1
|
Niu S, Wang R, Jiang Y. Quantification of heavy metal contamination and source in urban water sediments using a statistically determined geochemical baseline. ENVIRONMENTAL RESEARCH 2024; 263:120080. [PMID: 39343342 DOI: 10.1016/j.envres.2024.120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Geochemical baselines (GBs) play a crucial role in discerning natural variability from anthropogenic impacts on elemental composition within the environment. However, their applicability in quantifying the contribution of pollution sources to heavy metal contamination in sediments remains understudied. This research aimed to assess the degree of contamination and local pollution source attribution by leveraging geochemical baselines derived from statistical techniques, specifically the relative cumulative frequency (RCF) and 2σ-iterative (2σ-I) methods. In the urban water systems of Ma'anshan City, the major iron ore centre in eastern China, we observed concentration ranges of Cr, Cu, Ni, Pb and Zn in 36 sediment samples ranging from 66.89 to 352.08 mg/kg, 22.01 to 133.37 mg/kg, 22.66 to 50.80 mg/kg, 14.66to 264.37 mg/kg and 73.30 to 2707.46 mg/kg, respectively. RCF and 2σ-I techniques yielded similar GBs with no significant differences (p > 0.05). The geo-accumulation index and contamination factor analysis showed a sediment heavy metal accumulation rank of Zn > Pb > Cr > Cu > Ni. The contribution percentage of pollution sources varied with land functional type of watershed. For industry-influenced sediments, the contribution of local sources to Cr, Cu, Pb and Zn was significant, with shares of 43%-88%. Overall, this study highlights the valuable insights provided by GBs for effective management of urban aquatic environments.
Collapse
Affiliation(s)
- Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China.
| | - Ruiqi Wang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China
| | - Yun Jiang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China
| |
Collapse
|
2
|
Liao K, Li W, Huang Z, Lin S, Fu L, Liu W, Fang H, Deng H. Comprehensive evaluation of the distribution, transport and ecological risk of heavy metals in intra-urban river sediments using high-resolution techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124808. [PMID: 39182813 DOI: 10.1016/j.envpol.2024.124808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Determining the distribution trends, transport mechanisms, and ecological risks of heavy metals (HMs) in urban river sediments is essential for the government to conduct appropriate remediation work. In this study, we collected sediment cores from the Yayao Waterway in Foshan City, China. The vertical distribution profiles of dissolved and labile Fe, Mn, Cd, Zn, Cu, Cr, Ni, Pb, As, and Co in the sediments were obtained using the thin-film diffusive gradient (DGT) and high-resolution peeper (HR-Peeper) techniques. In addition, the transport rates, contamination levels, and ecological concerns of the HMs were evaluated using the European Community Bureau of Reference (BCR) sequential extraction technique, the DGT-induced sediment fluxes (DIFS) model, and multiple contamination evaluation metrics. The results showed that most of the DGT-labile HMs were associated with Fe/Mn (hydrogen) oxides, and in particular, Zn, Ni, and Cr showed a significant negative correlation with Fe/Mn (p < 0.001). Additionally, Cd had the highest bioavailability (89.17%), and its net diffusive flux at the sediment-water interface (SWI) was positive, which indicated a high release risk from the sediment. However, the R-value of Cd based on the DGT-induced sediment fluxes (DIFS) operation was extremely low, suggesting that although Cd had the biggest supply pool of releases, its release rate was slow. The majority of sampling sites had significantly higher total HM contents in the surface sediments than the background values. The HM contamination in the sediments originated from human activities, primarily from industrial enterprises and with a large contribution from both agricultural and domestic sources. The most polluted HM with the highest ecological danger was Cd, followed by Cu, Zn, Ni, and As when the results of the four pollution evaluation indicators were combined. Consequently, the risk of contamination by HMs in inner-city river sediments should receive more attention.
Collapse
Affiliation(s)
- Kang Liao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Weijie Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China.
| | - Zhiwei Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Shu Lin
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Lingfang Fu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Wei Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Huaiyang Fang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Hong Deng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Wang J, Shi D, Ma X, Yang L, Ding S, Liu E. Application of high-resolution techniques in the assessment of the mobility of Cr, Mo, and W at the sediment-water interface of Nansi Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:980. [PMID: 37480431 DOI: 10.1007/s10661-023-11567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/28/2023] [Indexed: 07/24/2023]
Abstract
There are few studies on the simultaneous behavior of chromium (Cr), molybdenum (Mo), and tungsten (W) belonging to group VIB of the periodic table. Herein, based on high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) technology, the vertical distribution characteristics of DGT-labile and soluble Cr, Mo, and W in two lakes of Nansi Lake (Weishan Lake and Dushan Lake) were analyzed. In addition, the net diffusion fluxes and R-value (CDGT/Csol) were used to evaluate the mobility and release risk of metals at the sediment-water interface. The results showed that the DGT-labile concentrations of the three metal elements (Cr, Mo, and W) in Weishan Lake were higher than those in Dushan Lake, both in overlying water and sediment. This is mainly due to the dredging of the Dushan Lake area, which can permanently remove the polluted sediment in the lake. Meanwhile, the exogenous input is relatively high near the tourist area of Weishan Island. The net diffusion fluxes indicate that the W has a potential release risk of diffusion to the overlying water in Dushan Lake. The release of Cr, Mo, and W is thought to be related to the reductive dissolution of Fe/Mn (hydr)oxides based on Pearson correlation coefficients. The R-values of Cr and W indicate that Cr and W belong to the partial continuity case. The R-value of Mo was lower than the minimum value, meaning that Mo belongs to the single diffusion type and it is difficult for Mo sediments to supply pore water.
Collapse
Affiliation(s)
- Jin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Dan Shi
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Liyuan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, China
| |
Collapse
|
4
|
Li D, Chang F, Zhang Y, Duan L, Liu Q, Li H, Hu G, Zhang X, Gao Y, Zhang H. Arsenic migration at the sediment-water interface of anthropogenically polluted Lake Yangzong, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163205. [PMID: 37004769 DOI: 10.1016/j.scitotenv.2023.163205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
The lability and controlling factors of arsenic (As) at the sediment-water interface (SWI) are crucial for understanding As behaviors and fates in As-contaminated areas. In this study, we combined high-resolution (5 mm) sampling using diffusive gradients in thin films (DGT) and equilibrium dialysis sampling (HR-Peeper), sequential extraction (BCR), fluorescence signatures, and fluorescence excitation-emission matrices (EEMs)-parallel factor analysis (PARAFAC) to explore the complex mechanisms of As migration in a typical artificially polluted lake, Lake Yangzong (YZ). The study results showed that a high proportion of the reactive As fractions in sediments can resupply pore water in soluble forms during the change from the dry season (winter, oxidizing period) to the rainy season (summer, reductive period). In dry season, the copresence of Fe oxide-As and organic matter (OM)-As complexes was related to the high dissolved As concentration in pore water and limited exchange between the pore water and overlying water. In the rainy season, with the change in redox conditions, the reduction of Fe-Mn oxides and OM degradation by microorganisms resulted in As deposition and exchange with the overlying water. Partial least squares path modelling (PLS-PM) indicated that OM affected the redox and As migration processes through degradation. Based on comprehensive analyses of the As, Fe, Mn, S and OM levels at the SWI, we suggest that the complexation and desorption of dissolved organic matter and Fe oxides play an important role in As cycling. Our findings shed new light on the cascading drivers of As migration and OM features in seasonal lakes and constitute a valuable reference for scenarios with similar conditions.
Collapse
Affiliation(s)
- Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Haoyu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Youhong Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China; Southwest United Graduate School, Kunming 650500, Yunnan, China.
| |
Collapse
|
5
|
Chételat J, Palmer MJ, Paudyn K, Jamieson H, Amyot M, Harris R, Hesslein R, Pelletier N, Peraza I. Remobilization of legacy arsenic from sediment in a large subarctic waterbody impacted by gold mining. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131230. [PMID: 36989775 DOI: 10.1016/j.jhazmat.2023.131230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Arsenic contamination from mining poses an environmental challenge due to the mobility of this redox-sensitive element. This study evaluated arsenic mobility in sediments of Yellowknife Bay (Canada), a large subarctic water body impacted by gold mining during the 20th century. Short-term measurements of arsenic flux from sediment, arsenic profiling of the water column and sediment porewater, and mass balance modelling were conducted to assess the importance of sediment as an arsenic source. Sediment arsenic fluxes were highly variable throughout Yellowknife Bay and ranged from - 65-1520 µg m-2 day-1. Elevated fluxes measured near the mine site were among the highest published for well-oxygenated lakes. Redox boundaries were typically 2-3 cm below the sediment surface as indicated by porewater profiles of iron, manganese, and arsenic, with arsenic maxima of 65-3220 µg L-1 predominately as arsenite. Sediment arsenic flux was positively related to its solid-phase concentration. Modelling indicated sediment was a principal source of arsenic to the water column. Adsorption and precipitation processes in the oxidizing environment of near-surface sediments did not effectively attenuate arsenic remobilized from contaminated sediments. Internal recycling of legacy arsenic between sediment and surface water will impede a return to background conditions in Yellowknife Bay for decades.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada.
| | - Michael J Palmer
- North Slave Research Centre, Aurora Research Institute, Aurora College, Yellowknife, Northwest Territories, Canada
| | - Katrina Paudyn
- School of Environmental Studies, Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada
| | - Heather Jamieson
- School of Environmental Studies, Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada
| | - Marc Amyot
- Département de Sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Reed Harris
- Reed Harris Environmental Ltd., Oakville, Ontario, Canada
| | | | - Nicolas Pelletier
- Carleton University, Geography and Environmental Studies, Ottawa, Ontario, Canada
| | - Ines Peraza
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Han L, Li Y, Xu D, Gao L, Gao B. Simultaneous measurement of labile As (III) and As (V) in soils combining DGT and HPLC-ICP-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161304. [PMID: 36592908 DOI: 10.1016/j.scitotenv.2022.161304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The speciation of arsenic (As) determines its biogeochemistry and ecotoxicity in soils. However, the approach to in situ monitor labile As (III) and As (V) in soils still requires more exploration. In this study, we developed a method for simultaneously obtaining in-situ data on labile As (III) and As (V) in soils using diffusive gradients in thin films (DGT) and high performance liquid chromatography-inductively coupled plasma mass spectrometry. The Fe2O3∙xH2O DGT sampler exhibited rapid and simultaneous accumulation of As (III) and As (V) in solutions within 90 min. The high efficiency of simultaneous elution of As (III) (~84 %) and As (V) (~97 %) was achieved using 0.8 % H3PO4 as eluent at 90 °C for 80 min. The method detection limits for As (III) and As (V) were 0.01 and 0.005 μg/L, respectively. This method was applied to reveal the labile As (III) and As (V) in soils in the water level fluctuation zones of the Three Gorges Reservoir, which is the largest reservoir in China. The concentrations of As (III) and As (V) measured by DGT varied with different sampling sites, ranging from 0.01 μg/L to 1.20 μg/L and from 0.01 μg/L to 0.26 μg/L, respectively. The labile As (III) exhibited the higher resupply rate from soil solid phase to soil solution than labile As (V). This study helps to achieve simultaneous in-situ quantification of labile As (III) and As (V) in soils, and will improve the understanding of As mobilization and ecotoxicity in soils.
Collapse
Affiliation(s)
- Lanfang Han
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanyan Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Li Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| |
Collapse
|
7
|
Ma X, Yang L, Liu E, Dai J. Evaluating the release risk of potentially toxic elements from sediments in the New Zhuzhao River Estuary of Nansi Lake, using high-resolution technology and sequential extraction. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:353. [PMID: 36725771 DOI: 10.1007/s10661-022-10832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/10/2022] [Indexed: 06/18/2023]
Abstract
Potentially toxic elements (PTEs) re-release from sediment is an essential process in the sediment-water interface (SWI), especially for the influent river estuary as an important accumulation site. In this study, the diffusive gradient in thin films (DGT), high-resolution dialysis (HR-peeper) technique, and BCR sequential extraction were employed to evaluate the release risk of PTEs (As, Cu, Pb, Zn, Cd) in the New Zhuzhao River Estuary of Nansi Lake. Results showed that Cd existed primarily in the non-residual fraction (accounting for 59.87%), and the residual fractions of As, Cu, Pb, and Zn accounted for a greater proportion (12.65 to 33.07%). The mobility of Cd was the highest with a risk assessment code of 33.53% reaching the medium risk category. The resupply capacity calculated by CDGT/CDis showed that As was the largest, with an average value of 0.43, indicating the strongest release capacity of As from the sediment to pore water. Furthermore, the diffusive fluxes using DGT and HR-peeper showed that As possesses a much higher potential to release upward overlying water than other elements.
Collapse
Affiliation(s)
- Xuan Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Liyuan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, People's Republic of China
| | - Jierui Dai
- Shandong Institute of Geological Survey, Jinan, 250013, China
| |
Collapse
|
8
|
Gao L, Lu J, Xu D, Wan X, Gao B. Partitioning behavior and ecological risk of arsenic and antimony in the sediment-porewater profile system in the Three Gorges Reservoir, China. CHEMOSPHERE 2022; 300:134409. [PMID: 35390413 DOI: 10.1016/j.chemosphere.2022.134409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Arsenic and antimony are widely distributed toxic metalloids in aquatic environments. However, their partitioning behaviors in the sediment profile remain not well understood. Here, partitioning behaviors, diffusive fluxes, as well as the ecological risks of As and Sb in the sediment-porewater profile system in the tributaries of the Three Gorges Reservoir (TGR) were investigated. As and Sb showed markedly different spatial variations in the longitudinal profiles of both porewater and sediment samples. Specifically, the concentration of As showed an accumulation trend with depth, while that of Sb showed a relatively complicated trend. Further, As showed lower sediment-porewater partitioning coefficient (Kd) values, suggesting that it had a relatively lower sediment affinity and a higher mobility than Sb. Its residual fraction (30%-60%) was also lower than that of Sb. This phenomenon could be attributed to the chemical fractions of the trace metals and the pH value of the sediments. Furthermore, the Kd values corresponding to As were influenced by both the residual fraction (r = 0.338, p < 0.05) and the exchangeable fraction (r = -0.643, p < 0.01), while those corresponding to Sb were only influenced by pH. Additionally, even though these two trace metals showed low ecological and mobility risks, the diffusive fluxes at the sediment-water interface suggested that the sediment acted as a source of As and a sink for Sb relative to the overlying water. This study indicated that As and Sb had different partitioning behaviors and release risks in the sediment-porewater profile system, enhanced the understanding the transport and fate of As and Sb in the aquatic environment.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jin Lu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Xiaohong Wan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| |
Collapse
|
9
|
Recent nanomaterials development and application in diffusive gradients in thin-film devices. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Xu F, Jia Y, Wang Y, Zhang F, Li L, Li Y, Ren L, Wang D, Zhang T. Does sand mining affect the remobilization of copper and zinc in sediments? - A case study of the Jialing River (China). ENVIRONMENTAL RESEARCH 2021; 200:111416. [PMID: 34090892 DOI: 10.1016/j.envres.2021.111416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
It is generally accepted that the sand mining industry causes severe destruction in river basin environments. In this study, six sediment cores were collected, and sequential extraction was applied in conjunction with the diffusive gradients in the thin films (DGT) technique to explore the effect of sand mining on the remobilization of Cu and Zn in the sediments. The results showed that Cu and Zn were mainly bound in the residual fraction in the sediments. CDGT-Cu/Zn in the sediments presented obvious increasing trends at the bottom (-9 to -12 cm) at the four sites that experienced sand mining and a decreasing trend at the sites with no sand mining disturbance. Cu and Zn also tended to be transported from the sediments to the overlying water at the four sand mining sites. A correlation analysis found that F1 and F3 correlated well with CDGT-Cu/Zn, indicating that the water/exchangeable fraction and oxidized fraction were the main fractions that led to increases in DGT-labile Cu and Zn in the sediments. Further analysis found that the introduction of oxygen (O2) was the main reason for the simultaneous release of sulfur (S), Cu and Zn in the sediments, as indicated by the "dark area" of AgI gel appearing at the same position as the "hot spot area" of Chelex gel. Two main sand mining effects on the release of Cu and Zn were hypothesized: (1) intense sand disturbance leads to the transfer of the water/exchangeable fraction (F1) to the DGT-labile fraction and (2) O2 introduction promotes the reaction of stable sulfide (F3), thus transferring it to the DGT-labile fraction. The above results indicated that the sand mining industry should be paid much attention in the Jialing River, as it can obviously cause labile Cu and Zn release into the water.
Collapse
Affiliation(s)
- Fei Xu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Yuting Jia
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Yu Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Fubin Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Lijuan Li
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Liping Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Dan Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Tuo Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| |
Collapse
|
11
|
Diquattro S, Castaldi P, Ritch S, Juhasz AL, Brunetti G, Scheckel KG, Garau G, Lombi E. Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145354. [PMID: 33736407 PMCID: PMC8064402 DOI: 10.1016/j.scitotenv.2021.145354] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 05/19/2023]
Abstract
The effect of long-term ageing (up to 700 days) on the mobility, potential bioavailability and bioaccessibility of antimony (Sb) was investigated in two soils (S1: pH 8.2; S2: pH 4.9) spiked with two Sb concentrations (100 and 1000 mg·kg-1). The Sb mobility decreased with ageing as highlighted by sequential extraction, while its residual fraction significantly increased. The concentration of Sb (CDGT), as determined by diffusive gradients in thin films (DGT), showed a reduction in potential contaminant bioavailability during ageing. The DGT analysis also showed that Sb-CDGT after 700 days ageing was significantly higher in S1-1000 compared to S2-1000, suggesting soil pH plays a key role in Sb potential bioavailability. In-vitro tests also revealed that Sb bioaccessibility (and Hazard Quotient) decreased over time. Linear combination fitting of Sb K-edge XANES derivative spectra showed, as a general trend, an increase in Sb(V) sorption to inorganic oxides with ageing as well as Sb(V) bound to organic matter (e.g. up to 27 and 37% respectively for S2-100). The results indicated that ageing can alleviate Sb ecotoxicity in soil and that the effectiveness of such processes can be increased at acidic pH. However, substantial risks due to Sb mobility, potential bioavailability and bioaccessibility remained in contaminated soils even after 700 days ageing.
Collapse
Affiliation(s)
- Stefania Diquattro
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/B, 07100 Sassari, Italy
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/B, 07100 Sassari, Italy
| | - Susie Ritch
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Gianluca Brunetti
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Kirk G Scheckel
- U. S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/B, 07100 Sassari, Italy.
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
12
|
Byrne P, Fuller CC, Naftz DL, Runkel RL, Lehto NJ, Dam WL. Transport and speciation of uranium in groundwater-surface water systems impacted by legacy milling operations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143314. [PMID: 33187709 DOI: 10.1016/j.scitotenv.2020.143314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Growing worldwide concern over uranium contamination of groundwater resources has placed an emphasis on understanding uranium transport dynamics and potential toxicity in groundwater-surface water systems. In this study, we utilized novel in-situ sampling methods to establish the location and magnitude of contaminated groundwater entry into a receiving surface water environment, and to investigate the speciation and potential bioavailability of uranium in groundwater and surface water. Streambed temperature mapping successfully identified the location of groundwater entry to the Little Wind River, downgradient from the former Riverton uranium mill site, Wyoming, USA. Diffusive equilibrium in thin-film (DET) samplers further constrained the groundwater plume and established sediment pore water solute concentrations and patterns. In this system, evidence is presented for attenuation of uranium-rich groundwater in the shallow sediments where surface water and groundwater interaction occurs. Surface water grab and DET sampling successfully detected an increase in river uranium concentrations where the groundwater plume enters the Little Wind River; however, concentrations remained below environmental guideline levels. Uranium speciation was investigated using diffusive gradients in thin-film (DGT) samplers and geochemical speciation modelling. Together, these investigations indicate uranium may have limited bioavailability to organisms in the Little Wind River and, possibly, in other similar sites in the western U.S.A. This could be due to ion competition effects or the presence of non- or partially labile uranium complexes. Development of methods to establish the location of contaminated (uranium) groundwater entry to surface water environments, and the potential effects on ecosystems, is crucial to develop both site-specific and general conceptual models of uranium behavior and potential toxicity in affected ground and surface water environments.
Collapse
Affiliation(s)
- Patrick Byrne
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| | | | - David L Naftz
- U.S. Geological Survey, 3162 Bozeman, Helena, MT 59601, USA
| | - Robert L Runkel
- U.S. Geological Survey, 3215 Marine St, Boulder, CO 80303, USA
| | - Niklas J Lehto
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | | |
Collapse
|
13
|
Luo F, Li Y, Norgbey E, Li R, Ya Z, Nwankwegu AS, Lie H, Sarpong L. A study on the occurrence of black water in reservoirs in Eucalyptus Plantation region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34927-34940. [PMID: 32577983 DOI: 10.1007/s11356-020-09613-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Tianbao reservoir in southern China (surrounded by Eucalyptus plantation) serves as a source of drinking water for the inhabitants. However, the reservoir water experiences black water (BW) of which the cause remains unclear. In this study, field observation and simulated laboratory experiment were conducted to understand the cause of the BW. The diffusive gradient in thin-film (DGT) device monitored the spatial changes in concentration of iron (Fe2+), manganese (Mn2+), sulfide (S2-), and dissolved organic carbon (DOC) at the SWI. The planar optode (PO) showed that hypoxia contributed immensely to the high positive fluxes Fe2+, Mn2+, and S2- measured, which co-precipitated to form black materials (FeS and MnS) at the SWI. The co-precipitation between Fe-S and Mn-S was supported by their significant positive correlation (Fe-S: r > 0.05, p < 0.05, Mn-S: r > 0.2, p < 0.05). Significant reduction (p < 0.05) in tannins concentration from November (strong thermal stratification) to December (weak thermal stratification) indicated that Fe2+ and tannins reacted during the mixing of reservoir water in December due to weak stratification. The simulated experiment confirmed that fresh Eucalyptus leaves produces a significant (p < 0.05) amount of tannins during hypoxia and reacts with Fe2+ to produce black water. A high positive correlation (r > 0.8) between Fe2+ and DOC demonstrated that Fe2+ and DOC combined and contributed to the reservoir water blackening. The study provides a better understanding on the impact of Eucalyptus plantation on water quality and provide guidance for scientific planting of Eucalyptus plantation in reservoir basins in southern China to ensure safe drinking water.
Collapse
Affiliation(s)
- Fan Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Eyram Norgbey
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Ronghui Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- Guangxi Institute of Water Resources Research, Nanning, 530023, China
| | - Zhu Ya
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Amechi S Nwankwegu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huang Lie
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Linda Sarpong
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Norgbey E, Li Y, Ya Z, Li R, Nwankwegu AS, Takyi-Annan GE, Luo F, Jin W, Huang Y, Sarpong L. High resolution evidence of iron-phosphorus-sulfur mobility at hypoxic sediment water interface: An insight to phosphorus remobilization using DGT-induced fluxes in sediments model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138204. [PMID: 32408451 DOI: 10.1016/j.scitotenv.2020.138204] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The deterioration of reservoirs in southern China due to the kinetics of Iron (Fe), Phosphorus (P) and sulphide (S) at the sediment-water interface (SWI) is a major problem that needs urgent attention. Studies on the biogeochemistry of Fe, P, and S using high-resolution profile techniques in reservoirs in this region are limited. The diffusive gradient in thin films (DGT) technique, high-resolution dialysis, DGT-computer imaging densitometry (CID), DGT-induced fluxes in sediments (DIFS) and planar optode (PO) device were used to describe the dynamics Fe-P-S in SWI during hypoxia. The results showed the release of Fe-P-S in SWI was due to sulfate reduction and iron reduction influenced greatly by hypoxia. Positive apparent fluxes were recorded indicating that the sediments release Fe-P-S to the overlying water. High positive correlations (r2 > 0.7) for DGT-labile Fe and DGT-labile P in sediments revealed that iron-bound P controlled the release of P at SWI during reductive dissolution. The low correlation between DGT-labile Fe and DGT-labile S (r2 < 0.4) disclosed the combative nature between sulfate reduction and iron reduction process. The low correlation occurred because of the co-precipitation between Fe and S, forming black materials such as monosulfide (FeS) and pyrite (FeS2) in a hypoxic environment. The DIFS model showed the resupply ability (R-values) of P in sediments belonged to the partially sustained case with a steady state case of resupply at TB3 (Tc = 1088s, Kd = 1005.61 cm3/g R = 0.72, K-1 = 0.19 day-1) and TB4 (Tc = 712 s, Kd = 712.53 cm3/g, R = 0.78, K-1 = 0.46 day-1). The resupply rate belonged to the non-steady state case at TB1 (Tc = 10,990 s, Kd = 396.3 cm3/g, R = 0.35, K-1 = 0.07 day-1) and TB2 (Tc = 6097 s, Kd = 578.5 cm3/g, R = 0.45, K-1 = 0.10 day-1). The DGT-CID-PO-DIFS provided a deep insight on the mechanism of Fe-P-S and remobilization of P at SWI leading to Blackwater events and eutrophication.
Collapse
Affiliation(s)
- Eyram Norgbey
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhu Ya
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ronghui Li
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Guangxi Institute of Water Resources Research, Nanning 530023, China; Guangxi Key Laboratory of Water Engineering Materials and Structures, Nanning 530023, China
| | - Amechi S Nwankwegu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Georgina Esi Takyi-Annan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; School of Architecture, Southeast University, Nanjing 210096, China
| | - Fan Luo
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Jin
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yanan Huang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Linda Sarpong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|