminated soil (HMCS). However, the major downfalls of the commonly used remediation technologies are the generation of secondary wastes, high operating costs, and high energy consumption. Phytoremediation is a prominent approach that is more innocuous than the existing remediation approaches. Some microbes-plant interactions enhance the bioremediation process, with heavy metal resistant-plant growth promoting bacteria (HMRPGPB) being widely used to assist phytoremediation of HMs. However, the most common of all major microbial assisted-phytoremediation disturbances is that the HM-contaminated soil is generally deficient in nutrients and cannot sustain the rapid growth of the applied HMRPGPB. In this case, biochar has recently been approved as a potential carrier of microbial agents. The biochar-HMRPGPB-plant association could provide a promising green approach to remediate HM-polluted sites. Therefore, this review addresses the mechanisms through which biochar and HMRPGPB can enhance phytoremediation. This knowledge of biochar-HMRPGPB-plant interactions is significant with respect to sustainable management of the HM-polluted environment in terms of both ecology and economy, and it offers the possibility of further development of new green technologies.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Jianli Zhou
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China; School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, 1 Caiguan Road, Guiyang, 550003, China
| | - Wenhua Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Qiuya Gu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Xiaobin Yu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| |
Collapse
|
31
|
Gumelar MD, Hamzah M, Hidayat AS, Saputra DA, Idvan. Utilization of Chitosan as Coating Material in Making NPK Slow Release Fertilizer. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/masy.201900188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad D. Gumelar
- Center of Technology for Material‐Agency for the Assessment and Application of Technology (BPPT) Puspiptek South Tangerang Banten 15314 Indonesia
| | - Moh. Hamzah
- Center of Technology for Material‐Agency for the Assessment and Application of Technology (BPPT) Puspiptek South Tangerang Banten 15314 Indonesia
| | - Ade S. Hidayat
- Center of Technology for Material‐Agency for the Assessment and Application of Technology (BPPT) Puspiptek South Tangerang Banten 15314 Indonesia
| | - Dita A. Saputra
- Center of Technology for Material‐Agency for the Assessment and Application of Technology (BPPT) Puspiptek South Tangerang Banten 15314 Indonesia
| | - Idvan
- Center of Technology for Material‐Agency for the Assessment and Application of Technology (BPPT) Puspiptek South Tangerang Banten 15314 Indonesia
| |
Collapse
|