1
|
Yang C, Yan S, Zhang B, Yao X, Mo J, Rehman F, Guo J. Spatiotemporal distribution of the planktonic microbiome and antibiotic resistance genes in a typical urban river contaminated by macrolide antibiotics. ENVIRONMENTAL RESEARCH 2024; 262:119808. [PMID: 39153565 DOI: 10.1016/j.envres.2024.119808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The widespread application of macrolide antibiotics has caused antibiotic resistance pollution, threatening the river ecological health. In this study, five macrolide antibiotics (azithromycin, clarithromycin, roxithromycin, erythromycin, and anhydro erythromycin A) were monitored in the Zao River across three hydrological periods (April, July, and December). Simultaneously, the changes in antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and planktonic bacterial communities were determined using metagenomic sequencing. A clear pollution gradient was observed for azithromycin and roxithromycin, with the concentrations in the dry season surpassing those in other seasons. The highest concentration was observed for azithromycin (1.36 μg/L). The abundance of MLS resistance genes increased along the Zao River during the dry season, whereas the opposite trend was obtained during the wet season. A significant correlation between the levels of MLS resistance genes and macrolide antibiotics was identified during the dry season. Notably, compared with the reference site, the abundance of transposase in the effluent from wastewater treatment plants (WWTPs) was significantly elevated in both dry and wet seasons, whereas the abundance of insertion sequences (IS) and plasmids declined during the dry season. The exposure to wastewater containing macrolide antibiotics altered the diversity of planktonic bacterial communities. The bacterial host for ARGs appeared to be Pseudomonas, primarily associated with multidrug subtypes. Moreover, the ARG subtypes were highly correlated with MGEs (transposase and istA). The partial least-squares path model (PLS-PM) demonstrated a positive correlation between the abundance of MGEs and ARGs, indicating the significance of horizontal gene transfer (HGT) in the dissemination of ARGs within the Zao River. Environmental variables, such as TN and NO3--N, were significantly correlated with the abundance of MGEs, ARGs, and bacteria. Collectively, our findings could provide insights into the shift patterns of the microbiome and ARGs across the contamination gradient of AZI and ROX in the river.
Collapse
Affiliation(s)
- Chuanmao Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Shiwei Yan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Baihuan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Xiunan Yao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
2
|
Wang Y, Cao T, Liu Q, Xuan B, Mu Z, Zhao J. Stochastic processes driving cyanobacterial temporal succession in response to typhoons in a coastal reservoir. WATER RESEARCH 2024; 267:122480. [PMID: 39316959 DOI: 10.1016/j.watres.2024.122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Typhoons associated with heavy rainfall events, potentially triggering harmful algal blooms (cyanoHABs) dominated by cyanobacteria in coastal reservoirs. These blooms deteriorate water quality and produce toxins, posing a threat to aquatic ecosystems. However, the ecological mechanisms driving cyanobacteria communities in response to typhoons remain unclear. To address this gap, we investigated a coastal reservoir with high-frequency sampling during two typhoon seasons. We employed comprehensive statistical methods under neutral and evolutionary theories to analyze environmental dynamics and cyanobacterial genus succession. Our findings revealed a significant increase in nutrient loads following typhoons, with concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia-nitrogen (NH4+-N) rising from 0.4 mg/L to 1.0 mg/L, 0.02 mg/L to 0.63 mg/L, and 0.03 mg/L to 0.26 mg/L, respectively. These changes coincided with fluctuations in other physicochemical parameters under changing hydrometeorological conditions. Despite significant environmental disturbances, the cyanobacterial community exhibited a remarkable recovery within 15-25 days following the typhoons. This recovery progressed through four distinct successional phases, with a notable shift in community composition from Raphidiopsis and Pseudoanabaena to Aphanocapsa, subsequently replaced by Raphidiopsis and Microcystis, before reverting to the pre-typhoon community structure. During the entire successional phase, the availability of TN and the TN/TP ratio played a dominant role, as indicated by PLS-PM analysis (total effects = -0.6; p < 0.05). Pre-typhoon, environmental factors primarily influenced community structure (54 %) based on modified stochasticity ratio. However, following the typhoons, stochastic fluctuations took precedence (71 %-91 %). The rapid recovery of cyanobacterial communities and the shift in driving mechanisms from deterministic to stochastic processes underscore the complex ecological responses to typhoon events. This study provides essential insights for biodiversity preservation and ecosystem restoration, emphasizing the need to consider both stochastic and deterministic processes in ecological management strategies.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Tianzheng Cao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China; Key Laboratory of Water Safety for Beijing-Tianjin-Hebei Region of Ministry of Water Resources, Beijing 100038, PR China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower research, Beijing 100038, PR China
| | - Qingqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Boyu Xuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhengyuan Mu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Jian Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
3
|
Peter PO, Ifon BE, Nkinahamira F, Lasisi KH, Li J, Hu A, Yu CP. Harnessing the composition of dissolved organic matter in lagoon sediment in association with rare earth elements using fluorescence and UV-visible absorption spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168139. [PMID: 37890635 DOI: 10.1016/j.scitotenv.2023.168139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Dissolved Organic Matter (DOM) plays a pivotal role in influencing metal binding and mobility within lagoon sediments. However, there exists a gap in understanding the compositional alterations of DOM concerning Rare Earth Elements (REEs) across varying pollution gradients. This study aimed to characterize DOM and examine its relationship with REEs in sediment cores from different pollution levels in Yundang Lagoon, China using excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). The results raveled four distinct fluorescent components. Among these, two correspond to humic-like substances, while the remaining two are attributed to protein-like substances. Remarkably, the prevalence of protein-like compounds was observed to exceed 58% of the total fluorescence intensity across all the investigated sites. Furthermore, a substantial discrepancy in total fluorescence intensity was detected between the Songbai Lake and the Inner and Outer Lagoon, indicating a variance in DOM content. In terms of REEs, the average concentration of total REEs was notably elevated within the Songbai Lake sediments (318.36 mg/kg) as compared to the Inner and Outer Lagoon sediments (296.36 and 278.05 mg/kg, respectively). Of significance is the enrichment of Light Rare Earth Elements (LREEs), particularly Ce, La, Pr, and Nd, over Heavy REEs (HREEs) across all surveyed locations. Intriguingly, a coherent trend emerged wherein the fluorescence intensity and LREE concentrations exhibited a synchronized increase from Outer to Inner to Songbai Lake core sediments. This observation substantiates a strong correlation between DOM content and pollution levels (p < 0.05). By shedding light on the intricate interplay between DOM and REEs within urban aquatic sediments, this study imparts novel insights which enrich our comprehension of urban environmental dynamics.
Collapse
Affiliation(s)
- Philomina Onyedikachi Peter
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binessi Edouard Ifon
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - François Nkinahamira
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kayode Hassan Lasisi
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
4
|
Hou L, Li J, Wang H, Chen Q, Su JQ, Gad M, Ahmed W, Yu CP, Hu A. Storm promotes the dissemination of antibiotic resistome in an urban lagoon through enhancing bio-interactions. ENVIRONMENT INTERNATIONAL 2022; 168:107457. [PMID: 35963060 DOI: 10.1016/j.envint.2022.107457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic-resistance genes (ARGs) and resistant bacteria (ARB) are abundant in stormwater that could cause serious infections, posing a potential threat to public health. However, there is no inference about how stormwater contributes to ARG profiles as well as the dynamic interplay between ARGs and bacteria via vertical gene transfer (VGT) or horizontal gene transfer (HGT) in urban water ecosystems. In this study, the distribution of ARGs, their host communities, and the source and community assembly process of ARGs were investigated in Yundang Lagoon (China) via high-throughput quantitative PCR, 16S rRNA gene amplicon sequencing, and application of SourceTracker before, after and recovering from an extreme precipitation event (132.1 mm). The abundance of ARGs and mobile genetic elements (MGEs) was the highest one day after precipitation and then decreased 2 days after precipitation and so on. Based on SourceTracker and NMDS analysis, the ARG and bacterial communities in lagoon surface water from one day after precipitation were mainly contributed by the wastewater treatment plant (WWTP) influent and effluent. However, the contribution of WWTP to ARG communities was minor 11 days after the precipitation, suggesting that the storm promoted the ARG levels by introducing the input of ARGs, MGEs, and ARB from point and non-point sources, such as sewer overflow and land-applied manure. Based on a novel microbial network analysis framework, the contribution of positive biological interactions between ARGs and MGEs or bacteria was the highest one day after precipitation, indicating a promoted VGT and HGT for ARG dissemination. The microbial networks deconstructed 11 days after precipitation, suggesting the stormwater practices (e.g., tide gate opening, diversion channels, and pumping) alleviated the spread of ARGs. These results advanced our understanding of the distribution and transport of ARGs associated with their source in urban stormwater runoff.
Collapse
Affiliation(s)
- Liyuan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingfu Chen
- Yundang Lake Management Center, Xiamen, Fujian 361004, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Mahmoud Gad
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Uddin MM, Peng G, Huang L. Trophic transfer, bioaccumulation, and potential health risk of trace elements in water and aquatic organisms of Yundang Lagoon at Xiamen in China. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammad Mazbah Uddin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Guogan Peng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Cao M, Hu A, Gad M, Adyari B, Qin D, Zhang L, Sun Q, Yu CP. Domestic wastewater causes nitrate pollution in an agricultural watershed, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153680. [PMID: 35150684 DOI: 10.1016/j.scitotenv.2022.153680] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Excessive quantities of nitrates in the aquatic environment can cause eutrophication and raise water safety concerns. Therefore, identification of the sources of nitrate is crucial to mitigate nitrate pollution and for better management of the water resources. Here, the spatiotemporal variations and sources of nitrate were investigated by stable isotopes (δ15N and δ18O), hydrogeochemical variables (e.g., NO3- and Cl-), and exogenous microbial signals (i.e., sediments, soils, domestic and swine sewage) in an agricultural watershed (Changle River watershed) in China. The concentration ranges of δ15N- and δ18O-NO3- between 3.03‰-18.97‰ and -1.55‰-16.47‰, respectively, suggested that soil nitrogen, chemical fertilizers, and manure and sewage (M&S) were the primary nitrate sources. Bayesian isotopic mixing model suggested that the major proportion of nitrate within the watershed (53.12 ± 10.40% and 63.81 ± 15.08%) and tributaries (64.43 ± 5.03% and 76.20 ± 4.34%) were contributed by M&S in dry and wet seasons, respectively. Community-based microbial source tracking (MST) showed that untreated and treated domestic wastewater was the major source (>70%) of river microbiota. Redundancy analysis with the incorporation of land use, hydrogeochemical variables, dual stable isotope, and exogenous microbial signals revealed domestic wastewater as the dominant cause of nitrate pollution. Altogether, this study not only identifies and quantifies the spatiotemporal variations in nitrate sources in the study area but also provides a new analytical framework by combining nitrate isotopic signatures and community-based MST approaches for source appointment of nitrate in other polluted watersheds.
Collapse
Affiliation(s)
- Meixian Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Mahmoud Gad
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
7
|
Gad M, Hou L, Cao M, Adyari B, Zhang L, Qin D, Yu CP, Sun Q, Hu A. Tracking microeukaryotic footprint in a peri-urban watershed, China through machine-learning approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150401. [PMID: 34562761 DOI: 10.1016/j.scitotenv.2021.150401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Microeukaryotes play a significant role in biogeochemical cycling and can serve as bioindicators of water quality in freshwater ecosystems. However, there is a knowledge gap on how freshwater microeukaryotic communities are assembled, especially that how terrestrial microeukaryotes influence freshwater microeukaryotic assemblages. Here, we used a combination of 18S rRNA gene amplicon sequencing and community-based microbial source tracking (MST) approaches (i.e., SourceTracker and FEAST) to assess the contribution of microeukaryotes from surrounding environments (i.e., soils, river sediments, swine wastewater, influents and effluents of decentralized wastewater treatment plants) to planktonic microeukaryotes in the main channel, tributaries and reservoir of a peri-urban watershed, China in wet and dry seasons. The results indicated that SAR (~ 49% of the total communities), Opithokonta (~ 34%), Archaeplastida (~ 9%), and Amoebozoa (~ 2%) were dominant taxa in the watershed. The community-based MST analysis revealed that sewage effluents (7.96 - 21.84%), influents (2.23 - 13.97%), and river sediments (2.56 - 11.71%) were the major exogenous sources of riverine microeukaryotes. At the spatial scale, the downstream of the watershed (i.e., main channel and tributaries) received higher proportions of exogenous microeukaryotic OTUs compared to the upstream reservoirs, while at the seasonal scale, the sewage effluents and influents contributed higher exogenous microeukaryotes to river water in wet season than in dry season. Moreover, the swine and domestic wastewater led to the presence of Apicomplexa in wet season only, implying rainfall runoff may enhance the spread of parasitic microeukaryotes. Taken together, our study provides novel insights into the immigration patterns of microeukaryotes and their dominant supergroups between terrestrial and riverine habitats.
Collapse
Affiliation(s)
- Mahmoud Gad
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Liyuan Hou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meixian Cao
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bob Adyari
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Qin
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Qian Sun
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
8
|
Hou L, Wang H, Chen Q, Su JQ, Gad M, Li J, Mulla SI, Yu CP, Hu A. Fecal pollution mediates the dominance of stochastic assembly of antibiotic resistome in an urban lagoon (Yundang lagoon), China. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126083. [PMID: 34000699 DOI: 10.1016/j.jhazmat.2021.126083] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Sewage and fecal pollution cause antibiotic resistance genes (ARGs) pollution in urban lagoons. Seasonality also affects ARG dynamics. However, knowledge of factors controlling ARG community assembly across seasons is still limited. Here, we revealed the seasonal variation of ARGs and depict the underlying assembly processes and drivers via high-throughput quantitative PCR in an urban lagoon, China. A higher richness and abundance of ARGs were observed in summer and winter compared to spring and fall (Kruskal-Wallis test, P < 0.05). Both ARG and prokaryotic communities were mainly governed by stochastic processes, however, these processes drove ARGs and prokaryotes differently across seasons. Stochastic processes played a more dominant role in shaping ARG communities in summer (average stochasticity: 83%) and winter (75%), resulting in a stable antibiotic resistome. However, no such seasonal pattern of stochastic processes was determined for prokaryotes, indicating a decoupling of the assembly process of ARGs and prokaryotes. Moreover, fecal microorganisms (e.g., Bacteroidetes and Faecalibacterium) mediated the stochastic processes of ARG profiles, via enhancement of prokaryotic biomass and mobile genetic element abundances. The tnpA-07 transposase was the key for the horizontal gene transfer. These findings will enhance our understanding of how fecal pollution shapes ARG community assembly in urban lagoons.
Collapse
Affiliation(s)
- Liyuan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingfu Chen
- Yundang Lake Management Center, Xiamen, Fujian 361004, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Mahmoud Gad
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sikandar I Mulla
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Biochemistry, School of Applied Sciences, Reva University, Bangalore 560064, India
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
9
|
Peter PO, Rashid A, Nkinahamira F, Wang H, Sun Q, Gad M, Yu CP, Hu A. Integrated assessment of major and trace elements in surface and core sediments from an urban lagoon, China: Potential ecological risks and influencing factors. MARINE POLLUTION BULLETIN 2021; 170:112651. [PMID: 34217055 DOI: 10.1016/j.marpolbul.2021.112651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Marine sediments serve as a sink for contaminants of anthropogenic origin. Here, 25 major and trace elements were determined in surface and core sediments from an urban lagoon (Yundang Lagoon), China. The median concentrations of Pb, Cd, Cu, and Zn in both surface and core sediments exceeded global and crustal averages. Principal component analysis for the elements and ecological impact of the heavy metals indicated spatial heterogeneity in core sediments from different lagoon areas; however, no such pattern was observed in surface sediments. Geodetector analysis indicated spatial locations of lakes, pH, N%, C%, and S% as the major factors influencing the heterogeneity of potential ecological risk index, a cumulative measure of the ecological impact of heavy metal. The interaction detector indicated nonlinear and bivariate enhancement between different physicochemical parameters. Besides, a depth profile of the elements in different samples was also elucidated.
Collapse
Affiliation(s)
- Philomina O Peter
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Azhar Rashid
- Department of Environmental Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - François Nkinahamira
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mahmoud Gad
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
10
|
Yang SH, Chen CH, Chu KH. Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124953. [PMID: 33445049 DOI: 10.1016/j.jhazmat.2020.124953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Unprecedented rainfall after Hurricane Harvey caused a catastrophic flood in the southern coast of Texas, and flushed significant floodwater and sediments into Galveston Bay, the largest estuary along the Texas Gulf Coast. This study investigated the immediate and long-term (6 months post-Harvey) fecal indicators, pathogenic bacteria, antibiotic resistance genes (ARGs), and ecotoxicity in the Galveston Bay. Dramatic decrease of salinity profile to zero, increased levels of fecal indicator bacteria and pathogenic bacteria, and detection of various ARGs were observed in the water and sediment samples collected 2 weeks post-Harvey. High levels of BlaTEM and cytotoxicity measured by yeast bioluminescent assay (BLYR) were also observed especially near the river mouths. While Vibrio spp. was dominant in water, much higher abundance of fecal indicator bacteria and pathogen were detected in the sediments. A decreasing trend of BlaTEM and cytotoxicity was observed in March 2018 samples, suggesting the Bay has returned to its pre-hurricane conditions 6 months post-Harvey. Interestingly, the abundance of fecal indicator bacteria and pathogens were shifted dramatically according to high-streamflow and low-streamflow seasons in the Bay. The data are useful to construct the model of risk assessment in coastal estuaries system and predict the effects of extreme flooding events in the future.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Chih-Hung Chen
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan ROC
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
11
|
Huang S, Zhao Y, Lv S, Wang W, Wang W, Zhang Y, Huo Y, Sun X, Chen Y. Distribution of mercury isotope signatures in Yundang Lagoon, Xiamen, China, after long-term interventions. CHEMOSPHERE 2021; 272:129716. [PMID: 33601205 DOI: 10.1016/j.chemosphere.2021.129716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 05/24/2023]
Abstract
Isotope signatures of mercury (Hg) were determined for Hg fractions in seawater, sediments, porewaters, core sediments and fish from the Yundang Lagoon, Xiamen, China. Sequential extraction was used to extract Hg fractions in sediments and the purge-trap method was used to preconcentrate Hg in seawater. A large variation in mass dependent fractionation (δ202Hg: -2.50‰ to -0.36‰) was observed in the lagoon. Seawater and fish samples showed positive mass-independent fractionation (Δ199Hg: -0.06‰-0.45‰), while most of sediment and porewater samples displayed insignificant mass-independent fractionation (Δ199Hg: -0.10‰-0.07‰). Ancillary parameters (total organic carbon, sulfide, pH, Eh, water content and grain size) were also measured in the sediments to investigate correlations with Hg isotopes. Three sources (domestic sewage, sediments and atmospheric deposition) were identified as the main sources of Hg in the lagoon seawater. Photochemical reaction was the main process causing isotope fractionation in seawater. Through Hg partitioning and deposition, light isotopes were enriched from dissolved Hg to particulate Hg, then to sediments, and then to porewaters. Finally, Hg isotope signatures were used to identify the Hg sources and fractionation processes in core sediments from different depths. Our results demonstrate that Hg isotopes are powerful tools for tracing Hg sources and arriving at a better understanding of Hg biogeochemical cycling in the lagoon after long-term interventions.
Collapse
Affiliation(s)
- Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Yuhan Zhao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Supeng Lv
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Weiguo Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Yunlong Huo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiuwu Sun
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yaojin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
12
|
Wang H, Hou L, Liu Y, Liu K, Zhang L, Huang F, Wang L, Rashid A, Hu A, Yu C. Horizontal and vertical gene transfer drive sediment antibiotic resistome in an urban lagoon system. J Environ Sci (China) 2021; 102:11-23. [PMID: 33637236 DOI: 10.1016/j.jes.2020.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Rapid urbanization has resulted in pervasive occurrence of antibiotic resistance genes (ARGs) in urban aquatic ecosystems. However, limited information is available concerning the ARG profiles and the forces responsible for their assembly in urban landscape lagoon systems. Here, we employed high-throughput quantitative PCR (HT-qPCR) to characterize the spatial variations of ARGs in surface and core sediments of Yundang Lagoon, China. The results indicated that the average richness and absolute abundance of ARGs were 11 and 53 times higher in the lagoon sediments as compared to pristine reference Tibetan lake sediments, highlighting the role of anthropogenic activities in ARG pollution. Co-occurrence network analysis indicated that various anaerobic prokaryotic genera belonging to Alpha-, Deltaproteobacteria, Bacteroidetes, Euryarchaeota, Firmicutes and Synergistetes were the potential hosts of ARGs. The partial least squares-path modeling (PLS-PM) analysis revealed positive and negative indirect effects of physicochemical factors and heavy metals on the lagoon ARG profiles, via biotic factors, respectively. The horizontal (mediated by mobile genetic elements) and vertical (mediated by prokaryotic communities) gene transfer may directly contribute the most to drive the abundance and composition of ARGs, respectively. Furthermore, the neutral community model demonstrated that the assembly of sediment ARG communities was jointly governed by deterministic and stochastic processes. Overall, this study provides novel insights into the diversity and distribution of ARGs in the benthic habitat of urban lagoon systems and underlying mechanisms for the spread and proliferation of ARGs.
Collapse
Affiliation(s)
- Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Hou
- Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Keshao Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyi Huang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lin Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar 25000, Pakistan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Changping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
13
|
Hou L, Zhang L, Li F, Huang S, Yang J, Ma C, Zhang D, Yu CP, Hu A. Urban ponds as hotspots of antibiotic resistome in the urban environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124008. [PMID: 33265037 DOI: 10.1016/j.jhazmat.2020.124008] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
The occurrence, dissemination and assembly processes of antibiotic resistance genes (ARGs) in urban water ecosystems are far from being understood. Here, we examined the diversity and abundance of ARGs in urban water ecosystems including landscape ponds, drinking water reservoirs, influents (IFs) and effluents (EFs) of wastewater treatment plants of a coastal city, China through high-throughput quantitative PCR. A total of 237 ARGs were identified, where multidrug, aminoglycoside and beta-lactamase resistance genes were the most abundant. Urban ponds had a comparatively high diversity and large numbers of shared ARGs with IFs and EFs. The average absolute abundance of ARGs (1.38 × 107 copies/mL) and mobile genetic elements (MGEs) (4.19 × 106 copies/mL) in ponds were only one order of magnitude lower than those of IFs, but higher than those of EFs and reservoirs. Stochastic processes dominated the ARG community assembly in IFs and ponds due to the random horizontal gene transfer caused by MGEs. These results imply that urban ponds are hotspots of ARGs. We further identified 25, 3, and 11 indicator ARGs for tracing the ARG contamination from IFs, EFs and ponds, respectively. Our study represents the first to highlight the role of urban ponds in the dissemination of ARGs.
Collapse
Affiliation(s)
- Liyuan Hou
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijun Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Cong Ma
- Xiamen Municipal Environment Technology Co., Ltd., Xiamen 361001, China
| | - Duanxin Zhang
- General Water of Xiamen Sewage Co., Ltd., Xiamen 361001, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|