1
|
Chen X, Gong D, Lin Y, Xu Q, Wang Y, Liu S, Li Q, Ma F, Li J, Deng S, Wang H, Wang B. Emission characteristics of biogenic volatile organic compounds in a subtropical pristine forest of southern China. J Environ Sci (China) 2025; 148:665-682. [PMID: 39095198 DOI: 10.1016/j.jes.2023.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 08/04/2024]
Abstract
Emission characteristics of biogenic volatile organic compounds (BVOCs) from dominant tree species in the subtropical pristine forests of China are extremely limited. Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients (600-1690 m a.s.l.) in the Nanling Mountains of southern China. Composition characteristics as well as seasonal and altitudinal variations were analyzed. Standardized emission rates and canopy-scale emission factors were then calculated. Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season. Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees, accounting for over 70% of the total. Schima superba, Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials. The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model. Our results can be used to update the current BVOCs emission inventory in MEGAN, thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.
Collapse
Affiliation(s)
- Xi Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Youjing Lin
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 571126, China
| | - Qiao Xu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Yujin Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Shiwei Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Qinqin Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Fangyuan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Shuo Deng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China.
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China.
| |
Collapse
|
2
|
Chen X, Gong D, Liu S, Meng X, Li Z, Lin Y, Li Q, Xu R, Chen S, Chang Q, Ma F, Ding X, Deng S, Zhang C, Wang H, Wang B. In-situ online investigation of biogenic volatile organic compounds emissions from tropical rainforests in Hainan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176668. [PMID: 39370005 DOI: 10.1016/j.scitotenv.2024.176668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Biogenic volatile organic compounds (BVOCs) emitted by tropical plants represent a significant proportion of global emissions, but the in-situ BVOC measurements in tropical rainforests are extremely sparse. Herein, a vehicle-mounted mobile monitoring system was developed for in-situ online investigations of BVOC emissions from thirty representative tree species in the tropical rainforests of Hainan Island, southern China. The results showed that monoterpenes were the primary BVOCs emitted from most broadleaf trees. Isoprene, sabinene, γ-terpinene and β-ocimene were the most abundant BVOCs. Localized canopy-scale emission factors (EFs) exhibited notable discrepancies with the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), specifically with isoprene EFs being slightly lower than the model, while the EFs for monoterpenes and sesquiterpenes were 1 to 27 times higher than those in MEGAN. The BVOC emission inventory for the predominant mature forest species in Hainan Island in 2023 was further estimated to be 244.43 Gg C·yr-1, with isoprene and monoterpenes accounting for 74 % and 16 %, respectively. Additionally, unimodal monthly variation patterns were revealed, with BVOC emissions peaked in July (30.08 Gg C·yr-1) and bottomed in January (8.84 Gg C·yr-1). This study demonstrates the potential and versatility of the applied mobile platform for in-situ online measurements of plant volatiles. Our findings provide important data support for reducing uncertainties in BVOC emission estimations in tropical rainforests and for evaluating their health benefits in the context of forest therapy.
Collapse
Affiliation(s)
- Xi Chen
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China.
| | - Shiwei Liu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Xinxin Meng
- Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 571126, China
| | - Zhu Li
- Wuzhishan Ecological Environment Monitoring Station, Wuzhishan, Hainan 572299, China
| | - Youjing Lin
- Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 571126, China
| | - Qinqin Li
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Ruiyun Xu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Sijun Chen
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Qinghua Chang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Fangyuan Ma
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Xiaoxiao Ding
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Shuo Deng
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Chengliang Zhang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Hao Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Boguang Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China.
| |
Collapse
|
3
|
Liu S, Gong D, Wang Y, Wang H, Liu X, Huang J, Xu Q, Ma F, He C, Wang B. Responses of plant volatile emissions to increasing nitrogen deposition: A pilot study on Eucalyptus urophylla. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175887. [PMID: 39216761 DOI: 10.1016/j.scitotenv.2024.175887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Biogenic volatile organic compounds (BVOCs) significantly impact atmospheric chemistry, with emissions potentially influenced by nitrogen (N) deposition. The response of BVOC emissions to increasing N deposition remains debated. In this study, we examined Eucalyptus urophylla (E. urophylla) using three N treatments: N0, N50, and N100 (0, 50, and 100 kg N hm-2 yr-1 N addition). These treatments were applied to mature E. urophylla trees in a plantation subjected to over 10 years of soil N addition in southern China, a region with severe N deposition. Seventeen BVOCs were measured, with isoprene (36.99 %), α-pinene (38.80 %), and d-limonene (14.27 %) being the predominant compounds under natural conditions. Total BVOC emissions under N50 were nearly double those under N0 and N100, with leaf net CO2 assimilation identified as the most critical photosynthetic parameter. Isoprene and α-pinene emissions significantly increased under N50 compared to N0, while d-limonene emission decreased under N100. Stronger correlations for individual BVOCs under N50 and N100 compared to N0 might be due to differences in BVOC biosynthetic pathways and storage structures. The localized canopy-scale emission factors (EFs) under N50 were significantly higher than the default values in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), suggesting the model might underestimate BVOC emissions from Eucalyptus in southern China under increased N deposition. Additionally, the secondary pollutant formation potentials of BVOCs were evaluated, identifying isoprene and monoterpenes as primary precursors of ozone and secondary organic aerosols. This study provides insights into the impacts of increased N deposition on BVOC emissions and their contribution to secondary atmospheric pollution. Updating localized BVOC EFs for subtropical tree species in southern China is crucial to reduce uncertainties in BVOC estimations under current and future N deposition scenarios.
Collapse
Affiliation(s)
- Shiwei Liu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Yujin Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| | - Xiaoting Liu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Juan Huang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Qiao Xu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Fangyuan Ma
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Congrong He
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane QLD4000, Australia
| | - Boguang Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| |
Collapse
|
4
|
Ma F, Zhang G, Zhang J, Luo X, Liao L, Wang H, Tang X, Yi Z. Isoprenoid emissions from Schima superba and Cunninghamia lanceolata: Their responses to elevated temperature by two warming facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172669. [PMID: 38677435 DOI: 10.1016/j.scitotenv.2024.172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Isoprenoids (including isoprene (ISO) and monoterpenes (MTs)) are the majority of biogenic volatile organic compounds (BVOCs) which are important carbon-containing secondary metabolites biosynthesized by organisms, especially plant in terrestrial ecosystem. Results of the warming effects on isoprenoid emissions vary within species and warming facilities, and thus conclusions remain controversial. In this study, two typical subtropical tree species seedlings of Schima superba and Cunninghamia lanceolata were cultivated under three conditions, namely no warming (CK) and two warming facilities (with infrared radiators (IR) and heating wires (HW)) in open top chamber (OTC), and the isoprenoid emissions were measured with preconcentor-GC-MS system after warming for one, two and four months. The results showed that the isoprenoid emissions from S. superba and C. lanceolata exhibited uniformity in response to two warming facilities. IR and HW both stimulated isoprenoid emissions in two plants after one month of treatment, with increased ratios of 16.3 % and 72.5 % for S. superba, and 2.47 and 5.96 times for C. lanceolata. However, the emissions were suppressed after four months, with more pronounced effect for HW. The variation in isoprenoid emissions was primarily associated with the levels of Pn, Tr, monoterpene synthase (MTPS) activity. C. lanceolata predominantly released MTs (mainly α-pinene, α-terpene, γ-terpene, and limonene), with 39.7 % to 99.6 % of the total isoprenoid but ISO was only a very minor constituent. For S. superba, MTs constituted 24.7 % to 96.1 % of total isoprenoid. It is noteworthy that HW generated a greater disturbance to physiology activity in plants. Our study provided more comprehensive and more convincing support for integrating temperature-elevation experiments of different ecosystems and assessing response and adaptation of forest carbon cycle to global warming.
Collapse
Affiliation(s)
- Fangyuan Ma
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Geye Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Junchuan Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xinyue Luo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lulu Liao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Xinghao Tang
- Fujian Academy of Forestry Science, Fuzhou 350012, China
| | - Zhigang Yi
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Sun Y, Fernie AR. Plant secondary metabolism in a fluctuating world: climate change perspectives. TRENDS IN PLANT SCIENCE 2024; 29:560-571. [PMID: 38042677 DOI: 10.1016/j.tplants.2023.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
Climate changes have unpredictable effects on ecosystems and agriculture. Plants adapt metabolically to overcome these challenges, with plant secondary metabolites (PSMs) being crucial for plant-environment interactions. Thus, understanding how PSMs respond to climate change is vital for future cultivation and breeding strategies. Here, we review PSM responses to climate changes such as elevated carbon dioxide, ozone, nitrogen deposition, heat and drought, as well as a combinations of different factors. These responses are complex, depending on stress dosage and duration, and metabolite classes. We finally identify mechanisms by which climate change affects PSM production ecologically and molecularly. While these observations provide insights into PSM responses to climate changes and the underlying regulatory mechanisms, considerable further research is required for a comprehensive understanding.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
6
|
Morrone L, Neri L, Facini O, Galamini G, Ferretti G, Rotondi A. Influence of Chabazite Zeolite Foliar Applications Used for Olive Fruit Fly Control on Volatile Organic Compound Emission, Photosynthesis, and Quality of Extra Virgin Olive Oil. PLANTS (BASEL, SWITZERLAND) 2024; 13:698. [PMID: 38475542 DOI: 10.3390/plants13050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The olive fruit fly (Bactrocera oleae Rossi) is the most dangerous pest of olive fruits and negatively influences the chemical and sensory quality of the oil produced. Organic farms have few tools against this pest and are constantly looking for effective and sustainable products such as geomaterials, i.e., zeolite. Since a particle film covers the canopy, a study was carried out on the olive tree's responses to zeolite foliar coating. The tested treatments were natural zeolite (NZ), zeolite enriched with ammonium (EZ), and Spintor-Fly® (SF). EZ was associated with higher photosynthetic activity with respect to the other treatments, while no differences were found between SF and NZ. Foliar treatments affect the amount of BVOC produced in both leaves and olives, where 26 and 23 different BVOCs (biogenic volatile organic compounds) were identified but not the type of compounds emitted. Foliar treatment with EZ significantly affected fruit size, and the olive fruit fly more frequently attacked the olives, while treatment with NZ had olives with similar size and attack as those treated with Spintor-Fly®; no difference in oil quantity was detected. Oil produced from olives treated with NZ presented higher values of phenolic content and intensities of bitterness and spiciness than oils from those treated with EZ and SF. According to the results of this study, using zeolite films on an olive tree canopy does not negatively influence plant physiology; it has an impact on BVOC emission and the chemical and sensory characteristics of the oil.
Collapse
Affiliation(s)
- Lucia Morrone
- Institute of BioEconomy, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| | - Luisa Neri
- Institute of BioEconomy, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| | - Osvaldo Facini
- Institute of BioEconomy, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| | - Giulio Galamini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Street Giuseppe Campi, 103, 41125 Modena, Italy
| | - Giacomo Ferretti
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
| | - Annalisa Rotondi
- Institute of BioEconomy, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
7
|
Yang W, Zhang B, Wu Y, Liu S, Kong F, Li L. Effects of soil drought and nitrogen deposition on BVOC emissions and their O 3 and SOA formation for Pinus thunbergii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120693. [PMID: 36402418 DOI: 10.1016/j.envpol.2022.120693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Soil drought and nitrogen (N) deposition can influence the biogenic volatile organic compound (BVOC) emissions and thereby their ozone (O3) and secondary organic aerosol (SOA) formation. This study addressed their single and combined effects on BVOC emissions of Pinus thunbergii by laboratory simulation experiments. The results showed that light drought (LD, 50% soil volumetric water content (VWC)) stimulated isoprene, monoterpene, sesquiterpene, and total BVOC emissions, while moderate drought (MD, 30% and 40% VWC) and severe drought (SD, 10% and 20% VWC) inhibited their emissions (except for sesquiterpene in 20% VWC). N deposition decreased other VOC emissions and increased isoprene and sesquiterpene emissions. Total BVOCs and monoterpene were stimulated in low N deposition (LN, 2 g N/(m2·yr)) and inhibited in moderate (MN, 5 g N/(m2·yr)) and high N deposition (HN, 10 g N/(m2·yr)). Under combined treatment of soil drought and N deposition, total BVOC, monoterpene, and other VOC emissions were inhibited, sesquiterpene had no significant change, and isoprene emission was inhibited in MD combined treatment but promoted in SD. The O3 formation potential (OFP) and SOA formation potential (SOAP) from the changed BVOC emissions were calculated, OFP and SOAP of BVOC emissions and their compositions varied significantly among the treatments. Our study provided theoretical basis for assessing the impact of climate change and atmospheric pollution on BVOC emissions and their contribution to the formation of secondary atmospheric pollution.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Baowen Zhang
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuai Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
8
|
A Modeling Approach for Quantifying Human-Beneficial Terpene Emission in the Forest: A Pilot Study Applying to a Recreational Forest in South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148278. [PMID: 35886129 PMCID: PMC9324495 DOI: 10.3390/ijerph19148278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
(1) Background: Recent economic developments in South Korea have shifted people’s interest in forests from provisioning to cultural services such as forest healing. Although policymakers have attempted to designate more forests for healing purposes, there are few established standards for carrying out such designations based on the quantified estimation. (2) Methods: We suggest a modeling approach to estimate and analyze the emission rate of human-beneficial terpenes. For this purpose, we adopted and modified the Model of Emissions of Gases and Aerosols from Nature (MEGAN), a commonly used biogenic volatile organic compounds (BVOCs) estimation model which was suitable for estimating the study site’s terpene emissions. We estimated the terpene emission rate for the whole year and analyzed the diurnal and seasonal patterns. (3) Results: The results from our model correspond well with other studies upon comparing temporal patterns and ranges of values. According to our study, the emission rate of terpenes varies significantly temporally and spatially. The model effectively predicted spatiotemporal patterns of terpene emission in the study site. (4) Conclusions: The modeling approach in our study is suitable for quantifying human-beneficial terpene emission and helping policymakers and forest managers plan the efficient therapeutic use of forests.
Collapse
|
9
|
Chen WQ, Zhang XY. 1,3-Butadiene: a ubiquitous environmental mutagen and its associations with diseases. Genes Environ 2022; 44:3. [PMID: 35012685 PMCID: PMC8744311 DOI: 10.1186/s41021-021-00233-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has been associated with a range of adverse health effects and diseases with children being a subpopulation with potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more studies are needed.
Collapse
Affiliation(s)
- Wan-Qi Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Cai M, An C, Guy C, Lu C, Mafakheri F. Assessing the regional biogenic methanol emission from spring wheat during the growing season: A Canadian case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117602. [PMID: 34182392 DOI: 10.1016/j.envpol.2021.117602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
As a volatile organic compound existing in the atmosphere, methanol plays a key role in atmospheric chemistry due to its comparatively high abundance and long lifetime. Croplands are a significant source of biogenic methanol, but there is a lack of systematic assessment for the production and emission of methanol from crops in various phases. In this study, methanol emissions from spring wheat during the growing period were estimated using a developed emission model. The temporal and spatial variations of methanol emissions of spring wheat in a Canadian province were investigated. The averaged methanol emission of spring wheat is found to be 37.94 ± 7.5 μg·m-2·h-1, increasing from north to south and exhibiting phenological peak to valley characteristics. Moreover, cold crop districts are projected to be with higher increase in air temperature and consequent methanol emissions during 2020-2099. Furthermore, the seasonality of methanol emissions is found to be positively correlated to concentrations of CO, filterable particulate matter, and PM10 but negatively related to NO2 and O3. The uncertainty and sensitivity analysis results suggest that methanol emissions show a Gamma probabilistic distribution, and growth length, air temperature, solar radiation and leafage are the most important influencing variables. In most cases, methanol emissions increase with air temperature in the range of 3-35 °C while the excessive temperature may result in decreased methanol emissions because of inactivated enzyme activity or increased instant methanol emissions due to heat injury. Notably, induced emission might be the major source of biogenic methanol of mature leaves. The results of this study can be used to develop appropriate strategies for regional emission management of cropping systems.
Collapse
Affiliation(s)
- Mengfan Cai
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Christophe Guy
- Department of Chemical and Materials Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chen Lu
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada
| | - Fereshteh Mafakheri
- Concordia Institute for Information Systems Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
11
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Yuan X, Li S, Feng Z, Xu Y, Shang B, Fares S, Paoletti E. Response of isoprene emission from poplar saplings to ozone pollution and nitrogen deposition depends on leaf position along the vertical canopy profile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114909. [PMID: 32540567 DOI: 10.1016/j.envpol.2020.114909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
We investigated isoprene (ISO) emission and gas exchange in leaves from different positions along the vertical canopy profile of poplar saplings (Populus euramericana cv. '74/76'). For a growing season, plants were subjected to four N treatments, control (NC, no N addition), low N (LN, 50 kg N ha-1year-1), middle N (MN, 100 kg N ha-1year-1), high N (HN, 200 kg N ha-1year-1) and three O3 treatments (CF, charcoal-filtered ambient air; NF, non-filtered ambient air; NF + O3, NF + 40 ppb O3). Our results showed the effects of O3 and/or N on standardized ISO rate (ISOrate) and photosynthetic parameters differed along with the leaf position, with larger negative effects of O3 and positive effects of N on ISOrate and photosynthetic parameters in the older leaves. Expanded young leaves were insensitive to both treatments even at very high O3 concentration (67 ppb as 10-h average) and HN treatment. Significant O3 × N interactions were only found in middle and lower leaves, where ISOrate declined by O3 just when N was limited (NC and LN). With increasing light-saturated photosynthesis and chlorophyll content, ISOrate was reduced in the upper leaves but on the contrary increased in middle and lower leaves. The responses of ISOrate to AOT40 (accumulated exposure to hourly O3 concentrations > 40 ppb) and PODY (accumulative stomatal uptake of O3 > Y nmol O3 m-2 PLA s-1) were not significant in upper leaves, but ISOrate significantly decreased with increasing AOT40 or PODY under limited N supply in middle leaves but at all N levels in lower leaves. Overall, ISOrate changed along the vertical canopy profile in response to combined O3 and N exposure, a behavior that should be incorporated into multi-layer canopy models. Our results are relevant for modelling regional isoprene emissions under current and future O3 pollution and N deposition scenarios.
Collapse
Affiliation(s)
- Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Shuangjiang Li
- School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Silvano Fares
- Council for Agricultural Research and Economics (CREA) - Research Centre for Forestry and Wood, Via Valle della Quistione 27, 00166, Rome, Italy
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Institute of Research on Terrestrial Ecosystems, National Research Council, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|