1
|
Yuan X, Du Y, Feng Z, Gun S, Qu L, Agathokleous E. Differential responses and mechanisms of monoterpene emissions from broad-leaved and coniferous species under elevated ozone scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175291. [PMID: 39117227 DOI: 10.1016/j.scitotenv.2024.175291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Although ozone (O3) pollution affects plant growth and monoterpene (MT) emissions, the responses of MT emission rates to elevated O3 and the related mechanisms are not entirely understood. To gain an insight into these effects and mechanisms, we evaluated physiological (leaf MT synthesis ability, including precursor availability and enzyme kinetics) and physicochemical limiting factors (e.g. leaf thickness of the lower and upper epidermis, palisade and spongy tissue, and size of resin ducts and stomatal aperture) affecting MT emissions simultaneously from two broad-leaved and two coniferous species after one growing season of field experiment. The effects of elevated O3 on MT emissions and the related mechanisms differed between plant functional types. Specifically, long-term moderate O3 exposure significantly reduced MT emissions in broad-leaved species, primarily attributed to a systematic decrease in MT synthesis ability, including reductions in all MT precursors, geranyl diphosphate content, and MT synthase protein levels. In contrast, the same O3 exposure significantly enhanced MT emissions in coniferous species. However, the change in MT emissions in coniferous species was not due to modifications in leaf MT synthesis ability but rather because of alterations in leaf anatomical structure characteristics, particularly the size of resin ducts and stomatal aperture. These findings provide an important understanding of the mechanisms driving MT emissions from different tree functional groups and can enlighten the estimation of MT emissions in the context of O3 pollution scenarios as well as the development of MT emission algorithms.
Collapse
Affiliation(s)
- Xiangyang Yuan
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Yingdong Du
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| | - Siyu Gun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing 100085, China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing 100085, China
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| |
Collapse
|
2
|
Kannaujia R, Prasad V, Pandey V. Ozone-induced oxidative stress alleviation by biogenic silver nanoparticles and ethylenediurea in mung bean (Vigna radiata L.) under high ambient ozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26997-27013. [PMID: 38503953 DOI: 10.1007/s11356-024-32917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Ground-level ozone (O3) is the most phytotoxic secondary air pollutant in the atmosphere, severely affecting crop yields worldwide. The role of nanoparticles (NP) in the alleviation of ozone-induced yield losses in crops is not known. Therefore, in the present study, we investigated the effects of biogenicB-AgNPs on the mitigation of ozone-induced phytotoxicity in mung bean and compared its results with ethylenediurea (EDU) for the first time. Two mung bean cultivars (Vigna radiata L., Cv. SML-668 and PDM-139) were foliar sprayed with weekly applications of B-AgNPs (0 = control, 10 and 25 ppm) and EDU (0 = control, 200 and 300 ppm) until maturation phase. Morphological, physiological, enzymatic, and non-enzymatic antioxidant data were collected 30 and 60 days after germination (DAG). The mean O3 and AOT40 values (8 h day-1) during the cultivation period were approximately 52 ppb and 4.4 ppm.h, respectively. More biomass was accumulated at the vegetative phase due to the impact of B-AgNPs and EDU, and more photosynthates were transported to the reproductive phase, increasing yield. We observed that the 10 ppm B-AgNPs treatment had a more noticeable impact on yield parameters and lower Ag accumulation in seeds for both cultivars. Specifically, SML-668 cultivar treated with 10 ppm B-AgNPs (SN1) showed greater increases in seed weight plant-1 (124.97%), hundred seed weight (33.45%), and harvest index (37.53%) in comparison to control. Our findings suggest that B-AgNPs can enhance growth, biomass, yield, and seed quality, and can improve mung bean ozone tolerance. Therefore, B-AgNPs may be a promising protectant for mung bean.
Collapse
Affiliation(s)
- Rekha Kannaujia
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, U.P, India
| | - Vivek Prasad
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, U.P, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Ma T, Zhan Y, Chen W, Hou Z, Chai S, Zhang J, Zhang X, Wang R, Liu R, Wei Y. Microbial traits drive soil priming effect in response to nitrogen addition along an alpine forest elevation gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167970. [PMID: 37866590 DOI: 10.1016/j.scitotenv.2023.167970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Priming effect is a critical process affecting soil organic carbon (SOC) cycle, however, its drivers and patterns responding to nutrient addition are still unclear in alpine forests. Here, we conducted a 28-day incubation experiment based on the collected soils along an elevational gradient (3500-4300 m) on the southeastern Tibetan Plateau with adding carbon and nitrogen sources. The priming effect and microbial traits were analyzed based on 13C-stable glucose and bioinformatics methods. Results revealed that the carbon priming effect (PEC) ranged from 0.45 to 1.63 mg C g-1 SOC along the altitude, which was significantly associated with both soil organic carbon and total nitrogen. The addition of nitrogen inhibited the PEC and showed a positive correlation with the activities of β-1,4-glucosidase, β-1,4-N-acetyl-glucosaminnidase, β-cellobiosidase and β-xylosidase, while microbial community network became more complex and stable in respond to nitrogen addition. Structural equation modeling indicated that microbial communities, especially fungal communities in alpine regions drove PEC in response to nitrogen addition. Soil enzymes were the important intermediaries which drove the mineralization of soil carbon by microorganisms after adding nitrogen. Microorganisms were more sensitive to nitrogen rather than carbon due to the specific climate of alpine regions. Collectively, our works revealed the response pattern of soil carbon decomposition to nutrient addition in alpine ecosystem, clarifying the contribution of soil microorganisms in regulating carbon decomposition and nutrient cycle along high-elevation gradients in the context of global environmental change.
Collapse
Affiliation(s)
- Tiantian Ma
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China; Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China
| | - Yabin Zhan
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Wenjie Chen
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhuonan Hou
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China
| | - Shengyang Chai
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China
| | - Junling Zhang
- Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, China
| | - Xinjun Zhang
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China.
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China
| | - Rui Liu
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuquan Wei
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China; Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
4
|
Deng H, Zhang Y, Liu K, Mao Q, Agathokleous E. Allelopathic effects of Eucalyptus extract and wood vinegar on germination and sprouting of rapeseed (Brassica rapa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4280-4289. [PMID: 38100025 DOI: 10.1007/s11356-023-31481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Eucalyptus plantations are usually characterized by low biodiversity due to allelopathy effects. Wood vinegar is considered a complex growth regulator that can promote plant growth at low concentrations. However, there is information scarcity about the co-application of eucalypt leaf water extract and wood vinegar on plants. This study aimed at clarifying whether wood vinegar can protect seed germination against suppression by eucalypt-induced allelopathy. We examined germination behavior and seedling elongation characteristics in rapeseed (Brassica rapa L.) treated with different solutions of wood vinegar and eucalypt leaf water extract. The results showed that eucalypt leaf water extracts, wood vinegar solutions, and their mixture allelopathically suppressed seed germination rate. After rapeseed sprouting, eucalypt leaf water extracts promoted root elongation, stem elongation, and fresh weight elongation. Malondialdehyde content was also lower under the influence of eucalypt leaf water extract. Mixture of high concentration of eucalypt leaf water extract and lower concentration of wood vinegar significantly promoted root elongation. Therefore, both eucalypt leaf water extract and wood vinegar are complex plant growth regulators, which can be used to inhibit or stimulate plants at different ontogenic stages. During the seed germination period, both eucalypt leaf extracts and wood vinegar could be used as weed inhibitors. Conversely, during the period of sprouting (seedling establishment), low concentrations of eucalypt leaf extracts and wood vinegar can promote growth.
Collapse
Affiliation(s)
- He Deng
- College of Resources, Environment and Life Sciences, Ningxia Normal University, Guyuan, 756000, Ningxia Hui Autonomous Region, China
| | - Yuying Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Kangping Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
- Sanya Qihuimin New Energy Technology Co., Ltd., Sanya, 572022, China
| | - Qiaozhi Mao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Evgenios Agathokleous
- Department of Ecology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| |
Collapse
|
5
|
Cheesman AW, Brown F, Farha MN, Rosan TM, Folberth GA, Hayes F, Moura BB, Paoletti E, Hoshika Y, Osborne CP, Cernusak LA, Ribeiro RV, Sitch S. Impacts of ground-level ozone on sugarcane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166817. [PMID: 37673248 DOI: 10.1016/j.scitotenv.2023.166817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Sugarcane is a vital commodity crop often grown in (sub)tropical regions which have been experiencing a recent deterioration in air quality. Unlike for other commodity crops, the risk of air pollution, specifically ozone (O3), to this C4 crop has not yet been quantified. Yet, recent work has highlighted both the potential risks of O3 to C4 bioenergy crops, and the emergence of O3 exposure across the tropics as a vital factor determining global food security. Given the large extent, and planned expansion of sugarcane production in places like Brazil to meet global demand for biofuels, there is a pressing need to characterize the risk of O3 to the industry. In this study, we sought to a) derive sugarcane O3 dose-response functions across a range of realistic O3 exposure and b) model the implications of this across a globally important production area. We found a significant impact of O3 on biomass allocation (especially to leaves) and production across a range of sugarcane genotypes, including two commercially relevant varieties (e.g. CTC4, Q240). Using these data, we calculated dose-response functions for sugarcane and combined them with hourly O3 exposure across south-central Brazil derived from the UK Earth System Model (UKESM1) to simulate the current regional impact of O3 on sugarcane production using a dynamic global vegetation model (JULES vn 5.6). We found that between 5.6 % and 18.3 % of total crop productivity is likely lost across the region due to the direct impacts of current O3 exposure. However, impacts depended critically on the substantial differences in O3 susceptibility observed among sugarcane genotypes and how these were implemented in the model. Our work highlights not only the urgent need to fully elucidate the impacts of O3 in this important bioenergetic crop, but the potential implications air quality may have upon tropical food production more generally.
Collapse
Affiliation(s)
- Alexander W Cheesman
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia; Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK.
| | - Flossie Brown
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Mst Nahid Farha
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia; Department of Chemistry, Rajshahi University of Engineering &Technology, Rajshahi 6204, Bangladesh
| | - Thais M Rosan
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | | | - Felicity Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd LL57 2UW, UK
| | - Barbara B Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sesto Fiorentino, Italy; Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, 85050 Potenza, Italy
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sesto Fiorentino, Italy; Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, 85050 Potenza, Italy
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Lucas A Cernusak
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia
| | - Rafael V Ribeiro
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Stephen Sitch
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| |
Collapse
|
6
|
Singh AA, Ghosh A, Agrawal M, Agrawal SB. Secondary metabolites responses of plants exposed to ozone: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88281-88312. [PMID: 37440135 DOI: 10.1007/s11356-023-28634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Tropospheric ozone (O3) is a secondary pollutant that causes oxidative stress in plants due to the generation of excess reactive oxygen species (ROS). Phenylpropanoid metabolism is induced as a usual response to stress in plants, and induction of key enzyme activities and accumulation of secondary metabolites occur, upon O3 exposure to provide resistance or tolerance. The phenylpropanoid, isoprenoid, and alkaloid pathways are the major secondary metabolic pathways from which plant defense metabolites emerge. Chronic exposure to O3 significantly accelerates the direction of carbon flows toward secondary metabolic pathways, resulting in a resource shift in favor of the synthesis of secondary products. Furthermore, since different cellular compartments have different levels of ROS sensitivity and metabolite sets, intracellular compartmentation of secondary antioxidative metabolites may play a role in O3-induced ROS detoxification. Plants' responses to resource partitioning often result in a trade-off between growth and defense under O3 stress. These metabolic adjustments help the plants to cope with the stress as well as for achieving new homeostasis. In this review, we discuss secondary metabolic pathways in response to O3 in plant species including crops, trees, and medicinal plants; and how the presence of this stressor affects their role as ROS scavengers and structural defense. Furthermore, we discussed how O3 affects key physiological traits in plants, foliar chemistry, and volatile emission, which affects plant-plant competition (allelopathy), and plant-insect interactions, along with an emphasis on soil dynamics, which affect the composition of soil communities via changing root exudation, litter decomposition, and other related processes.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Department of Botany, University of Lucknow, -226007, Lucknow, India
| | - Annesha Ghosh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Agathokleous E, Kitao M, Hoshika Y, Haworth M, Tang Y, Koike T. Ethylenediurea protects against ozone phytotoxicity not by adding nitrogen or controlling stomata in a stomata-unresponsive hybrid poplar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162672. [PMID: 36894106 DOI: 10.1016/j.scitotenv.2023.162672] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Ozone (O3) pollution is a persistent environmental issue worldwide, which causes widespread damage to vegetation, deteriorating plant health and reducing plant productivity. Ethylenediurea (EDU) is a synthetic chemical that has been widely applied in scientific studies as a protectant against O3 phytotoxicities. Despite four decades of active research, the exact mechanisms to explain its mode of action remain unclear. Here, we aimed to reveal whether EDU's phytoprotective property is due to its control over stomatal regulation and/or its action as a nitrogen (N) fertilizer, utilizing stomatal-unresponsive plants of a hybrid poplar (Populus koreana × trichocarpa cv. Peace) grown in a free-air O3-concenctration enrichment (FACE) facility. Plants were treated with water (WAT), EDU (400 mg L-1), or EDU's constitutive amount of N every nine days, and exposed to ambient (AOZ) or elevated (EOZ) O3 during a growing season (June-September). EOZ led to extensive foliar injuries (but protected against rust disease), lower photosynthetic rate (A), impaired dynamics of responses of A to changes in light intensity, and smaller total plant leaf area. EDU protected against common phytotoxicities caused by EOZ without inducing stomatal closure, since stomatal conductance (gs) was generally unresponsive to the experimental treatments. EDU also modulated the dynamic response of A to light fluctuations under O3 stress. N addition acted as a fertilizer but did not satisfactorily protect plants against O3 phytotoxicities. The results suggest that EDU protects against O3 phytotoxicity not by adding N or controlling stomata, which provides a new insight into our understanding of the mode of action of EDU as a protectant against O3 phytotoxicity.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, Jiangsu, China; Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan; Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo 062-8516, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo 062-8516, Japan
| | - Yasutomo Hoshika
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Matthew Haworth
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Yanhong Tang
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
8
|
Agathokleous E. Environmental pollution impacts: Are p values over-valued? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157807. [PMID: 35934042 DOI: 10.1016/j.scitotenv.2022.157807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
An examination revealed the dominance of the published literature of environmental science by p values. Meanwhile, the use of effect size has been neglected in publications reporting primary data, yet the size of effect is often more informative than p values inference in assessing the effects of pollution on living organisms, comparing susceptibility/resistance among organisms, and ranking pollutants according to their potency, among others. Statistical significance does not necessarily mean biological, practical, or scientific significance, and its use based on (often misinterpreted) p values reflects the average response or effect at average conditions based on an assumed linear model fit to the entire sample. However, pollution impacts and organismal responses are rarely characterized by linear and symmetric features, and dichotomous 'statistical significance' based on p values is inadequate to fully describe data and findings. Considering 'the fallacy of the average', variance, and differential response of different population percentiles in new studies would provide otherwise wasted biologically, practically, or scientifically significant information. Since p values often inform as to whether some findings warrant further examination, journals should consider mandating the reporting of effect sizes and confidence intervals, together with p values (should they be used), to provide more integrated information regarding pollution impacts. Moreover, replacing 'statistical significance' with language of evidence, especially in key components of publications, such as abstracts and conclusions, could help preventing potential misleading of the public and decision and policy makers.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
9
|
Agathokleous E. Mastering the scientific peer review process: tips for young authors from a young senior editor. JOURNAL OF FORESTRY RESEARCH 2021; 33:1-20. [PMID: 34545272 PMCID: PMC8443951 DOI: 10.1007/s11676-021-01388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Are you a student at a higher institution or an early-career researcher who is striving to understand and master the peer review process so to increase the odds of getting a paper published in the Journal of Forestry Research or another reputable, peer-reviewed, scientific journal? In this paper, a young, senior editor provides a handbook of the peer review process based on his decadal experience in scientific publishing. He covers major information you need to know during the entire process, from selecting journals to completing the proofing of your accepted paper. He introduces key points for consideration, such as avoidance of predatory journals, dubious research practices and ethics, interaction with peers, reviewers, and editors, and the pursuit of aretê. Finally, he points out some common statistical errors and misconceptions, such as P hacking and incorrect effect size inference. He hopes that this paper will enhance your understanding and knowledge of the peer-review process.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044 People’s Republic of China
| |
Collapse
|
10
|
Wu R, Agathokleous E, Feng Z. Novel ozone flux metrics incorporating the detoxification process in the apoplast: An application to Chinese winter wheat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144588. [PMID: 33429267 DOI: 10.1016/j.scitotenv.2020.144588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
A modified Ball-Berry-Leuning model of stomatal conductance was applied to data from fully open-air ozone (O3)-enrichment experiments with winter wheat (Triticum aestivum L.). The O3 fluxes reaching both surface of cell wall (Fcw) and plasmalemma (Fpl) were estimated considering apoplastic ascorbate, a major scavenger of O3. The difference (D) between Fcw and Fpl was defined as detoxification capacity of O3 by reaction with ascorbate in the leaf apoplast (ASCapo). The accumulated stomatal O3 flux above D nmol O3 m-2 s-1 (AFstD) and the accumulated Fpl (AFpl) were calculated over the optimal integration period covering the whole reproductive development of wheat, and used to derive O3AFstD yield-response relationships in comparison with PODY (phytotoxic O3 dose above a threshold of Y nmol m-2 s-1) and AOT40 (accumulated O3 dose over a threshold of 40 ppb). There was a good agreement between the observed and modeled values of ASCapo and stomatal conductance. AFstD and AFpl performed better than PODY and AOT40 in terms of R2 and intercept. However, the AFstD metric was more suitable for assessing grain yield loss due to lower sensitivity of the regression slope to variations in the input parameters, compared with AFpl. The average critical level (CL) of four cultivars for 5% grain-yield reduction was 1.53 mmol m-2 using POD6 and 2.81 mmol m-2 using AFstD, with the latter being well above the POD6-derived value for European cultivars (1.3 mmol m-2). The minimum hourly averaged O3 concentration contributed to CLs was below 20 ppb according to AFstD, a value that is lower than that suggested by POD6 (≈27 ppb). O3 flux-response relationships and CLs on the basis of quantified detoxification capacity shall facilitate the understanding of the different degrees of susceptibility to O3 among species or cultivars, and improve the assessments of O3 impacts on plants.
Collapse
Affiliation(s)
- Rongjun Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
11
|
Wang Q, Li Z, Li X, Ping Q, Yuan X, Agathokleous E, Feng Z. Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142134. [PMID: 33254895 DOI: 10.1016/j.scitotenv.2020.142134] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
It is widely documented that elevated ground-level ozone (O3) has negative effects on tree physiological characteristics, and in return, affects forest ecosystem function. However, the effect may be modified by soil nitrogen (N) availability. Numerous studies have focused on the aboveground part of trees under elevated O3 alone or in combination with soil N; however, little is known about the response of soil bacterial communities. Here, we investigated the effects of O3 (charcoal-filtered air, CF, versus ambient air +40 ppb of O3, E-O3), N addition (0 kg ha-1 yr-1, N0, versus 200 kg ha-1 yr-1, N200), and their combination on rhizosphere soil bacterial communities of hybrid poplar, using an MiSeq targeted amplicon sequencing of the bacterial 16S rRNA gene. E-O3 significantly decreased bacterial abundance, and N200 significantly decreased the α-diversity. The negative impacts of N200 on α-diversity were alleviated by E-O3. Nitrogen and E-O3-N200 combination altered bacterial community composition, with a significant increase in the relative abundance of Proteobacteria and Bacteroidetes and a decrease in the abundance of Firmicutes. From an ecological network analysis, E-O3, alone and in combination with N200, complicated the co-occurrence network of bacterial communities by inducing a microbial survival strategy, shifting the hub species from RB41 to Bacillus and Blastococcus. Conversely, N200 led to simplification and decentralization of the co-occurrence network. These findings demonstrate that the rhizosphere bacterial communities exhibit divergent responses to E-O3 and N200, suggesting the need to consider the stability of the belowground ecosystem to optimize plantation management in response to environmental changes.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhengzhen Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Xuewei Li
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qin Ping
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
12
|
Agathokleous E, Feng Z, Oksanen E, Sicard P, Wang Q, Saitanis CJ, Araminiene V, Blande JD, Hayes F, Calatayud V, Domingos M, Veresoglou SD, Peñuelas J, Wardle DA, De Marco A, Li Z, Harmens H, Yuan X, Vitale M, Paoletti E. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. SCIENCE ADVANCES 2020; 6:eabc1176. [PMID: 32851188 PMCID: PMC7423369 DOI: 10.1126/sciadv.abc1176] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 05/03/2023]
Abstract
Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Elina Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, POB 111, 80101 Joensuu, Finland
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, 06410 Biot, France
| | - Qi Wang
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Costas J. Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Valda Araminiene
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys 53101 Kaunas District, Lithuania
| | - James D. Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Felicity Hayes
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna, Valencia 46980, Spain
| | - Marisa Domingos
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972 São Paulo, Brazil
| | - Stavros D. Veresoglou
- Freie Universität Berlin-Institut für Biologie, Dahlem Center of Plant Sciences, Plant Ecology, Berlin, Germany
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Científicas, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia E-08193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia E-08193, Spain
| | - David A. Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome I-00123, Italy
| | - Zhengzhen Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Harry Harmens
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Marcello Vitale
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Calabrese EJ, Agathokleous E. Theodosius Dobzhansky's view on biology and evolution v.2.0: "Nothing in biology makes sense except in light of evolution and evolution's dependence on hormesis-mediated acquired resilience that optimizes biological performance and numerous diverse short and longer term protective strategies". ENVIRONMENTAL RESEARCH 2020; 186:109559. [PMID: 32344211 DOI: 10.1016/j.envres.2020.109559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 05/17/2023]
Abstract
The hormetic, biphasic dose response, is highly generalizable, being independent of biological model, level of biological organization, endpoint, inducing agent, and mechanisms. It plays a significant role in mediating both constitutive and adaptable responses in essentially all cells and organisms. The present paper provides both a historical overview of the origin of the hormetic concept in the biological and biomedical sciences, and its potential role in ecology, evolution, and development. These integrative findings provide a broad scientific framework to better understand complex evolutionary-based selection strategies, affecting survival, lifespan, fecundity, learning/memory, tissue repair, reproduction and cooperation, and developmental processes, and offering resilience in the presence of numerous challenges.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| | - Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing Jiangsu, China.
| |
Collapse
|