1
|
Zhao L, Yao W, Zhu Y, Huang J, Wang H, Jin L. Mechanism and kinetics of thermal decomposition of decabromobiphenyl: Reaction with reactive radicals and formation chemistry of polybrominated dibenzofurans. ENVIRONMENTAL RESEARCH 2024; 263:120061. [PMID: 39326652 DOI: 10.1016/j.envres.2024.120061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Although the production and usage of polybrominated biphenyls (PBBs) as brominated flame retardants have already been prohibited, they still pose a threat to the environment and human health. However, the evolutionary behaviors and decomposition mechanisms of PBBs during thermal treatment of waste remain unclear. In the present work, the mechanism and kinetics of thermal decomposition of decabromobiphenyl (deca-BB), one of the most frequently-used PBB congeners, are studied in detail using quantum chemical calculations. Results indicate that the high bond dissociation energies and large energy gap of deca-BB make its self-decomposition reaction difficult to occur, while its reactions with several reactive radicals (including hydrogen, bromine, and hydroxyl radicals) in the combustion environment are universally carried out at low energy barriers. Hydrogen, bromine, and hydroxyl radicals all exhibit a high selectivity for the para-C/Br atoms of deca-BB, resulting in the generation of several debromination products or intermediates. This study also investigates the formation mechanism of polybrominated dibenzofurans (PBDFs) from deca-BB and the effect of polymeric materials on this process. We found that the oxidation of ortho-phenyl-type radical, followed by evolution into PBDFs, is a very exothermic and relatively low-barrier process. Thus, the emergence of ortho-phenyl-type radicals from the loss of ortho-Br atoms is a critical step in the formation of PBDFs. Influence of polymeric materials on the formation of PBDFs is reflected in that various alkyl radicals and diradicals produced by their decomposition can readily abstract ortho-Br atoms to generate ortho-phenyl-type radicals, thus facilitating the formation of PBDFs. The mechanistic pathways and kinetic parameters presented in this study can offer theoretical guidance for controlling contaminant emissions in the thermal treatment of deca-BB-containing waste.
Collapse
Affiliation(s)
- Lufang Zhao
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Wang Yao
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yan Zhu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Jinbao Huang
- Engineering Training Center, Guizhou Minzu University, Guiyang 550025, China.
| | - Hong Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Li Jin
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
2
|
Ali L, Sivaramakrishnan K, Kuttiyathil MS, Chandrasekaran V, Ahmed OH, Al-Harahsheh M, Altarawneh M. Prediction of Thermogravimetric Data in the Thermal Recycling of e-waste Using Machine Learning Techniques: A Data-driven Approach. ACS OMEGA 2023; 8:43254-43270. [PMID: 38024703 PMCID: PMC10652257 DOI: 10.1021/acsomega.3c07228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The release of bromine-free hydrocarbons and gases is a major challenge faced in the thermal recycling of e-waste due to the corrosive effects of produced HBr. Metal oxides such as Fe2O3 (hematite) are excellent debrominating agents, and they are copyrolyzed along with tetrabromophenol (TBP), a lesser used brominated flame retardant that is a constituent of printed circuit boards in electronic equipment. The pyrolytic (N2) and oxidative (O2) decomposition of TBP with Fe2O3 has been previously investigated with thermogravimetric analysis (TGA) at four different heating rates of 5, 10, 15, and 20 °C/min, and the mass loss data between room temperature and 800 °C were reported. The objective of our paper is to study the effectiveness of machine learning (ML) techniques to reproduce these TGA data so that the use of the instrument can be eliminated to enhance the potential of online monitoring of copyrolysis in e-waste treatment. This will reduce experimental and human errors as well as improve process time significantly. TGA data are both nonlinear and multidimensional, and hence, nonlinear regression techniques such as random forest (RF) and gradient boosting regression (GBR) showed the highest prediction accuracies of 0.999 and lowest prediction errors among all the ML models employed in this work. The large data sets allowed us to explore three different scenarios of model training and validation, where the number of training samples were varied from 10,000 to 40,000 for both TBP and TBP + hematite samples under N2 (pyrolysis) and O2 (combustion) environments. The novelty of our study is that ML techniques have not been employed for the copyrolysis of these compounds, while the significance is the excellent potential of enhanced online monitoring of e-waste treatment and extension to other characterization techniques such as spectroscopy and chromatography. Lastly, e-waste recycling could greatly benefit from ML applications since it has the potential to reduce total and operational costs and improve overall process time and efficiency, thereby encouraging more treatment plants to adopt these techniques, resulting in reducing the increasing environmental footprint of e-waste.
Collapse
Affiliation(s)
- Labeeb Ali
- Department
of Chemical and Petroleum Engineering, United
Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al-Ain 15551, United Arab
Emirates
| | - Kaushik Sivaramakrishnan
- Department
of Chemical and Petroleum Engineering, United
Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al-Ain 15551, United Arab
Emirates
| | - Mohamed Shafi Kuttiyathil
- Department
of Chemical and Petroleum Engineering, United
Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al-Ain 15551, United Arab
Emirates
| | - Vignesh Chandrasekaran
- Department
of Computer Science, University of British
Columbia, Vancouver V6T 1Z4, Canada
| | - Oday H. Ahmed
- Department
of Physics, College of Education, Al-Iraqia
University, Baghdad 10071, Iraq
| | - Mohammad Al-Harahsheh
- Chemical
Engineering Department, Jordan University
of Science and Technology, Irbid 22110, Jordan
| | - Mohammednoor Altarawneh
- Department
of Chemical and Petroleum Engineering, United
Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al-Ain 15551, United Arab
Emirates
| |
Collapse
|
3
|
Wang Y, Huang J, Li S, Xu W, Wang H, Xu W, Li X. A mechanistic and kinetic investigation on the oxidative thermal decomposition of decabromodiphenyl ether. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121991. [PMID: 37328125 DOI: 10.1016/j.envpol.2023.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The thermal processes of materials containing decabromodiphenyl ether (BDE-209) normally result in the exposure of BDE-209 to high-temperature environments, generating a series of hazardous compounds. However, the evolution mechanisms of BDE-209 during oxidative thermal processes remain unclear. Thus, this paper presents a detailed investigation on the oxidative thermal decomposition mechanism of BDE-209 by utilizing density functional theory methods at the M06/cc-pVDZ theoretical level. The results show that the barrierless fission of the ether linkage dominates the initial degradation of BDE-209 at all temperatures, with branching ratio over 80%. The decomposition of BDE-209 in oxidative thermal processes is mainly along BDE-209 → pentabromophenyl and pentabromophenoxy radicals → pentabromocyclopentadienyl radicals → brominated aliphatic products. Additionally, the study results on the formation mechanisms of several hazardous pollutants indicate that the ortho-phenyl-type radicals created by ortho-C-Br bond fission (branching ratio reached 15.1% at 1600 K) can easily be converted into octabrominated dibenzo-p-dioxin and furan, which require overcoming the energy barriers of 99.0 and 48.2 kJ/mol, respectively. The O/ortho-C coupling of two pentabromophenoxy radicals also acts as a non-negligible pathway for the formation of octabrominated dibenzo-p-dioxin. The synthesis of octabromonaphthalene involves the self-condensation of pentabromocyclopentadienyl radicals, followed by an intricately intramolecular evolution. Results presented in this study can enhance our understanding of the transformation mechanism of BDE-209 in thermal processes, and offer an insight into controlling the emissions of hazardous pollutants.
Collapse
Affiliation(s)
- Yao Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Jinbao Huang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Sijia Li
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weifeng Xu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Hong Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weiwei Xu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xinsheng Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
4
|
Wang M, Liu G, Yang L, Zheng M. Framework of the Integrated Approach to Formation Mechanisms of Typical Combustion Byproducts─Polyhalogenated Dibenzo- p-dioxins/Dibenzofurans (PXDD/Fs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2217-2234. [PMID: 36722466 DOI: 10.1021/acs.est.2c08064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the mechanisms through which persistent organic pollutants (POPs) form during combustion processes is critical for controlling emissions of POPs, but the mechanisms through which most POPs form are poorly understood. Polyhalogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs) are typical toxic POPs, and the formation mechanisms of PXDD/Fs are better understood than the mechanisms through which other POPs form. In this study, a framework for identifying detailed PXDD/Fs formation mechanisms was developed and reviewed. The latest laboratory studies in which organic free radical intermediates of PXDD/Fs have been detected in situ and isotope labeling methods have been used to trace transformation pathways were reviewed. These studies provided direct evidence for PXDD/Fs formation pathways. Quantum chemical calculations were performed to determine the rationality of proposed PXDD/Fs formation pathways involving different elementary reactions. Many field studies have been performed, and the PXDD/Fs congener patterns found were compared with PXDD/Fs congener patterns obtained in laboratory simulation studies and theoretical studies to mutually verify the dominant PXDD/Fs formation mechanisms. The integrated method involving laboratory simulation studies, theoretical calculations, and field studies described and reviewed here can be used to clarify the mechanisms involved in PXDD/Fs formation. This review brings together information about PXDD/Fs formation mechanisms and provides a methodological framework for investigating PXDD/Fs and other POPs formation mechanisms during combustion processes, which will help in the development of strategies for controlling POPs emissions.
Collapse
Affiliation(s)
- Mingxuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, People's Republic of China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, People's Republic of China
| |
Collapse
|
5
|
Ali L, Shafi Kuttiyathil M, Altarawneh M. Oxidative and pyrolytic decomposition of an evaporated stream of 2,4,6-tribromophenol over hematite: A prevailing scenario during thermal recycling of e-waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:283-292. [PMID: 36308795 DOI: 10.1016/j.wasman.2022.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Brominated flame retardants (BFRs) constitute a major load in the polymeric fraction of e-waste. Degradation of BFRs-laden plastics over transition metal oxides is currently deployed as a mainstream strategy in the disposal and treatment of the non-metallic segment of e-waste. However, interaction of pyrolysis's products of BFRs with transition metal oxides is well-known to facilitate the formation of notorious pollutants. Despite recent progress to comprehend the germane chemistry of this interaction, several important pertinent aspects remain to be addressed. To fill in this gap, an integrated experimental and simulation account of the pyrolytic and oxidative decomposition of a gaseous stream of 2,4,6-tribromophenol (TBP) over hematite (Fe2O3) has been reported herein. TBP is utilized as a model compounds of BFRs as their most common formulations include brominated phenolic rings. Overall, hematite entails a rather low cracking capacity under pyrolytic conditions. Analysis of condensate products indicates that oxidative degradation of a gaseous stream of TBP results mainly in the formation of brominated alkanes such as bromoethane and bromo-pentane. Likewise, Ion chromatography (IC) measurements disclosed a noticeable reduction in the concentrations of escaped HBr. Transformation of iron oxides into iron bromides (possibly in the form of FeBr2) during pyrolysis and combustion operations is evident through XRD measurements. Density functional theory (DFT) calculations map out important reactions pathways that operate in the initial degradation of the TBP molecule. From a broader perspective, outlined results shall be instrumental to precisely assess the effectiveness of using iron oxides in thermal catalytic recycling of e-waste and the likely emission of brominated toxicants.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Mohamed Shafi Kuttiyathil
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
6
|
Die Q, Yang J, Wang J, Wang J, Yang Y, Huang Q, Zhou Q. Occurrence and formation pathways analysis of PBDD/Fs from 2,4,6-tribromophenol under thermal reaction conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113449. [PMID: 35358919 DOI: 10.1016/j.ecoenv.2022.113449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) are highly toxic and persistent compounds that provoke a wave of publicity. Bromophenols are important precursors for forming PBDD/Fs, and their reaction path has always been a research hotspot. In this study, the formation characteristic of PBDD/Fs from 2,4,6-TBP were studied. The yields of 2,3,7,8-substituted PBDD/Fs and 2,4,6,8-TBDF for the different thermal products ranged from 0.067 to 10.3 ng/g and 0.207-9.68 ng/g, respectively. The effects of adding Cu, Fe, and Sb2O3 were investigated and found to be more inclined to accelerate the formation of ortho-substituted PBDD/Fs than 2,3,7,8-PBDD/Fs. The formation pathways of 2,3,7,8-substituted PBDD/Fs and 2,4,6,8-TBDF were also proposed. 2,4,6,8-TBDF is generated in the C-C coupling reactions of some radical intermediates from the debromination of 2,4,6-TBP. The 2,3,7,8-PBDD/Fs are produced through more complex debromination, bromine substitution, and bromine rearrangement reactions. In addition, various catalytic effects on PBDD/F formation pathways were found, and the catalytic effect of Cu by the Ullmann reaction was the highest, while bromophenol oxidation by Fe was the highest. These results proved that both 2,3,7,8-substituted and non-2,3,7,8-substituted PBDD/Fs would be generated from 2,4,6-TBP, and the effects of the catalyst on the Br substituted position of 2,3,7,8-substituted PBDD/Fs were much lower than the Br-substituted position on bromophenol.
Collapse
Affiliation(s)
- Qingqi Die
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinzhong Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianyuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yufei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Li M, An Z, Huo Y, Jiang J, Zhou Y, Cao H, He M. Simulation degradation of bromophenolic compounds in chlorine-based advanced oxidation processes: Mechanism, microscopic and apparent kinetics, and toxicity assessment. CHEMOSPHERE 2022; 291:133034. [PMID: 34822870 DOI: 10.1016/j.chemosphere.2021.133034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 05/28/2023]
Abstract
Chlorine-based advanced oxidation processes (AOPs) have been extensively studied to remove contaminants through generating HO• and reactive chlorine species, including ClO• and Cl•. In this work, 2,4,6-tribromoanisole (246TBA) and 2,4,6-tribromophenol (246TBP) were selected as model to investigate the reaction mechanisms and micro-kinetics of brominated contaminants with HO•, ClO• and Cl• in chlorine-based AOPs. Also, the apparent degradation kinetics of two compounds were simulated at pH 3.0-9.5 under UV/H2O2, UV/chlorine and UV/NH2Cl. Calculated results showed that neutral 246TBA and 246TBP exhibited similar reactivity to HO• and ClO•, which was different from anionic 2,4,6-tribromophenolate (246TBPT): radical adduct formation (RAF) and H atom abstraction (HAA) were predominant mechanisms for the HO• and ClO• initiated reactions of 246TBA and 246TBP, while RAF and single electron transfer (SET) for 246TBPT; the reaction rate constants of 246TBA and 246TBP with HO• and ClO• were lower than 107 M-1 s-1, and such rate constants dramatically increased to 1010 M-1 s-1 once 246TBP was deprotonated to 246TBPT. The apparent degradation kinetics of 246TBA at pH 3.0-9.5 was simulated in the order of UV/NH2Cl > UV/chlorine > UV/H2O2, and UV/chlorine and UV/NH2Cl were more effective for the removal of 246TBP and 246TBPT than UV/H2O2. UV and/or Cl• dominated 246 TBA degradation under three AOPs. The main radicals mediating 246TBP and 246TBPT degradation are respectively HO• under UV/H2O2, ClO• under UV/chlorine, and HO• and Cl• under UV/NH2Cl. The transformation products of 246TBA, 246TBP and 246TBPT, especially methoxylated and hydroxylated polybrominated diphenyl ethers (MeO-PBDEs and HO-PBDEs), were still toxic pollutants.
Collapse
Affiliation(s)
- Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Haijie Cao
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
8
|
Enhanced Phenol Tert-Butylation Reaction Activity over Hierarchical Porous Silica-Alumina Materials. Catalysts 2020. [DOI: 10.3390/catal10091098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hierarchical aluminum-silicon materials have been successfully prepared by mixing pre-crystallization of silica-alumina sol and citric acid under hydrothermal conditions. The influence of pre-crystallization time on the micro-mesoporous structure is studied using Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), N2 physical adsorption, and high-resolution transmission electron microscopy (HRTEM). The catalytic performance of hierarchical silica-alumina material is evaluated by alkylation of phenol with tert-butanol. The results show that the silica-alumina materials with a pre-crystallization time of 16 h show micro-mesoporous structure and excellent catalytic activity.
Collapse
|