1
|
Wang M, Yang X, Wang M, He Y, Huang T, Wang X, Yang Q, Guo J. Nanoenabled Self-Assembled Metal-Organic Algaecides Generated Photosynthetic Inhibition and Oxidative Stress for Sustainable Food Security. Chemistry 2024; 30:e202403035. [PMID: 39354660 DOI: 10.1002/chem.202403035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Achieving food sustainability is one of the biggest challenges in the new millennium. Plant factory cultivation systems provide an alternative for food sustainability, while they often suffer from algal blooms. The overuse of conventional algaecides has caused significant environmental pollution and concerns about food security. Here, we design a nanoenabled metal-organic algaecide that is self-assembled from natural polyphenols and two functional metal ions for providing shading effects and delivering active ingredients synergistically to suppress algal blooms. Black wattle tannin (BWT) and Fe3+ ions are utilized to develop self-assembled FeBWT nanoalgaecides with significant shading effects for decreasing light transmission (up to 97 %) and effectively inhibiting algal photosynthesis. Further, the FeBWT is functionalized with Cu2+ ions (bimetallic Cu/FeBWT) to target the algal cells and release Cu2+ ions via phenolic-mediated cell surface interactions, thus enhancing the inhibition efficiency. Importantly, the biosafety of Cu/FeBWT is demonstrated through toxicity tests on zebrafish and NIH3T3 cells. In our real-world field test, the Cu/FeBWT demonstrates high algal inhibition performance (>95 %, over 30 days), and enhances the accumulation of food nutrients in model plant lettuces. Collectively, the supramolecular metal-organic nanoalgaecide provides a promise for nanoagrochemical application and promotes food sustainability and security.
Collapse
Affiliation(s)
- Mingyao Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan, 610213, China
| | - Mengyue Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Tao Huang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan, 610213, China
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan, 610213, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
2
|
Lee H, Xu V, Diao J, Zhao R, Chen M, Moon TS, Liu H, Parker KM, Jun YS, Tang YJ. The use of a benign fast-growing cyanobacterial species to control microcystin synthesis from Microcystis aeruginosa. Front Microbiol 2024; 15:1461119. [PMID: 39703702 PMCID: PMC11655507 DOI: 10.3389/fmicb.2024.1461119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Microcystis aeruginosa (M. aeruginosa), one of the most prevalent blue-green algae in aquatic environments, produces microcystin by causing harmful algal blooms (HAB). This study investigated the combined effects of nutrients and cyanobacterial subpopulation competition on synthesizing microcystin-LR. Method In varied nitrogen and phosphorus concentrations, cyanobacterial coculture, and algicidal DCMU presence, the growth was monitored by optical density analysis or microscopic counting, and the microcystin production was analyzed using high-performance liquid chromatography-UV. Furthermore, growth and toxin production were predicted using MATLAB. Results and discussion First, coculturing with a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 (S. elongatus) reduced M. aeruginosa biomass and microcystin production at 30oC. Under high nitrogen and low phosphorus conditions, S. elongatus is mostly effective, with up to 94.7% and 92.4% limitation of M. aeruginosa growth and toxin synthesis, respectively. Second, this biological strategy became less effective at 23oC, where S. elongatus grew slower. Third, photosynthesis inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) hindered M. aeruginosa growth (at 0.1 mg/L) and microcystin production (at 0.02 mg/L). DCMU was also effective for controlling microcystin production in S. elongatus-M. aeruginosa cocultures. Based on experimental results, a multi-substrate, multi-species kinetic model was built to describe coculture growth and population interactions. Conclusion Future research should examine more complex models to further develop and refine to facilitate the derivation of more effective recommendations for health prevention programs, particularly for mothers and girls.
Collapse
Affiliation(s)
- Hakyung Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Vincent Xu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Runyu Zhao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Moshan Chen
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Haijun Liu
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Kimberly M. Parker
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
3
|
Wang R, Cheng Y, Wan Q, Cao R, Cai J, Huang T, Wen G. Emergency control of dinoflagellate bloom in freshwater with chlorine enhanced by solar radiation: Efficiency and mechanism. WATER RESEARCH 2024; 265:122275. [PMID: 39163711 DOI: 10.1016/j.watres.2024.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Dinoflagellate requires a lower temperature and blooms frequently in the spring and autumn compared to regular cyanobacteria. The outbreak of dinoflagellate bloom will also lead to the death of some aquatic organisms. However, research on freshwater dinoflagellates is still lacking due to the challenges posed by classification and culture in laboratory. The removal effect and mechanism of Peridinium umbonatum (P. umbonatum, a typical dinoflagellate) were investigated using solar/chlorine in this study. The effect of simulated solar alone on the removal of algae was negligible, and chlorine alone had only a slight effect in removing algae. However, solar/chlorine showed a better removal efficiency with shoulder length reduction factor and kmax enhancement factor of 2.80 and 3.8, respectively, indicating a shorter latency period and faster inactivation rate for solar/chlorine compared to solar and chlorine alone. The removal efficiency of algae gradually increased with the chlorine dosage, but it dropped as the cell density grew. When the experimental temperature was raised to 30 °C, algal removal efficiency significantly increased, as the temperature was unsuitable for the survival of P. umbonatum. Attacks on cell membranes by chlorine and hydroxyl radicals (•OH) produced by solar/chlorine led to a decrease in cell membrane integrity, leading to a rise in intracellular reactive oxygen species and an inhibition of photosynthetic and antioxidant systems. Cell regeneration was not observed in either the chlorine or solar/chlorine systems due to severe cell damage or cysts formation. In addition, natural solar radiation was demonstrated to have the same enhancing effect as simulated solar radiation. However, the algal removal efficiency of solar/chlorine in real water was reduced compared to 119 medium, mainly due to background material in the real water substrate that consumed the oxidant or acted as shading agents.
Collapse
Affiliation(s)
- Ru Wang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ya Cheng
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jie Cai
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
4
|
R P, M Basalingappa K, D SK, K R A, K GK, J S, Murugesan K, Radhakrishnan A, Kandaswamy D, Roy B, Thangaswamy S, Selvaraj B, R J, M M. Fluorescence capturing behaviour of cyanobacterial resilience: Insights into UV-exposed ecosystems and its environmental applications. LUMINESCENCE 2024; 39:e4898. [PMID: 39323008 DOI: 10.1002/bio.4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Cyanobacteria are resilient microorganisms and thrive in environments exposed to UV radiation, ranging from ocean surfaces to scorching hot springs and dry expanses. 'Cyanobacterial Resilience' refers to their ability to withstand UV radiation, revealing intricate genomic secrets and adaptive mechanisms ensuring survival. These mechanisms include metabolic adaptations, robust DNA repair systems and UV-protective compounds such as Scytonemin and Mycosporine, vital for shielding against UV radiation survival. Cyanobacteria are crucial pioneers in UV-exposed ecosystems, highlighting their resilience and adaptability. Some cyanobacteria exhibit luminescence, emitting blue-green light due to phycobiliproteins, while bioluminescence in cyanobacteria, if it occurs, involves different compounds rather than luciferins and luciferase enzymes. This luminescence holds promise for various biotechnological applications, such as biosensors, imaging probes and carbon sequestration, for participating in photocatalytic processes for water purification and CO2 conversion, and contributes to solar simulation studies to advance photosynthesis and renewable energy technologies. The versatile applications of these materials highlight their ecological importance and potential in addressing global challenges. In conclusion, 'Cyanobacterial Resilience' highlights the remarkable adaptation strategies of cyanobacteria in UV-exposed environments. It emphasises their role as pioneers and innovators in biological and technological domains, providing insights into their enduring impact on ecosystems and scientific advancement.
Collapse
Affiliation(s)
- Prathima R
- Division of Molecular Biology, School of Life Sciences, Mysuru, India
| | | | - Sai Kavya D
- Department of Dermatology, Venereology and Leprosy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arjun K R
- Division of Molecular Biology, School of Life Sciences, Mysuru, India
| | - Girish Kanavi K
- Division of Molecular Biology, School of Life Sciences, Mysuru, India
| | - Suresh J
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, India
| | - Karthikeyan Murugesan
- Department of Microbiology, Faculty of Medicine and Health Sciences, Quest International University, Perak, Malaysia
| | - Anjuna Radhakrishnan
- Department of Microbiology, Faculty of Medicine and Health Sciences, Quest International University, Perak, Malaysia
| | - Deepa Kandaswamy
- Department of Anatomy, Faculty of Medicine and Health Sciences, Quest International University, Perak, Malaysia
| | - Bedanta Roy
- Department of Physiology, Faculty of Medicine, Quest International University, Malaysia
| | - Selvankumar Thangaswamy
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Bharath Selvaraj
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Jaganathan R
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Maghimaa M
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Wang M, Yang X, Huang T, Wang M, He Y, Gong G, Zhang Y, Liao X, Wang X, Yang Q, Guo J. Cell-Targeted Metal-Phenolic Nanoalgaecide in Hydroponic Cultivation to Enhance Food Sustainability. ACS NANO 2023; 17:25136-25146. [PMID: 38063423 DOI: 10.1021/acsnano.3c08077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The growing global population necessitates substantial increases in food production. Hydroponic cultivation systems afford a critical alternative for food sustainability and enable stable annual production regardless of the climatic and geographical variations. However, the overgrowth of harmful algal blooms significantly threatens the crop yield by competing with nutrition in the solution and producing contaminants. The conventional practice of algaecides fails to control algal proliferation due to the limited efficiency and food safety concerns. Nanopesticides can deliver active ingredients responsively to suppress crop diseases and offer solutions to current practical challenges and difficulties. Inspired by prospects of nanotechnology for agricultural applications, we have utilized natural polyphenols and copper ions (Cu2+ ions) to develop self-assembled nanoalgaecides referred to as CuBes. The nanoalgaecide attached to algal cells via phenolic surface interactions, enabling localized Cu2+ ion release. This cell-targeted delivery suppressed Chlorella vulgaris for over 30 days (99% inhibition). Transcriptomics revealed that the nanoalgaecide disrupted algal metabolism by downregulating photosynthesis and chlorophyll pathways. In a solar-illuminated plant factory, the nanoalgaecide showed higher algal inhibition and lettuce biosafety versus the commercial Kocide 3000. Notably, the use of nanoalgaecide can enhance the nutrient value of lettuces, which meets the daily supply of Cu for adults. By integrating smart nanotechnology design with selective delivery mechanisms, this metal-phenolic nanoalgaecide provides a nanoenabled solution for controlling harmful algal blooms in hydroponics to advance food production.
Collapse
Affiliation(s)
- Mingyao Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| | - Tao Huang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| | - Mengyue Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Yajing Zhang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Xue Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
6
|
Yang L, Qiu H, Lu Z, Zhang C, Liu G, Chang J, Wu C, Dong S, Yang S, Xiao F. Identification of performance and cost in a new backwash method to clean the UF membrane: backwashing with low dosage of NaClO. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121983-121992. [PMID: 37964145 DOI: 10.1007/s11356-023-31008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Ultrafiltration (UF) is widely used in wastewater reclamation treatments. Conventional backwashing is usually performed at regular time intervals (10-120 min) with permeate and without the addition of chemicals. Chemical enhanced backwashing (CEB) is usually applied after 70-90 filtration cycles with added chemicals. These cleaning methods cause membrane fouling and require costly chemicals. Instead of conventional backwashing, we propose herein a new backwashing method involving backwashing the effluent with low doses of sodium hypochlorite (NaClO) named as BELN. The performance and cost of UF backwashing were investigated with Beijing wastewater reclamation treatment. The results showed that the transmembrane pressure (TMP) increased from 33.2 to 48.2 kPa during hydraulic backwashing after 80 filtration cycles but increased from 33.3 to 39.3 kPa during backwashing with a low NaClO content of 20 mg/L. It was also noticed that the hydraulic-irreversible fouling index decreased from 5.58 × 10-3 m2/L to 3.58 × 10-3 m2/L with the new method. According to the three-dimensional fluorescence excitation-emission (3D-EEM), the response increased from 11.9 to 15.2% with BELN. Protein-like material was identified as the main component causing membrane fouling by blocking the membrane pores. The results indicated that the low dosage of NaClO effectively stripped the fouling layer. Finally, based on an economic evaluation, the capacity of the UF process was increased from 76,959 to 109,133 m3/d with the new method. The amount of NaClO consumed for Beijing wastewater reclamation treatment was similarly compared with the conventional backwashing in per year under BELN. The new method has good potential for application.
Collapse
Affiliation(s)
- Lian Yang
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China
- Beijing Engineering Research Center for Wastewater Reuse, Beijing, 100124, China
- Beijing Drainage Group Co. Ltd., Beijing, 100044, China
| | - Haoran Qiu
- Beijing Engineering Research Center for Wastewater Reuse, Beijing, 100124, China
- Beijing Drainage Group Co. Ltd., Beijing, 100044, China
| | - Zixin Lu
- Beijing Engineering Research Center for Wastewater Reuse, Beijing, 100124, China
- Beijing Drainage Group Co. Ltd., Beijing, 100044, China
| | - Chunrui Zhang
- Beijing Engineering Research Center for Wastewater Reuse, Beijing, 100124, China
- Beijing Drainage Group Co. Ltd., Beijing, 100044, China
| | - Guoliang Liu
- Beijing Engineering Research Center for Wastewater Reuse, Beijing, 100124, China
- Beijing Drainage Group Co. Ltd., Beijing, 100044, China
| | - Jiang Chang
- Beijing Engineering Research Center for Wastewater Reuse, Beijing, 100124, China
- Beijing Drainage Group Co. Ltd., Beijing, 100044, China
| | - Congcong Wu
- Beijing Engineering Research Center for Wastewater Reuse, Beijing, 100124, China
- Beijing Drainage Group Co. Ltd., Beijing, 100044, China
| | - Shuoxun Dong
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China
| | - Shaoxia Yang
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China
| | - Feng Xiao
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
7
|
Zheng J, Teng F, Zhou T, Cao H, Wang X, Zhu Y, Tao Y. Enhanced suppression effects on Microcystis aeruginosa by combining hydrogen peroxide and intermittent UVC irradiation: The importance of triggering advanced oxidation process within cells. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132826. [PMID: 39492099 DOI: 10.1016/j.jhazmat.2023.132826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
In order to strengthen the inhibitory effect of UVC/H2O2 on Microcystis aeruginosa growth, this study designed a novel strategy for inducing an advanced oxidation process in algal cells by splitting UVC irradiation into two rounds. The first irradiation of UVC upon adding H2O2 facilitated the delivery of H2O2 into the cell cytoplasm, which induced an intracellular advanced oxidation process after the second irradiation of UVC. The intermittent treatment of UVC/H2O2 could further attack the Ca-Mn and Fe-S clusters in the photosynthetic electron transport chain. In contrast, conventional simultaneous treatment of UVC/H2O2 only attacked the interaction subunits between PSII cores and the phycobilisome. The block of the photosynthetic electron transport chain, shedding of the Ca-Mn cluster, and damage of the Fe-S cluster gave rise to massive intracellular H2O2, O2•-, and HO•. Consequently, ROS acted as a mediator and led to caspase-3(-like) activation and the subsequent initiation of apoptosis-like cell death. The remarkable functional mechanisms make the intermittent treatment of UVC/H2O2 an ideal method for the practical application of suppressing HABs (target-selective, long-lasting, cost-minimized, and eco-friendly).
Collapse
Affiliation(s)
- Jie Zheng
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Fei Teng
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Tingru Zhou
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | - Xuejian Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Yinjie Zhu
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Yi Tao
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Cruz-Balladares V, Avalos V, Vera-Villalobos H, Cameron H, Gonzalez L, Leyton Y, Riquelme C. Identification of a Shewanella halifaxensis Strain with Algicidal Effects on Red Tide Dinoflagellate Prorocentrum triestinum in Culture. Mar Drugs 2023; 21:501. [PMID: 37755114 PMCID: PMC10532897 DOI: 10.3390/md21090501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
The dinoflagellate Prorocentrum triestinum forms high biomass blooms that discolor the water (red tides), which may pose a serious threat to marine fauna and aquaculture exploitations. In this study, the algicidal effect of a bacterial strain (0YLH) belonging to the genus Shewanella was identified and evaluated against P. triestinum. The algicidal effects on the dinoflagellate were observed when P. triestinum was exposed to cell-free supernatant (CFS) from stationary-phase cultures of the 0YLH strain. After 24 h exposure, a remarkable reduction in the photosynthetic efficiency of P. triestinum was achieved (55.9%), suggesting the presence of extracellular bioactive compounds produced by the bacteria with algicidal activity. Furthermore, the CFS exhibited stability and maintained its activity across a wide range of temperatures (20-120 °C) and pH values (3-11). These findings highlight the algicidal potential of the bacterium Shewanella halifaxensis 0YLH as a promising tool for the environmentally friendly biological control of P. triestinum blooms.
Collapse
Affiliation(s)
- Victoria Cruz-Balladares
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Vladimir Avalos
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Hernán Vera-Villalobos
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Henry Cameron
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Leonel Gonzalez
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Yanett Leyton
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Carlos Riquelme
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
- Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
9
|
Ji NH, Chen FH, Pang ZZ. Composition identification and UV-C irradiation growth inhibition effect of green shading on the greenhouse cover. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158024. [PMID: 35970460 DOI: 10.1016/j.scitotenv.2022.158024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Greenhouse cover pollution with green shading composed of dust, microalgae and bacteria is a severe problem in tropical areas. The shading results in lower greenhouse indoor light intensity reducing the yield and quality of protected horticulture crops. However, few studies have focused on environmentally efficient ways to remove green shading to increase greenhouse production. In this study, five purified microalgae were isolated from the green shading of three greenhouse roofs and were identified using morphological and molecular assessments. The effects of Ultraviolet-C irradiation (UV-C, 254 nm) at doses of 100, 200 and 300 mJ cm-2 on the growth of GLY-1 microalgae were investigated. The results indicated that five purified microalgae all appeared to belong to the genus of Jaagichlorella. The purified microalgae cell density and chlorophyll content decreased respectively by 26.89-74.44 % and 42.02-77.31 % at 1-3 d after UV-C treatment with doses ranging from 100 to 300 mJ cm-2. The inhibition of the growth rate of microalgae was significantly positively correlated with the UV-C irradiation dose and significantly negatively correlated with treatment time. In summary, UV-C irradiation treatment at 300 mJ cm-2 and 3 d could substantially inhibit microalgae growth in green shading on greenhouse covers. UV-C irradiation could be an effective method for solving the problem of greenhouse cover pollution with microalgae.
Collapse
Affiliation(s)
- Nan-Huan Ji
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan 570228, China
| | - Fang-Hao Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan 570228, China
| | - Zhen-Zhen Pang
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
10
|
Jiao Q, Mu Y, Deng J, Yao X, Zhao X, Liu X, Li X, Jiang X, Zhang F. Direct toxicity of the herbicide florasulam against Chlorella vulgaris: An integrated physiological and metabolomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114135. [PMID: 36201917 DOI: 10.1016/j.ecoenv.2022.114135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Herbicides are the agents of choice for use in weed control; however, they can enter the aquatic environment, with potentially serious consequences for non-target organisms. Despite the possible deleterious effects, little information is available regarding the ecotoxicity of the herbicide florasulam toward aquatic organisms. Accordingly, in this study, we investigated the toxic effect of florasulam on the freshwater microalga Chlorella vulgaris and sought to identify the underlying mechanisms. For this, we employed a growth inhibition toxicity test, and then assessed the changes in physiological and metabolomic parameters, including photosynthetic pigment content, antioxidant system, intracellular structure and complexity, and metabolite levels. The results showed that treatment with florasulam for 96 h at the concentration of 2 mg/L, 2.84 mg/L, and 6 mg/L in medium significantly inhibited algal growth and photosynthetic pigment content. Moreover, the levels of reactive oxygen species were also increased, resulting in oxidative damage and the upregulation of the activities of several antioxidant enzymes. Transmission electron microscopic and flow cytometric analysis further demonstrated that exposure to florasulam (6 mg/L) for 96 h disrupted the cell structure of C. vulgaris, characterized by the loss of cell membrane integrity and alterations in cell morphology. Changes in amino acid metabolism, carbohydrate metabolism, and the antioxidant system were also observed and contributed to the suppressive effect of florasulam on the growth of this microalga. Our findings regarding the potential risks of florasulam in aquatic ecosystems provide a reference for the safe application of this herbicide in the environment.
Collapse
Affiliation(s)
- Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yuelin Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaoyan Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fengwen Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
11
|
Araújo RG, Alcantar-Rivera B, Meléndez-Sánchez ER, Martínez-Prado MA, Sosa-Hernández JE, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Effects of UV and UV-vis Irradiation on the Production of Microalgae and Macroalgae: New Alternatives to Produce Photobioprotectors and Biomedical Compounds. Molecules 2022; 27:molecules27165334. [PMID: 36014571 PMCID: PMC9413999 DOI: 10.3390/molecules27165334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, algae applications have generated considerable interest among research organizations and industrial sectors. Bioactive compounds, such as carotenoids, and Mycosporine-like amino acids (MAAs) derived from microalgae may play a vital role in the bio and non-bio sectors. Currently, commercial sunscreens contain chemicals such as oxybenzone and octinoxate, which have harmful effects on the environment and human health; while microalgae-based sunscreens emerge as an eco-friendly alternative to provide photo protector agents against solar radiation. Algae-based exploration ranges from staple foods to pharmaceuticals, cosmetics, and biomedical applications. This review aims to identify the effects of UV and UV-vis irradiation on the production of microalgae bioactive compounds through the assistance of different techniques and extraction methods for biomass characterization. The efficiency and results focus on the production of a blocking agent that does not damage the aquifer, being beneficial for health and possible biomedical applications.
Collapse
Affiliation(s)
- Rafael G. Araújo
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Brian Alcantar-Rivera
- Department of Chemical and Biochemical Engineering, Tecnológico Nacional de México—Instituto Tecnológico de Durango (TecNM-ITD), Durango 34080, Mexico
| | | | - María Adriana Martínez-Prado
- Department of Chemical and Biochemical Engineering, Tecnológico Nacional de México—Instituto Tecnológico de Durango (TecNM-ITD), Durango 34080, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| | - Manuel Martínez-Ruiz
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| |
Collapse
|
12
|
Chen YD, Zhao C, Zhu XY, Zhu Y, Tian RN. Multiple inhibitory effects of succinic acid on Microcystis aeruginosa: morphology, metabolomics, and gene expression. ENVIRONMENTAL TECHNOLOGY 2022; 43:3121-3130. [PMID: 33843481 DOI: 10.1080/09593330.2021.1916090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The cell membrane permeability, morphology, metabolomics, and gene expression of Microcystis aeruginosa under various concentrations of succinic acid (SA) were evaluated to clarify the mechanism of SA inhibition of M. aeruginosa. The results showed that SA caused intracellular protein and nucleic acid extravasation by increasing the cell membrane permeability. Scanning electron microscopy suggested that a high dose of SA (60 mg L-1) could damage the cell membrane and even cause lysis in some cells. Metabolomics result demonstrated that change in intracellular lipids content was the main reason for the increase of cell membrane permeability. In addition, SA could negatively affect amino acids metabolism, inhibit the biosynthesis of nucleotides, and interfere with the tricarboxylic acid (TCA) cycle of algal cells. Furthermore, SA also affected N assimilation and caused oxidative damage to Microcystis. In conclusion, SA inhibits the growth of M. aeruginosa through multisite action.
Collapse
Affiliation(s)
- Yi-Dong Chen
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Chu Zhao
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xiao-Yu Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuan Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ru-Nan Tian
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Song K, Lu Y, Dao G, Chen Z, Wu Y, Wang S, Liu J, Hu HY. Reclaimed water for landscape water replenishment: Threshold nitrogen and phosphorus concentrations values for bloom control. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Pang H, Wang YN, Chi ZY, Xu YP, Li SY, Che J, Wang JH. Enhanced aquaculture effluent polishing by once and repetitive nutrients deprived seawater Chlorella sp. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Zhang R, Dong P, Sun H, Liu C. Combined Stresses of Boron and Salinity on Growth of Two Freshwater Algal Species. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:147-153. [PMID: 33851251 DOI: 10.1007/s00128-021-03230-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
To investigate the combined effects of excess boron (B) and high salinity on the growth of freshwater algal species, Chlorella vulgaris and Microcystis aeruginosa were cultured in the medium with different B and salinities. The results show that high levels of B and salinity inhibited the growth of the two algal species. For C. vulgaris, low levels of B can alleviate the growth inhibition induced by salinity, and low levels of salinity can also relieve the growth inhibition induced by B. In contrast, high levels of salinity have little effect on B toxicity, while high levels of B aggravate salinity stress. For M. aeruginosa, salinity aggravates B toxicity, regardless of salinity levels. B supply worsens salinity stress on M. aeruginosa, regardless of supply doses. These results suggest that it may be possible to control algal bloom by regulating B or salinities.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Pengyue Dong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chunguang Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
16
|
Li S, Tao Y, Dao GH, Hu HY. Synergetic suppression effects upon the combination of UV-C irradiation and berberine on Microcystis aeruginosa and Scenedesmus obliquus in reclaimed water: Effectiveness and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140937. [PMID: 32711324 DOI: 10.1016/j.scitotenv.2020.140937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
The risk of harmful algal blooms (HABs) in the water recharged with reclaimed water is a bottleneck for water reuse. The suppression effects and mechanisms of the combination of UV-C and berberine on Microcystis aeruginosa and Scenedesmus obliquus in reclaimed water were investigated. Mono UV-C irradiation at 75 mJ cm-2 could suppress the growth of M. aeruginosa for 7 d and that at 90 mJ cm-2 could suppress the growth of S. obliquus for 5 d. UV-C irradiation combined with 0.2-2 mg L-1 berberine lengthened the inhibition period of M. aeruginosa to 10- > 22 d and that of S. obliquus to 7- > 22 d and induced more rapid lethal effects on the harmful microalgal cells, in significant synergetic patterns. The combination of UV-C and berberine suppressed total, intracellular and extracellular microcystin-LR (MC-LR) more effectively and decreased the MC-LR quota significantly, which further reduced the risks of microcystin production and release. Furthermore, synergetic mechanisms of the combined treatments were systematically investigated from the aspects of photosynthetic system (photosynthetic activity and pigments), metabolic activity (ATP and membrane potential), oxidation stress (reactive oxygen species (ROS) and glutathione (GSH)), and apoptosis-like cell death (phosphatidylserine (PS) ectropion, caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive rate). The combination treatment provided a joint attack of UV-C and berberine on photosynthetic transport chain of photosynthetic system II (PS II), and a synergetic pathway to achieve more severe disruptions in energy metabolism as well as aggravated oxidative stress. The accumulated ROS enhanced increases in programmed cell death (PCD) indicators of both microalgal species, which contributed to the enhancement effects on growth suppression. The results showed that the combination treatment achieved lower dose requirements of both UV-C irradiation and berberine for inducing the same inhibition effects on microalgal cells, which was promising to be applied in the HABs control of reclaimed water.
Collapse
Affiliation(s)
- Shang Li
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Yi Tao
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Guo-Hua Dao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong-Ying Hu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|