1
|
Ren F, Qiu Z, Liu Z, Bai H. Impact of urban tree arrangement on pedestrian exposure to the size-fractional particulate matter in a city boulevard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124443. [PMID: 38936791 DOI: 10.1016/j.envpol.2024.124443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Trees act as natural filters that mitigate roadside air pollution. However, the filtration impact of different tree arrangements on traffic pollutants with different particle diameters has rarely been analysed in real street canyon environments. To quantify how roadside tree arrangements impact pedestrian exposure to particle number concentrations (PNCs) of different diameters (0.25-32 μm), in situ field measurements were carried out in a boulevard-type street canyon in the city of Xi'an, China. This study analysed the experimental data of PNCs collected along segments of a pedestrian lane under four typical tree arrangements: open space without trees, a sparse-spaced tree arrangement, a medium-spaced tree arrangement, and a dense-spaced tree arrangement in a street canyon. Our results reveal that the effect of tree arrangement on PNCs depended on the particle diameter. In general, trees can significantly reduce coarse PNC (particles with diameters >2.5 μm) but not the fine PNC. Quantitative analysis showed that a medium-spaced tree arrangement, in which tree crowns are adjacent to each other but do not overlap, is the most capable of reducing PNC, followed by a sparse-spaced tree arrangement, while a the dense-spaced tree arrangement has the least impact. The attenuation effect of trees on the PNCs increased with increasing particle diameter. Moreover, the presence of trees altered the local microclimate, which also affected how exposure to PNCs changed. Our empirical findings further highlight the complexity of how trees affect particulate pollutants in street canyons and provide timely insights for enhancing tree-planning management in cities from the perspective of air quality improvement.
Collapse
Affiliation(s)
- Feihong Ren
- School of Architecture, Chang'an University, Xi'an, 710061, Shaanxi, China; School of Automobile, Chang'an University, Xi'an, 710086, Shaanxi, China
| | - Zhaowen Qiu
- School of Automobile, Chang'an University, Xi'an, 710086, Shaanxi, China.
| | - Zhen Liu
- School of Automobile, Chang'an University, Xi'an, 710086, Shaanxi, China
| | - Hua Bai
- School of Architecture, Chang'an University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
2
|
Van Mensel A, Wuyts K, Pinho P, Muyshondt B, Aleixo C, Orti MA, Casanelles-Abella J, Chiron F, Hallikma T, Laanisto L, Moretti M, Niinemets Ü, Tryjanowski P, Samson R. The magnetic signal from trunk bark of urban trees catches the variation in particulate matter exposure within and across six European cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50883-50895. [PMID: 36807862 DOI: 10.1007/s11356-023-25397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/14/2023] [Indexed: 04/16/2023]
Abstract
Biomagnetic monitoring increasingly is applied to assess particulate matter (PM) concentrations, mainly using plant leaves sampled in small geographical area and from a limited number of species. Here, the potential of magnetic analysis of urban tree trunk bark to discriminate between PM exposure levels was evaluated and bark magnetic variation was investigated at different spatial scales. Trunk bark was sampled from 684 urban trees of 39 genera in 173 urban green areas across six European cities. Samples were analysed magnetically for the Saturation isothermal remanent magnetisation (SIRM). The bark SIRM reflected well the PM exposure level at city and local scale, as the bark SIRM (i) differed between the cities in accordance with the mean atmospheric PM concentrations and (ii) increased with the cover of roads and industrial area around the trees. Furthermore, with increasing tree circumferences, the SIRM values increased, as a reflection of a tree age effect related to PM accumulation over time. Moreover, bark SIRM was higher at the side of the trunk facing the prevailing wind direction. Significant relationships between SIRM of different genera validate the possibility to combine bark SIRM from different genera to improve sampling resolution and coverage in biomagnetic studies. Thus, the SIRM signal of trunk bark from urban trees is a reliable proxy for atmospheric coarse to fine PM exposure in areas dominated by one PM source, as long as variation caused by genus, circumference and trunk side is taken into account.
Collapse
Affiliation(s)
- Anskje Van Mensel
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.
| | - Karen Wuyts
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Pedro Pinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Babette Muyshondt
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Cristiana Aleixo
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Marta Alos Orti
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu, Estonia
| | - Joan Casanelles-Abella
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - François Chiron
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Tiit Hallikma
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu, Estonia
| | - Lauri Laanisto
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu, Estonia
| | - Marco Moretti
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Piotr Tryjanowski
- Department of Zoology, Poznan University of Life Sciences, Poznan, Poland
| | - Roeland Samson
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Botsou F, Sungur A, Kelepertzis E, Kypritidou Z, Daferera O, Massas I, Argyraki A, Skordas K, Soylak M. Estimating remobilization of potentially toxic elements in soil and road dust of an industrialized urban environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:526. [PMID: 35739281 DOI: 10.1007/s10661-022-10200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The mobility of potentially toxic elements (PTEs) is of paramount concern in urban settings, particularly those affected by industrial activities. Here, contaminated soils and road dusts of the medium-size, industrialized city of Volos, Central Greece, were subjected to single-step extractions (0.43 M HNO3 and 0.5 M HCl) and the modified BCR sequential extraction procedure. This approach will allow for a better understanding of the geochemical phase partitioning of PTEs and associated risks in urban environmental matrices. Based on single extraction procedures, Pb and Zn exhibited the highest remobilization potential. Of the non-residual phases, the reducible was the most important for Pb, and the oxidizable for Cu and Zn in both media. On the other hand, mobility of Ni, Cr, and Fe was low, as inferred by their dominance into the residual fraction. Interestingly, we found a significant increase of the residual fraction in the road dust samples compared to soils. Carbonate content and organic matter controlled the extractabilities of PTEs in the soil samples. By contrast, for the road dust, magnetic susceptibility exerted the main control on the geochemical partitioning of PTEs. We suggest that anthropogenic particles emitted by heavy industries reside in the residual fraction of the SEP, raising concerns about the assessment of this fraction in terms of origin of PTEs and potential environmental risks. Conclusively, the application of sequential extraction procedures should be complemented with source identification of PTEs with the aim to better estimate the remobilization of PHEs in soil and road dust influenced by industrial emissions.
Collapse
Affiliation(s)
- Fotini Botsou
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15784, Athens, Greece
| | - Ali Sungur
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Turkey
| | - Efstratios Kelepertzis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, University Campus, 15784, ZografouAthens, Greece.
| | - Zacharenia Kypritidou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, University Campus, 15784, ZografouAthens, Greece
| | - Ourania Daferera
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, University Campus, 15784, ZografouAthens, Greece
| | - Ioannis Massas
- Laboratory of Soil Science and Agricultural Chemistry, Agricultural University of Athens, 11855, Athens, Greece
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, University Campus, 15784, ZografouAthens, Greece
| | - Konstantinos Skordas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
4
|
Gonet T, Maher BA, Nyirő-Kósa I, Pósfai M, Vaculík M, Kukutschová J. Size-resolved, quantitative evaluation of the magnetic mineralogy of airborne brake-wear particulate emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117808. [PMID: 34329055 DOI: 10.1016/j.envpol.2021.117808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 05/24/2023]
Abstract
Exposure to particulate air pollution has been associated with a variety of respiratory, cardiovascular and neurological problems, resulting in increased morbidity and mortality worldwide. Brake-wear emissions are one of the major sources of metal-rich airborne particulate pollution in roadside environments. Of potentially bioreactive metals, Fe (especially in its ferrous form, Fe2+) might play a specific role in both neurological and cardiovascular impairments. Here, we collected brake-wear particulate emissions using a full-scale brake dynamometer, and used a combination of magnetic measurements and electron microscopy to make quantitative evaluation of the magnetic composition and particle size of airborne emissions originating from passenger car brake systems. Our results show that the concentrations of Fe-rich magnetic grains in airborne brake-wear emissions are very high (i.e., ~100-10,000 × higher), compared to other types of particulate pollutants produced in most urban environments. From magnetic component analysis, the average magnetite mass concentration in total PM10 of brake emissions is ~20.2 wt% and metallic Fe ~1.6 wt%. Most brake-wear airborne particles (>99 % of particle number concentration) are smaller than 200 nm. Using low-temperature magnetic measurements, we observed a strong superparamagnetic signal (indicative of ultrafine magnetic particles, < ~30 nm) for all of the analysed size fractions of airborne brake-wear particles. Transmission electron microscopy independently shows that even the larger size fractions of airborne brake-wear emissions dominantly comprise agglomerates of ultrafine (<100 nm) particles (UFPs). Such UFPs likely pose a threat to neuronal and cardiovascular health after inhalation and/or ingestion. The observed abundance of ultrafine magnetite particles (estimated to constitute ~7.6 wt% of PM0.2) might be especially hazardous to the brain, contributing both to microglial inflammatory action and excess generation of reactive oxygen species.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Ilona Nyirő-Kósa
- MTA-PE Air Chemistry Research Group, 10 Egyetem Street, H-8200, Veszprém, Hungary
| | - Mihály Pósfai
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, H8200, Hungary
| | - Miroslav Vaculík
- Nanotechnology Centre, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic; Centre for Advanced Innovative Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Jana Kukutschová
- Centre for Advanced Innovative Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic; Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 708 00, Ostrava, Czech Republic
| |
Collapse
|
5
|
Maher BA, Gonet T. Prolific shedding of magnetite nanoparticles from banknote surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144490. [PMID: 33454475 DOI: 10.1016/j.scitotenv.2020.144490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Here, we use magnetic methods first to quantify the content of strongly magnetic particles of banknotes (US dollars, USD, and British pounds sterling, GBP), and then examine the possibility of their release from handled banknote surfaces. The content of magnetic particles, from magnetic remanence measurements, for the USD and paper GBP banknotes is high; greater, for example, than that in vehicle engine-exhaust emissions, and similar to that for airborne roadside particulate matter (PM). Our magnetic analyses of USD and GBP banknotes, and of the ink pigment widely used in their printing, reveal not only that the banknotes are highly magnetic, but also that strongly magnetic, nano-sized particles are readily and prolifically shed from their surfaces (especially from the USD banknotes). A common practice, prior to increased automation, was for bank tellers to count banknotes by licking a finger to adhere to each successive counted note, and thus speed up the manual counting process. Given the rate of particle shedding reported here, this traditional manual counting procedure must have resulted in prolific transfer of iron-rich nanoparticles both to the fingers and thence to the tongue. We hypothesise that, pre-automation, magnetite and other metal-bearing nanoparticles were repetitively and frequently ingested by bank tellers, and subsequently entered the brain directly via the taste nerve pathway, and/or indirectly via the systemic circulation and the neuroenteric system. This hypothesis may plausibly account for the reported and currently unexplained association between elevated neurodegeneration-related mortality odds ratios and this specific occupation.
Collapse
Affiliation(s)
- Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| |
Collapse
|
6
|
Kermenidou M, Balcells L, Martinez-Boubeta C, Chatziavramidis A, Konstantinidis I, Samaras T, Sarigiannis D, Simeonidis K. Magnetic nanoparticles: An indicator of health risks related to anthropogenic airborne particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116309. [PMID: 33387781 DOI: 10.1016/j.envpol.2020.116309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Due to their small dimensions, airborne particles are able to penetrate through inhalation into many human organs, from the lungs to the cardiovascular system and the brain, which can threaten our health. This work establishes a novel approach of collecting quantitative data regarding the fraction, the composition and the size distribution of combustion-emitted particulate matter through the magnetic characterization and analysis of samples received by common air pollution monitoring. To this end, SQUID magnetometry measurements were carried out for samples from urban and suburban areas in Thessaloniki, the second largest city of Greece, taking into consideration the seasonal and weekly variation of airborne particles levels as determined by occurring traffic and meteorological conditions. The level of estimated magnetically-responding atmospheric particulate matter was at least 0.5 % wt. of the collected samples, mostly being present in the form of ultrafine particles with nuclei sizes of approximately 14 nm and their aggregates. The estimated quantities of magnetic particulate matter show maximum values during autumn months (0.8 % wt.) when increased commuting takes place, appearing higher in the city center by up to 50% than those in suburban areas. In combination with high-resolution transmission electron imaging and elemental analysis, it was found that Fe3O4 and similar ferrites, some of them attached to heavy metals (Co, Cr), are the dominant magnetic contributors arising from anthropogenic high-temperature processes, e.g. due to traffic emissions. Importantly, nasal cytologic samples collected from residents of both central and suburban areas showed same pattern in what concerns magnetic behavior, thus verifying the critical role of nanosized magnetic particles in the assessment of air pollution threats. Despite the inherent statistical limitations of our study, such findings also indicate the potential transmission of infectious pathogens by means of pollution-derived nanoparticles into the respiratory system of the human body.
Collapse
Affiliation(s)
- M Kermenidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ll Balcells
- Institut de Ciència de Materials de Barcelona, CSIC, 08193 Bellaterra, Spain
| | - C Martinez-Boubeta
- Ecoresources P.C., Giannitson-Santaroza Str. 15-17, 54627 Thessaloniki, Greece
| | - A Chatziavramidis
- 2nd Academic Otorhinolaryngology Department, General Hospital Papageorgiou, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - I Konstantinidis
- 2nd Academic Otorhinolaryngology Department, General Hospital Papageorgiou, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - T Samaras
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - D Sarigiannis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - K Simeonidis
- Ecoresources P.C., Giannitson-Santaroza Str. 15-17, 54627 Thessaloniki, Greece; Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Gonet T, Maher BA, Kukutschová J. Source apportionment of magnetite particles in roadside airborne particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141828. [PMID: 32889272 DOI: 10.1016/j.scitotenv.2020.141828] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 05/24/2023]
Abstract
Exposure to airborne particulate matter (PM) is associated with pulmonary, cardiovascular and neurological problems. Magnetite, a mixed Fe2+/Fe3+ oxide, is ubiquitous and abundant in PM in urban environments, and might play a specific role in both neurodegeneration and cardiovascular disease. We collected samples of vehicle exhaust emissions, and of heavily-trafficked roadside and urban background dusts from Lancaster and Birmingham, U.K. Then, we measured their saturation magnetic remanence and used magnetic component analysis to separate the magnetite signal from other contributing magnetic components. Lastly, we estimated the contributions made by specific traffic-related sources of magnetite to the total airborne magnetite in the roadside environment. The concentration of magnetite in exhaust emissions is much lower (3-14 x lower) than that in heavily- trafficked roadside PM. The magnetite concentration in petrol-engine exhaust emissions is between ~0.06 and 0.12 wt%; in diesel-engine exhaust emissions ~0.08-0.18 wt%; in background dust ~0.05-0.20 wt% and in roadside dust ~0.18-0.95 wt%. Here, we show that vehicle brake wear is responsible for between ~68 and 85% of the total airborne magnetite at the two U.K. roadside sites. In comparison, diesel-engine exhaust emissions account for ~7% - 12%, petrol-engine exhaust emissions for ~2% - 4%, and background dust for 6% - 10%. Thus, vehicle brake wear is by far the most dominant source of airborne magnetite in the roadside environment at the two sites examined. Given the potential risk posed, post-inhalation, by ultrafine magnetite and co-associated transition metal-rich particles to human cardiovascular and neurological health, the high magnetite content of vehicle brake wear might need to be reduced in order to mitigate such risk, especially for vulnerable population groups.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Jana Kukutschová
- Nanotechnology Centre, VŜB-Technical University of Ostrava, 708 33, Ostrava, Poruba, Czech Republic; Regional Materials Science and Technology Centre, VŜB-Technical University of Ostrava, 708 33, Ostrava, Poruba, Czech Republic
| |
Collapse
|
8
|
Maher BA, O'Sullivan V, Feeney J, Gonet T, Anne Kenny R. Indoor particulate air pollution from open fires and the cognitive function of older people. ENVIRONMENTAL RESEARCH 2021; 192:110298. [PMID: 33039528 DOI: 10.1016/j.envres.2020.110298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/22/2020] [Accepted: 09/24/2020] [Indexed: 05/24/2023]
Abstract
Exposure to indoor air pollution is known to affect respiratory and cardiovascular health, but little is known about its effects on cognitive function. We measured the concentrations and magnetite content of airborne particulate matter (PM) in the indoor environment arising from burning peat, wood or coal in residential open fires. Highest indoor PM2.5 concentrations (60 μg/m3 i.e. 2.4 times the WHO-recommended 24-h mean) occurred when peat was burned, followed by burning of coal (30 μg/m3) and wood (17 μg/m3). Conversely, highest concentrations of coarser PM (PM10-2.5) were associated with coal burning (20 μg/m3), with lower concentrations emitted during burning of wood (10 μg/m3) and peat (8 μg/m3). The magnetic content of the emitted PM, greatest (for both PM size fractions) when coal was burned, is similar to that of roadside airborne PM. Exposure to PM, and to strongly magnetic airborne PM, can be greater for individuals spending ~5 h/day indoors with a coal-burning open fire for 6 months/year compared to those commuting via heavily-trafficked roads for 1 h/day for 12 months/year. Given these high indoor PM and magnetite concentrations, and the reported associations between (outdoor) PM and impaired neurological health, we used individual-level data from The Irish Longitudinal Study on Ageing (TILDA) to examine the association between the usage of open fires and the cognitive function of older people. Using a sample of nearly seven thousand older people, we estimated multi-variate models of the association between cognitive function and open fire usage, in order to account for relevant confounders such as socio-economic status. We found a negative association between open fire usage and cognitive function as measured by widely-used cognitive tests such as word recall and verbal fluency tests. The negative association was largest and statistically strongest among women, a finding explained by the greater exposure of women to open fires in the home because they spent more time at home than men. Our findings were also robust to stratifying the sample between old and young, rich and poor, and urban and rural.
Collapse
Affiliation(s)
- Barbara A Maher
- Lancaster Environment Centre, Lancaster University, Farrer Avenue, Lancaster, LA1 4YQ, UK
| | - Vincent O'Sullivan
- Department of Economics, Lancaster University Management School, Lancaster University, LA1 4YX, UK.
| | - Joanne Feeney
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland
| | - Tomasz Gonet
- Lancaster Environment Centre, Lancaster University, Farrer Avenue, Lancaster, LA1 4YQ, UK
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland
| |
Collapse
|