1
|
Zhang Y, Chen L, Wang M, Lu J, Zhang H, Héroux P, Wang G, Tang L, Liu Y. Evaluating micro-nano bubbles coupled with rice-crayfish co-culture systems: A field study promoting sustainable rice production intensification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173162. [PMID: 38735311 DOI: 10.1016/j.scitotenv.2024.173162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Traditional rice-fish symbiosis systems efficiently use soil and water resources but the adverse effects of prolonged flooding on the stability of rice growth can be mitigated. The feasibility and efficacy of injecting micro-nano bubbles (MNBs) in rice-crayfish co-cultures was investigated in a 22-hectare field experiment conducted over five months. This injection significantly enhanced the growth of both rice and crayfish, and increased total nitrogen and phosphorus levels in the soil, thereby augmenting fertility. Analysis of dissolved oxygen (DO), water temperature and gene expression (rice and crayfish) clarified that micro-nano bubbles (MNBs) foster an optimal environment for rice root respiration, whereas rice establishes an optimal temperature for crayfish, thereby enhancing their activity and growth. Comparative analyses of gene expression profiles and metabolic pathway enrichment revealed that the injection of MNBs diversifies soil microbial communities and intensifies biological processes, such as plant hormone signal transduction. This was in marked contrast to the situation in our controls, rice monoculture (R) and micro-nano bubbles rice monoculture (MNB-R). The combination of rice-fish symbiosis with MNBs led to a 26.8 % increase in rice production and to an estimated 35 % improvement in economic efficiency. Overall, this research introduces an innovative and environmentally sustainable method to boost rice yields, thereby enhancing food security and providing additional income for farmers.
Collapse
Affiliation(s)
- Yinyin Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Luhai Chen
- Nanobubble Technology (Shanghai) Co., Ltd, Shanghai 201709, China
| | - Meilin Wang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jizhe Lu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Han Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Guoxiang Wang
- Nanobubble Technology (Shanghai) Co., Ltd, Shanghai 201709, China
| | - Li Tang
- Shanghai Garden (Group) Co., Ltd, Shanghai 200335, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Zhang Y, Cai L, Chen L, Zhang H, Li G, Wang G, Cui J, Filatova I, Liu Y. Effect of micro-nano bubbles on the remediation of saline-alkali soil with microbial agent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168940. [PMID: 38042196 DOI: 10.1016/j.scitotenv.2023.168940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The widespread distribution of saline-alkali soil around the world affects the health of ecological systems and the development of the national economy by limiting the growth of plants. However, the commonly used remediation technologies have the drawbacks of low efficiency, high cost, and secondary pollution. This study investigated the feasibility and efficacy of novel combined micro-nanobubbles (MNBs) and microbial agent (MA) technology for the remediation of saline-alkali soil. The results demonstrated that the combined MA-MNBs method greatly renovated the properties of saline-alkali soil compared with the technologies of single utilization of MA or MNBs process in the laboratory. The method resulted in a reduction of soil electrical conductivity and pH levels, an improvement in soil fertility, and the formation of soil aggregates. Moreover, the method significantly impacted the growth of plants, particularly in plant length, dry weight, and rhizome elongation. Further high-throughput sequencing and gene expression analysis revealed that the MA-MNBs method enhanced the abundance of soil microbial community compared with single MA and MNBs treatment. Gene enrichment analysis revealed that the MA-MNBs method could compensate for the shortcomings of single MA treatment and enhance the expression of energy metabolism and salt stress-related genes attributed to MNBs treatment, thereby significantly improving the growth and development of plants. Consistently, 6115 kg/ha of rice was yielded in the field for the saline-alkali soils using this MA-MNBs method, with zero crops before remediation. This study provided a novel, efficient, and green strategy for the remediation of saline-alkali soil without adding any chemicals.
Collapse
Affiliation(s)
- Yinyin Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Luhai Chen
- Nanobubble Technology (Shanghai) Co., Ltd, Shanghai 201709, China
| | - Han Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guoqing Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guoxiang Wang
- Nanobubble Technology (Shanghai) Co., Ltd, Shanghai 201709, China
| | - Jie Cui
- Beijing Enterprises Water Group Ltd, Beijing 100102, China
| | - Irina Filatova
- Department of Physics, Mathematics and Informatics, NAS of Belarus Nezavisimosti Ave, Minsk 220072, Belarus
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Ouyang Z, Tian J, Yan X, Yang Z. Micro-nano oxygenated irrigation improves the yield and quality of greenhouse cucumbers under-film drip irrigation. Sci Rep 2023; 13:19453. [PMID: 37945608 PMCID: PMC10636108 DOI: 10.1038/s41598-023-45121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
To study the influence mechanism of micro-nano oxygenated irrigation (MNOI) on greenhouse fruit cucumber in arid and semi-arid cold regions, the yield and quality of greenhouse fruit cucumber were evaluated and verified based on 2 years of observation data. Taking fruit cucumber in Ningxia solar greenhouse as the research object, three dissolved oxygen (DO) levels of MNOI (DO; 6, 7.5, and 9 mg L-1, O1, O2, and O3, respectively) and non-oxygenated irrigation (CK, 4 mg L-1) were set up as the control treatment. Through comparative design, the influence mechanism of different levels of aerobic irrigation on the yield and quality of greenhouse fruit cucumber was studied. The main indicators of fruit cucumber yield and quality increased with dissolved oxygen in irrigation water from 4 to 9 mg L-1. In spring-summer (autumn-winter), compared with CK, the leaf area index (LAI) and net photosynthetic rate (A) increased by 28.83% (28.77%) and 44.90% (35.00%), respectively, and Vitamin C, soluble protein, soluble sugar, soluble solids and total acid content increased by 100.00% (51.88%), 37.78% (61.11%), 34.17% (54.17%), 37.07% (78.72%) and 26.92% (30.67%) respectively, while nitrate content decreased by 44.88% (51.15%), and dry matter accumulation (DMA), soil respiration rate (SRR), microbial carbon (MC), and microbial nitrogen (MN) increased by 49.81% (127.25%), 55.22% (110.34%), 117.50% (90.91%) and 70.37% (74.42%) respectively, and yield, irrigation water use efficiency (IWUE) and soil oxygen content (SO) increased by 22.47% (28.04%), 22.39% (28.05%) and 33.21% (35.33%) respectively. A model of DO in irrigation water and SO was established and the applicability of the model was verified with an average relative error of 2% (less than 5%). MNOI increased SO and soil enzyme activity, enriched soil microorganisms, improved soil microenvironment, promoted water nutrient uptake and growth of root system, increased chlorophyll, photosynthesis and DMA, which improved fruit cucumber yield and quality, and the better DO concentration in irrigation water is 9 mg L-1. The research results provide theoretical support for regulating soil water, fertilizer and air environment, and at the same time, provide feasible ways to improve the quality and efficiency of crops in arid and semi-arid cold regions.
Collapse
Affiliation(s)
- Zan Ouyang
- College of Water Resource and Civil Engineering, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Juncang Tian
- School of Civil and Hydraulic Engineering, Ningxia University, No. 539 Helanshan West Road, Yinchuan, 750021, Ningxia, China.
- Engineering Technology Research Center of Water-Saving Irrigation and Water Resource Regulation in Ningxia, Ningxia University, Yinchuan, 750021, Ningxia, China.
- Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Regions, Ministry of Education, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Xinfang Yan
- School of Civil and Hydraulic Engineering, Ningxia University, No. 539 Helanshan West Road, Yinchuan, 750021, Ningxia, China
- Engineering Technology Research Center of Water-Saving Irrigation and Water Resource Regulation in Ningxia, Ningxia University, Yinchuan, 750021, Ningxia, China
- Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Regions, Ministry of Education, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Zhenfeng Yang
- School of Civil and Hydraulic Engineering, Ningxia University, No. 539 Helanshan West Road, Yinchuan, 750021, Ningxia, China
| |
Collapse
|
4
|
Ali J, Yang Y, Pan G. Oxygen micro-nanobubbles for mitigating eutrophication induced sediment pollution in freshwater bodies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117281. [PMID: 36682273 DOI: 10.1016/j.jenvman.2023.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Sediment hypoxia is a growing problem and has negative ecological impacts on the aquatic ecosystem. Hypoxia can disturb the biodiversity and biogeochemical cycles of both phosphorus (P) and nitrogen (N) in water columns and sediments. Anthropogenic eutrophication and internal nutrient release from lakebed sediment accelerate hypoxia to form a dead zone. Thus, sediment hypoxia mitigation is necessary for ecological restoration and sustainable development. Conventional aeration practices to control sediment hypoxia, are not effective due to high cost, sediment disturbance and less sustainability. Owing to high solubility and stability, micro-nanobubbles (MNBs) offer several advantages over conventional water and wastewater treatment practices. Clay loaded oxygen micro-nanobubbles (OMNBs) can be delivered into deep water sediment by gravity and settling. Nanobubble technology provides a promising route for cost-effective oxygen delivery in large natural water systems. OMNBs also have the immense potential to manipulate biochemical pathways and microbial processes for remediating sediment pollution in natural waters. This review article aims to analyze recent trends employing OMNBs loaded materials to mitigate sediment hypoxia and subsequent pollution. The first part of the review highlights various minerals/materials used for the delivery of OMNBs into benthic sediments of freshwater bodies. Release of OMNBs at hypoxic sediment water interphase (SWI) can provide significant dissolved oxygen (DO) to remediate hypoxia induced sediment pollution Second part of the manuscript unveils the impacts of OMNBs on sediment pollutants (e.g., methylmercury, arsenic, and greenhouse gases) remediation and microbial processes for improved biogeochemical cycles. The review article will facilitate environmental engineers and ecologists to control sediment pollution along with ecological restoration.
Collapse
Affiliation(s)
- Jafar Ali
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Yuesuo Yang
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, United Kingdom; Jiangsu Jiuguan Institute of Environment and Resources, Yixing, China.
| |
Collapse
|
5
|
Li Y, Lin H, Gao P, Yang N, Xu R, Sun X, Li B, Xu F, Wang X, Song B, Sun W. Variation in the diazotrophic community in a vertical soil profile contaminated with antimony and arsenic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118248. [PMID: 34592324 DOI: 10.1016/j.envpol.2021.118248] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
A nitrogen (N) deficiency will usually hinder bioremediation efforts in mining-derived habitats such as occurring in mining regions. Diazotrophs can provide N to support the growth of plants and microorganisms in these environments. However, diazotrophic communities in mining areas have been not studied frequently and are more poorly understood than those in other environments, such as in agricultural soils or in the presence of legumes. The current study compares the differences in depth-resolved diazotrophic community compositions and interactions in two contrasting sites (to depths of 2 m), including a highly contaminated and a moderately contaminated site. Antimony (Sb) and arsenic (As) co-contamination induced a loosely connected biotic interaction, and a selection of deep soils by diazotrophic communities. Multiple lines of evidence, including the enrichment of diazotrophic taxa in the highly contaminated sites, microbe-microbe interactions, environment-microbe interactions, and a machine learning approach (random forests regression), demonstrated that Rhizobium was the keystone taxon within the vertical profile of contaminated soil and was resistant to the Sb and As contaminant fractions. All of these observations suggest that one diazotroph, Rhizobium, may play an important role in N fixation in the examined contaminated sites.
Collapse
Affiliation(s)
- Yongbin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai, 201620, China
| | - Nie Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fuqing Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoyu Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Benru Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; School of Environment, Henan Normal University, China; Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, China.
| |
Collapse
|
6
|
Wang Y, Wang S, Sun J, Dai H, Zhang B, Xiang W, Hu Z, Li P, Yang J, Zhang W. Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149627. [PMID: 34426308 DOI: 10.1016/j.scitotenv.2021.149627] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Excessive application of chemical fertilizers can lead to serious environmental problems. In this study, we explored the use of nanobubble water for irrigation of crop rice as a means of reducing fertilizer use. The effect of nanobubbles on plant growth and nutrient uptake was evaluated in the laboratory, while crop yield and the efficiency of fertilizer use were evaluated in a field study. The laboratory experiments indicated that nanobubbles significantly improve plant height and root length in rice seedlings. Nanobubble treatment stimulated synthesis of the growth hormone gibberellin and upregulated the plant nutrient absorption genes OsBT, PiT-1 and SKOR, resulting in increased nutrient uptake and utilization by the roots. The field experiments verified the laboratory observations, showing that nanobubble treatment significantly increases rice yield by almost 8% when using similar levels of fertilizer as controls. Moreover, the same yield as controls was achieved with approximately 25% less fertilizer. As well as their impact on growth hormones and nutrient absorption genes, nanobubbles, due to hydrophobic and surface charge properties, enhance the release and absorption of soil nutrients, thereby reducing fertilizer demand. Overall, this study highlights a new and sustainable water irrigation strategy for enhancing crop yield and reducing chemical fertilizer waste.
Collapse
Affiliation(s)
- Ying Wang
- Research Center for Ecological Science and Technology, Fudan Zhangjiang Institute, 351 Guoshoujing Road, Shanghai 201203, China; Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Shuo Wang
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingjing Sun
- Shanghai Jincui Agriculture Company, Jinyang Road, Yangwan Village, Shanghai 201718, China
| | - Hengren Dai
- Shanghai Jincui Agriculture Company, Jinyang Road, Yangwan Village, Shanghai 201718, China
| | - Beijun Zhang
- Shanghai Jincui Agriculture Company, Jinyang Road, Yangwan Village, Shanghai 201718, China
| | - Weidong Xiang
- Research Center for Ecological Science and Technology, Fudan Zhangjiang Institute, 351 Guoshoujing Road, Shanghai 201203, China
| | - Zixin Hu
- State Key Laboratory of Genetic Engineering and Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China; Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, China
| | - Pan Li
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
7
|
Zhou L, Wang S, Zhang L, Hu J. Generation and stability of bulk nanobubbles: A review and perspective. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101439] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Sha Z, Chen Z, Feng Y, Xue L, Yang L, Cao L, Chu Q. Minerals loaded with oxygen nanobubbles mitigate arsenic translocation from paddy soils to rice. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122818. [PMID: 32512435 DOI: 10.1016/j.jhazmat.2020.122818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/09/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Inhibiting reductive transformation of arsenic (As) in flooded paddy soils is fundamentally important for mitigating As transfer into the food chain. In this study, oxygen-nanobubble-loaded-zeolites (ZON) and -vermiculites (VON) were tested as a novel approach for supplying oxygen to paddy soils to inhibit As influx into rice. The dynamic physio- and bio-chemical variations in the rhizosphere and bulk soil were profiled in a rhizobox experiment. Upon adding ZON and VON, the redox potential and dissolved oxygen consistently increased throughout the cultivation period. The improved redox environment inhibited As(III) release into porewater and increased As(V) adsorbed on crystalline Fe (hydr)oxides, following the reduction of arsC and arrA gene abundances and enhancement of the aioA gene. Moreover, adding ZON and VON promoted root iron plaque formation, which increased As retention on iron plaque. Both ZON and VON treatments mitigated As translocation from soil to rice, meanwhile increasing root and shoot biomass. ZON was superior to VON in repressing As transfer and promoting rice growth due to its higher oxygen loading capacity. This study provides a novel and environment-friendly material to both mitigate the As translocation from paddy soil to rice and improve rice growth.
Collapse
Affiliation(s)
- Zhimin Sha
- Graduate School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Linkui Cao
- Graduate School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Qingnan Chu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|