1
|
Van Frost SR, White AM, Jauquet JM, Magness AM, McMahon KD, Remucal CK. Laboratory measurements underestimate persistence of the aquatic herbicide fluridone in lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:368-379. [PMID: 38189445 DOI: 10.1039/d3em00537b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Fluridone is an aquatic herbicide commonly used to treat invasive freshwater plant species such as Eurasian watermilfoil, hydrilla, and curly-leaf pondweed. However, required exposures times are very long and often exceed 100 days. Thus, understanding the mechanisms that determine the fate of fluridone in lakes is critical for supporting effective herbicide treatments and minimizing impacts to non-target species. We use a combination of laboratory and field studies to quantify fluridone photodegradation, as well as sorption and microbial degradation in water and sediment microcosms. Laboratory irradiation studies demonstrate that fluridone is susceptible to direct photodegradation with negligible indirect photodegradation, with predicted half-lives in sunlight ranging from 2.3 days (1 cm path length) to 118 days (integrated over 1 meter). Biodegradation is attributable to microbes in sediment with an observed half-life of 57 days. Lastly, fluridone sorbs to sediments (Koc = 340 ± 28 L kg-1); sorption accounts for 16% of fluridone loss in the microcosm experiments. While the laboratory results indicate that all three loss pathways can influence fluridone fate, these controlled studies oversimplify herbicide behavior due to their inability to replicate field conditions. Fluridone concentration measurements in a lake following commercial application demonstrate a half-life of >150 days, indicating that the herbicide is very persistent in water. This study illustrates why caution should be used when relying on laboratory studies to predict the fate of pesticides and other polar organic compounds in the environment.
Collapse
Affiliation(s)
- Sydney R Van Frost
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park St, Madison, WI 53706, USA.
| | - Amber M White
- Environmental Chemistry and Technology Program, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Josie M Jauquet
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park St, Madison, WI 53706, USA.
| | - Angela M Magness
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park St, Madison, WI 53706, USA.
- Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| | - Christina K Remucal
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 660 N. Park St, Madison, WI 53706, USA.
- Environmental Chemistry and Technology Program, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Davenport R, Curtis‐Jackson P, Dalkmann P, Davies J, Fenner K, Hand L, McDonough K, Ott A, Ortega‐Calvo JJ, Parsons JR, Schäffer A, Sweetlove C, Trapp S, Wang N, Redman A. Scientific concepts and methods for moving persistence assessments into the 21st century. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1454-1487. [PMID: 34989108 PMCID: PMC9790601 DOI: 10.1002/ieam.4575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Philipp Dalkmann
- Bayer AG, Crop Science Division, Environmental SafetyMonheimGermany
| | | | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Laurence Hand
- Syngenta, Product Safety, Jealott's Hill International Research CentreBracknellUK
| | | | - Amelie Ott
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | - Jose Julio Ortega‐Calvo
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones CientíficasSevillaSpain
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Andreas Schäffer
- RWTH Aachen University, Institute for Environmental ResearchAachenGermany
| | - Cyril Sweetlove
- L'Oréal Research & InnovationEnvironmental Research DepartmentAulnay‐sous‐BoisFrance
| | - Stefan Trapp
- Department of Environmental EngineeringTechnical University of DenmarkBygningstorvetLyngbyDenmark
| | - Neil Wang
- Total Marketing & ServicesParis la DéfenseFrance
| | - Aaron Redman
- ExxonMobil Petroleum and ChemicalMachelenBelgium
| |
Collapse
|
3
|
Wennberg AC, Meland S, Grung M, Lillicrap A. Unravelling reasons for variability in the OECD 306 marine biodegradation test. CHEMOSPHERE 2022; 300:134476. [PMID: 35367489 DOI: 10.1016/j.chemosphere.2022.134476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The recommended test for assessing if a chemical can be biodegraded in the marine environment is performed according to the Organisation for Economic Cooperation and Development Marine biodegradation test guideline (OECD 306). However, this test is known to generate highly variable test results when comparing interlaboratory test results for the same compound. One reason can be the relatively low bacterial content compared to the inoculum used for OECD readily biodegradation tests (OECD 301). Some of the variability in data obtained from OECD 306 tests can also be due to the flexibility on how to store the seawater inoculum before starting a test. Another variable in the seawater inoculum is the source of seawater used by different laboratories, i.e., geographical location and anthropogenic activities at the source. In this study, the effect of aging seawater and the source of seawater (sample time and depth) were investigated to determine differences in the biodegradation of the reference compound aniline. Aging the seawater before starting the test is recommended in OECD 306 to reduce the background levels of organic carbon in the water. However, it also functions to acclimatize the bacterial community from the environmental source temperature to the test temperature (normally 20 °C). Herein, the microbial community was monitored using flowcytometer during the aging process. As expected, the microbial community changed over time. In one experiment, aging significantly improved the biodegradation of aniline, while in two experiments, there was no significant difference in biodegradation. Interestingly however, there was significant variability in the biodegradation of aniline between sampling seasons and depths, even when all experiments were performed in the same lab, by the same operator and seawater obtained from the same source. This highlights the need for a more robust and consistent microbial inoculum source to reduce variability in seawater biodegradation tests.
Collapse
Affiliation(s)
| | - Sondre Meland
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Merete Grung
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| |
Collapse
|
4
|
Seller C, Özel Duygan BD, Honti M, Fenner K. Biotransformation of Chemicals at the Water–Sediment Interface─Toward a Robust Simulation Study Setup. ACS ENVIRONMENTAL AU 2021; 1:46-57. [PMID: 37101935 PMCID: PMC10114792 DOI: 10.1021/acsenvironau.1c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studying aquatic biotransformation of chemicals in laboratory experiments, i.e., OECD 308 and OECD 309 studies, is required by international regulatory frameworks to prevent the release of persistent chemicals into natural water bodies. Here, we aimed to address several previously described shortcomings of OECD 308/309 studies regarding their variable outcomes and questionable environmental relevance by broadly testing and characterizing a modified biotransformation test system in which an aerated water column covers a thin sediment layer. Compared to standard OECD 308/309 studies, the modified system showed little inter-replicate variability, improved observability of biotransformation, and consistency with first-order biotransformation kinetics for the majority of 43 test compounds, including pharmaceuticals, pesticides, and artificial sweeteners. To elucidate the factors underlying the decreased inter-replicate variability compared to OECD 309 outcomes, we used multidimensional flow cytometry data and a machine learning-based cell type assignment pipeline to study cell densities and cell type diversities in the sediment and water compartments. Our here presented data on cell type composition in both water and sediment allows, for the first time, to study the behavior of microbial test communities throughout different biotransformation simulation studies. We found that sediment-associated microbial communities were generally more stable throughout the experiments and exhibited higher cell type diversity than the water column-associated communities. Consistently, our data indicate that aquatic biotransformation of chemicals can be most robustly studied in test systems providing a sufficient amount of sediment-borne biomass. While these findings favor OECD 308-type systems over OECD 309-type systems to study biotransformation at the water-sediment interface, our results suggest that the former should be modified toward lower sediment-water ratios to improve observability and interpretability of biotransformation.
Collapse
Affiliation(s)
- Carolin Seller
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Birge D. Özel Duygan
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Microbiology, CHUV, 1011 Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mark Honti
- MTA-BME Water Research Group, 1111 Budapest, Hungary
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
5
|
Brown DM, Camenzuli L, Redman AD, Hughes C, Wang N, Vaiopoulou E, Saunders D, Villalobos A, Linington S. Is the Arrhenius-correction of biodegradation rates, as recommended through REACH guidance, fit for environmentally relevant conditions? An example from petroleum biodegradation in environmental systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139293. [PMID: 32438147 DOI: 10.1016/j.scitotenv.2020.139293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 04/15/2023]
Abstract
Biodegradation is a major determinant of chemical persistence in the environment and an important consideration for PBT and environmental risk assessments. It is influenced by several environmental factors including temperature and microbial community structure. According to REACH guidance, a temperature correction based on the Arrhenius equation is recommended for chemical persistence data not performed at the recommended EU mean surface water temperature. Such corrections, however, can lead to overly conservative P/vP assessments. In this paper, the relevance of this temperature correction is assessed for petroleum hydrocarbons, using measured surface water (marine and freshwater) degradation half-time (DT50) and degradation half-life (HL) data compiled from relevant literature. Stringent screening criteria were used to specifically select data from biodegradation tests containing indigenous microbes and conducted at temperatures close to their ambient sampling temperature. As a result, ten independent studies were identified, with 993 data points covering 326 hydrocarbon constituents. These data were derived from tests conducted with natural seawater, or freshwater, at temperatures ranging from 5 to 21 °C. Regressions were performed on the full hydrocarbon dataset and on several individual hydrocarbons. The results were compared to the trend as predicted by the Arrhenius equation and using the activation energy (Ea) as recommend in the REACH Guidance. The comparison shows that the correction recommended in REACH Guidance over predicts the effect of temperature on hydrocarbon biodegradation. These results contrast with temperature manipulated inocula where the test temperature is different from the ambient sampling temperature. In these manipulated systems, the effect of temperature follows the Arrhenius equation more closely. In addition, a more striking effect of temperature on the lag phase was observed with longer lag phases more apparent at lower temperatures. This indicates that the effect of temperature may indeed be even lower when considering hydrocarbon biodegradation without the initial lag phase.
Collapse
Affiliation(s)
| | - Louise Camenzuli
- ExxonMobil Petroleum & Chemical, Machelen, Belgium; Concawe, Brussels, Belgium
| | - Aaron D Redman
- ExxonMobil Petroleum & Chemical, Machelen, Belgium; Concawe, Brussels, Belgium
| | | | - Neil Wang
- Total, Paris, France; Concawe, Brussels, Belgium
| | | | - David Saunders
- Concawe, Brussels, Belgium; Shell International, The Hague, Netherlands
| | | | | |
Collapse
|
6
|
Ott A, Martin TJ, Acharya K, Lyon DY, Robinson N, Rowles B, Snape JR, Still I, Whale GF, Albright VC, Bäverbäck P, Best N, Commander R, Eickhoff C, Finn S, Hidding B, Maischak H, Sowders KA, Taruki M, Walton HE, Wennberg AC, Davenport RJ. Multi-laboratory Validation of a New Marine Biodegradation Screening Test for Chemical Persistence Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4210-4220. [PMID: 32162906 DOI: 10.1021/acs.est.9b07710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current biodegradation screening tests are not specifically designed for persistence assessment of chemicals, often show high inter- and intra-test variability, and often give false negative biodegradation results. Based on previous studies and recommendations, an international ring test involving 13 laboratories validated a new test method for marine biodegradation with a focus on improving the reliability of screening to determine the environmental degradation potential of chemicals. The new method incorporated increased bacterial cell concentrations to better represent the microbial diversity; a chemical is likely to be exposed in the sampled environments and ran beyond 60 days, which is the half-life threshold for chemical persistence in the marine environment. The new test provided a more reliable and less variable characterization of the biodegradation behavior of five reference chemicals (sodium benzoate, triethanolamine, 4-nitrophenol, anionic polyacrylamide, and pentachlorophenol), with respect to REACH and OSPAR persistence thresholds, than the current OECD 306 test. The proposed new method provides a cost-effective screening test for non-persistence that could streamline chemical regulation and reduce the cost and animal welfare implications of further higher tier testing.
Collapse
Affiliation(s)
- Amelie Ott
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Timothy J Martin
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Delina Y Lyon
- Shell Oil Company, 150 N. Dairy Ashford Rd., Houston, Texas 77079, United States
| | - Nik Robinson
- European Oilfield Specialty Chemicals Association (EOSCA), Aberdeen AB11 6YQ, United Kingdom
| | - Bob Rowles
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, United Kingdom
| | - Jason R Snape
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- AstraZeneca Global Environment, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TF, United Kingdom
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, United Kingdom
| | - Ian Still
- European Oilfield Specialty Chemicals Association (EOSCA), Aberdeen AB11 6YQ, United Kingdom
| | - Graham F Whale
- Risk Science Team, Shell International Ltd., 4 York Road, London SE1 7NA, United Kingdom
| | - Vurtice C Albright
- Toxicology & Environmental Research & Consulting, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Petra Bäverbäck
- Schlumberger, Sandslikroken 140, Sandsli, Bergen 5254, Norway
| | - Nicola Best
- Covance CRS Research Limited, Shardlow Business Park, London Road, Derby DE72 2GD, United Kingdom
| | - Ruth Commander
- Scymaris Ltd., Brixham Laboratory, Brixham TQ5 8BA, United Kingdom
| | - Curtis Eickhoff
- Nautilus Environmental Company, Inc., Burnaby, BC V5A 4N7, Canada
| | - Sarah Finn
- National Oilwell Varco (NOV), Flotta, Stromness, Orkney, KW16 3NP, United Kingdom
| | - Björn Hidding
- BASF SE, Carl-Bosch-Straße 38, Ludwigshafen am Rhein 67056, Germany
| | - Heiko Maischak
- Noack Laboratorien GmbH, Käthe-Paulus-Straße 1, Sarstedt, Hildesheim 31157, Germany
| | - Katherine A Sowders
- Baker Hughes - Environmental Services Group, 369 Marshall Ave., Webster Groves, Missouri 63119, United States
| | - Masanori Taruki
- Chemicals Evaluation and Research Institute, Japan, Kurume (CERI Kurume), 3-2-7 Miyanojin, Kurume-shi, Fukuoka 839-0801, Japan
| | - Helen E Walton
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, United Kingdom
| | | | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
7
|
Ott A, Martin TJ, Snape JR, Davenport RJ. Increased cell numbers improve marine biodegradation tests for persistence assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135621. [PMID: 31841849 DOI: 10.1016/j.scitotenv.2019.135621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 04/15/2023]
Abstract
Currently available OECD biodegradation screening tests (BSTs) are not particularly suited for persistence screening. Their duration can be much less than international half-life thresholds for persistence and they are variable and stringent, therefore prone to false negatives. The present study extended test durations beyond 28 days and increased biomass concentrations for marine BSTs to better represent the microbial diversity inherent in the sampled environment. For this so-called environmentally relevant BST (erBST) marine cell concentrations were nominally increased 100-fold by tangential flow filtration. The marine erBST was validated against a standard BST using five 14C labeled reference compounds with a range of biodegradation potentials (aniline, 4-fluorophenol, 4-nitrophenol, 4-chloroaniline and pentachlorophenol) in a modified OECD 301B test. A full mass balance was collated to follow chemical fate in the tests. The erBST was more accurate and less variable than the comparator BST in assigning the reference compounds to their expected biodegradation classifications (non-persistent or potentially persistent). According to the REACH non-persistence criterion of ≥60% biodegradation over 60 days, the erBST correctly classified 60% of chemical replicates according to their expected biodegradation classification and had a coefficient of variation of 21% between replicates. In contrast, the BST correctly assessed 40% of reference chemicals in regards to their expected biodegradation classification with a coefficient of variation of 36%. All non-persistent chemicals showed increased degradation in the erBST, except for 4-chloroaniline, which did not degrade in either BST or erBST. Both tests showed no false positive results, correctly classifying the negative control pentachlorophenol as potentially persistent. Next, it is recommended to further validate the marine erBST in an inter-laboratory study incorporating different seawater sources to fully assess its variability and reliability.
Collapse
Affiliation(s)
- Amelie Ott
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK.
| | - Timothy J Martin
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK
| | - Jason R Snape
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK; AstraZeneca Global Environment, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK; University of Warwick, School of Life Sciences, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Russell J Davenport
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|