1
|
Elkader HTAEA, Al-Shami AS. Acetylcholinesterase and dopamine inhibition suppress the filtration rate, burrowing behaviours, and immunological responses induced by bisphenol A in the hemocytes and gills of date mussels, Lithophaga lithophaga. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106971. [PMID: 38843741 DOI: 10.1016/j.aquatox.2024.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Bisphenol A (BPA), a common industrial chemical with estrogenic activity, has recently gained attention due to its well-documented negative effects on humans and other organisms in the environment. The potential immunotoxicity and neurotoxicity of BPA remain poorly understood in marine invertebrate species. Therefore, the impacts of exposure to BPA on a series of behaviours, immune responses, oxidative stress, neural biomarkers, histology, and the ultrastructure of gills were investigated in the date mussel, Lithophaga lithophaga. After 28 days of exposure to 0.25, 1, 2, and 5 µg/L BPA, hemolymphs from controls and exposed date mussels were collected, and the effects of BPA on immunological parameters were evaluated. Moreover, oxidative stress and neurochemical levels were measured in the gills of L. lithophaga. BPA reduced filtration rates and burrowing behaviour, whereas a 2 µg/L BPA resulted in an insignificant increase after 24 h. The exposure of date mussels to BPA significantly increased total hemocyte counts, a significant reduction in the diameter and phagocytosis of hemocytes, as well as gill lysozyme level. BPA increased lipid peroxidation levels and SOD activity in gills exposed to 2 and 5 µg/L BPA, but decreased GSH levels and SOD activity in 0.25 and 1 µg/L BPA-treated date mussels. Dose-dependent dynamics were observed in the inhibition of acetylcholinesterase activity and dopamine levels. Histological and scanning electron microscope examination revealed cilia erosion, necrosis, inflammation, and hyperplasia formation in the gills. Overall, our findings suggest a relationship between BPA exposure and changes in the measured immune parameters, oxidative stress, and neurochemical disturbances, which may be factored into the mechanisms underlying BPA toxicity in marine molluscs, providing a scientific foundation for marine BPA risk assessment and indicating immunosuppression in BPA-exposed date mussels.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Pires P, Pereira AMPT, Pena A, Silva LJG. Non-Steroidal Anti-Inflammatory Drugs in the Aquatic Environment and Bivalves: The State of the Art. TOXICS 2024; 12:415. [PMID: 38922095 PMCID: PMC11209577 DOI: 10.3390/toxics12060415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
In recent years, contaminants of emerging concern have been reported in several environmental matrices due to advances in analytical methodologies. These anthropogenic micropollutants are detected at residual levels, representing an ecotoxicological threat to aquatic ecosystems. In particular, the pharmacotherapeutic group of non-steroidal anti-inflammatories (NSAIDs) is one of the most prescribed and used, as well as one of the most frequently detected in the aquatic environment. Bivalves have several benefits as a foodstuff, and also as an environment bioindicator species. Therefore, they are regarded as an ideal tool to assess this issue from both ecotoxicological and food safety perspectives. Thus, the control of these residues in bivalves is extremely important to safeguard environmental health, also ensuring food safety and public health. This paper aims to review NSAIDs in bivalves, observing their consumption, physicochemical characteristics, and mechanisms of action; their environmental occurrence in the aquatic environment and aquatic biota; and their effects on the ecosystem and the existent legal framework. A review of the analytical methodologies for the determination of NSAIDs in bivalves is also presented.
Collapse
Affiliation(s)
| | | | | | - Liliana J. G. Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal (A.P.)
| |
Collapse
|
3
|
Sales Junior SF, Gabriel FÂ, Soares LOS, Rocha RCC, Saint'Pierre TD, Saggioro EM, Correia FV, Ferreira TO, Hauser-Davis RA, Bernardino AF. Rare Earth Element Accumulation in Fiddler Crabs (Minuca rapax) from the Rio Doce Tropical Estuary Strongly Affected by Mine Tailings Following the Fundão Disaster. Biol Trace Elem Res 2024:10.1007/s12011-024-04231-3. [PMID: 38773036 DOI: 10.1007/s12011-024-04231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
A mining tailing dam rupture in Brazil in November 2015 released millions of tons of mining waste into the Rio Doce ecosystem, leading to long-term aquatic ecosystem impacts. Although multiple lines of evidence indicate tailings associations with potentially toxic elements in estuarine sediments and biological impact and bioaccumulation pathways in fishes, the extent of contamination in base benthic species is still largely unknown. Moreover, Rare Earth Elements (REE) have not received any attention in this regard. This study assessed REE in fiddler crabs (Minuca rapax) sampled from the Rio Doce estuary in 2017, nearly 2 years after the disaster. The ΣREE in crab hepatopancreas and muscle were high (327.83 mg kg-1 w.w. and 33.84 mg kg-1 w.w., respectively, compared to other assessments in crabs, indicating a preference for REE bioaccumulation in the hepatopancreas compared to muscle. Neodimium, La, and Ce were detected at the highest concentrations. The REE from the Rio Doce Basin were, thus, transported and deposited in the estuary with the mine tailings slurry, leading to bioaccumulation in crabs. This may lead to trophic effects and other ecological impacts not readily measured by typical impact assessment studies, revealing an invisible and not typically acknowledged damage to the Rio Doce estuary.
Collapse
Affiliation(s)
- Sidney Fernandes Sales Junior
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Avaliação e Promoção da Saúde Ambiental, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro/RJ. CEP, 21040-360, Brazil
| | - Fabrício Ângelo Gabriel
- Universidade Federal do Espírito Santo (UFES), Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari, 514, Goiabeiras, Vitória/ES. CEP, 29075-910, Brazil
- Departamento de Biologia e Ciências, Laboratório de Ciências e Biologia, Colégio Pedro II, Rua Bernardo de Vasconcelos, 941, Realengo, Rio de Janeiro - RJ, 21710-26, Brazil
| | - Lorena Oliveira Souza Soares
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Rafael Christian Chávez Rocha
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Rua Marquês de São Vicente, 225, Gávea. Rio de Janeiro/RJ. CEP, 22451-900, Brazil
| | - Tatiana Dillenburg Saint'Pierre
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Rua Marquês de São Vicente, 225, Gávea. Rio de Janeiro/RJ. CEP, 22451-900, Brazil
| | - Enrico Mendes Saggioro
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Avaliação e Promoção da Saúde Ambiental, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro/RJ. CEP, 21040-360, Brazil
| | - Fábio Veríssimo Correia
- Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro/RJ. CEP, 22290-20, Brazil
| | - Tiago Osório Ferreira
- Escola Superior de Agricultura Luiz Queiroz, Departamento de Ciência do Solo, Universidade de São Paulo (ESALQ/USP), Alameda das Palmeiras - Agronomia, Piracicaba/SP. CEP, 13418-900, Brazil
| | - Rachel Ann Hauser-Davis
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Laboratório de Avaliação e Promoção da Saúde Ambiental, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro/RJ. CEP, 21040-360, Brazil.
| | - Angelo Fraga Bernardino
- Universidade Federal do Espírito Santo (UFES), Departamento de Oceanografia e Ecologia, Av. Fernando Ferrari, 514, Goiabeiras, Vitória/ES. CEP, 29075-910, Brazil.
| |
Collapse
|
4
|
Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. How predicted temperature and salinity changes will modulate the impacts induced by terbium in bivalves? CHEMOSPHERE 2024; 351:141168. [PMID: 38215828 DOI: 10.1016/j.chemosphere.2024.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The threat of climate change, which includes shifts in salinity and temperature, has generated a global concern for marine organisms. These changes directly impact them and may alter their susceptibility to contaminants, such as terbium (Tb), found in electronic waste. This study assessed how decreased and increased salinity, as well as increased temperature, modulates Tb effects in Mytilus galloprovincialis mussels. After an exposure period of 28 days, Tb bioaccumulation and biochemical changes were evaluated. Results indicated no significant modulation of salinity and temperature on Tb accumulation, suggesting detoxification mechanisms and adaptations. Further analysis showed that Tb exposure alone caused antioxidant inhibition and neurotoxicity. When exposed to decreased salinity, these Tb-exposed organisms activated defense mechanisms, a response indicative of osmotic stress. Moreover, increased salinity also led to increased oxidative stress and metabolic activity in Tb-exposed organisms. Additionally, Tb-exposed organisms responded to elevated temperature with altered biochemical activities indicative of damage and stress response. Such responses suggested that Tb effects were masked by osmotic and heat stress. This study provides valuable insights into the interactions between temperature, salinity, and contaminants such as Tb, impacting marine organisms. Understanding these relationships is crucial for mitigating climate change and electronic waste effects on marine ecosystems.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Afsa S, De Marco G, Cristaldi A, Giannetto A, Galati M, Billè B, Conti GO, Ben Mansour H, Ferrante M, Cappello T. Single and combined effects of caffeine and salicylic acid on mussel Mytilus galloprovincialis: Changes at histomorphological, molecular and biochemical levels. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104167. [PMID: 37286067 DOI: 10.1016/j.etap.2023.104167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Caffeine (CAF) and salicylic acid (SA) are frequently detected in waterbody, though information on their biological impact is poor. This work assesses the effects of CAF (5ng/L to 10µg/L) and SA (0.05µg/L to 100µg/L) alone and combined as CAF+SA (5ng/L+0.05µg/L to 10µg/L+100µg/L) on mussel Mytilus galloprovincialis under 12-days exposure by histomorphology of digestive gland and oxidative stress defense at molecular and biochemical levels. Besides evaluating tissue accumulation, absence of histomorphological damage and haemocyte infiltration highlighted activation of defensive mechanisms. Up-regulation of Cu/Zn-sod, Mn-sod, cat and gst combined with increased catalase and glutathione S-transferase activity were found in CAF-exposed mussels, while SA reduced ROS production and mitochondrial activity. CAF+SA exposure induced differential responses, and the integrated biomarker response (IBR) revealed more pronounced effects of SA than CAF. These results enlarge knowledge on pharmaceuticals impact on non-target organisms, emphasizing the need for proper environmental risk assessment.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Cristaldi
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Margherita Ferrante
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
6
|
Sousa M, Rodrigues S, Pretti C, Meucci V, Battaglia F, Freitas R, Antunes SC. A forecast effects of climate change and anthropogenic compounds in Gambusia holbrooki: ecotoxicological effects of salinity and metformin. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106494. [PMID: 36948067 DOI: 10.1016/j.aquatox.2023.106494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Due to global warming and extreme weather events, estuarine and coastal ecosystems are facing sudden fluctuations in salinity. These ecosystems are also threatened by organic and inorganic compounds that increase water pollution. Metformin is an antidiabetic drug commonly used by patients with type-2 diabetes, and an increase in environmental concentration has been recorded. To better understand the impacts of these two stressors on aquatic organisms, this study assessed: 1) the acute (96 h) ecotoxicological effects (antioxidant and biotransformation capacity, oxidative damage, energetic reserves, and protein content, neurotoxicity) induced by a range of metformin concentrations in Gambusia holbrooki under different salinities (17, 24, 31 expressed as Practical Salinity Units - PSU); and 2) the same endpoints after chronic exposure (28 d) under a range of metformin concentrations at a salinity of 17. The results obtained from the acute exposure showed interactions between salinity and metformin in G. holbrooki superoxide dismutase (SOD) activity, body protein, and glycogen (GLY) contents. The results revealed that an increase in salinity can modulate the response of G. holbrooki to metformin. Chronically exposed organisms showed that metformin led to a significant decrease in SOD activity at most of the tested concentrations (0.5, 1.0, and 10 µg/L). In addition, glutathione S-transferases increased and glutathione peroxidase activity decreased significantly at concentrations of metformin of 5 and 10 at the µg/L, respectively. Therefore, overall, metformin can lead to potential oxidative stress in G. holbrooki the highest metformin concentrations tested and the GLY content in G. holbrooki increased after exposure to metformin concentrations of 0.5, 1.0 and 5.0 μg/L. Published studies have already shown that metformin alone can lead to oxidative damage in aquatic species, endangering the biodiversity of aquatic ecosystems. Therefore, additional ecotoxicological studies should be performed to characterize if other metformin concentrations combined with salinity, or other climate change-related factors, might impact non-target species. Standard toxicity bioassays may not be predictive of actual pollutants (e.g. metformin) toxicity under variable environmental conditions, and the investigation of a wider range of exposure conditions could improve the accuracy of chemical risk assessments.
Collapse
Affiliation(s)
- Maria Sousa
- Departamento de Biologia, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Sara Rodrigues
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões | Avenida General Norton de Matos, S/N, Universidade do Porto, Matosinhos 4450-208, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Porto 4169-007, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), 56122, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", Livorno 57128, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), 56122, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), 56122, Italy
| | - Rosa Freitas
- Departamento de Biologia, Universidade de Aveiro, Aveiro 3810-193, Portugal; CESAM - Centro de Estudos dos Ambiente e do Mar, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Sara C Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões | Avenida General Norton de Matos, S/N, Universidade do Porto, Matosinhos 4450-208, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Porto 4169-007, Portugal.
| |
Collapse
|
7
|
Freitas R, Arrigo F, Coppola F, Meucci V, Battaglia F, Soares AMVM, Pretti C, Faggio C. Combined effects of temperature rise and sodium lauryl sulfate in the Mediterranean mussel. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104132. [PMID: 37088267 DOI: 10.1016/j.etap.2023.104132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Personal care products (PCPs) are those compounds used daily (e.g., soaps, shampoos, deodorants, and toothpaste), explaining their frequent detection in aquatic systems. Still, scarce information is available on their effects on inhabiting wildlife. Among the most commonly used PCPs is the surfactant Sodium Lauryl Sulfate (SLS). The present study investigated the influence of temperature (CTL 17 ºC vs 22 ºC) on the effects of SLS (0 mg/L vs 4 mg/L) in the mussel species Mytilus galloprovincialis. Mussels' general health status was investigated, assessing their metabolic and oxidative stress responses. Higher biochemical alterations were observed in SLS-exposed mussels and warming enhanced the impacts, namely in terms of biotransformation capacity and loss of redox homeostasis, which may result in consequences to population maintenance, especially if under additional environmental stressors. These results confirm M. galloprovincialis as an excellent bioindicator of PCPs pollution, and the need to consider actual and predicted climate changes.
Collapse
Affiliation(s)
- Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Federica Arrigo
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Francesca Coppola
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S. Agata-Messina, Italy
| |
Collapse
|
8
|
De Marco G, Afsa S, Galati M, Guerriero G, Mauceri A, Ben Mansour H, Cappello T. Time- and dose-dependent biological effects of a sub-chronic exposure to realistic doses of salicylic acid in the gills of mussel Mytilus galloprovincialis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88161-88171. [PMID: 35829880 DOI: 10.1007/s11356-022-21866-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Among nonsteroidal anti-inflammatory drugs (NSAIDs) commonly found in seawater and wastewater, salicylic acid (SA) represents one of the most persistent and hazardous compounds for aquatic organisms. This study was therefore designed to elucidate the biological effects of SA in mussel Mytilus galloprovincialis. During a sub-chronic exposure (12 days), mussels were exposed to five realistic concentrations of SA (C1: 0.05 μg/L; C2: 0.5 μg/L; C3: 5 μg/L; C4: 50 μg/L; C5: 100 μg/L) and gills, selected as the target organ, were collected at different time points (T3: 3 days; T5: 5 days; T12: 12 days). Exposure to SA induced no histological alterations in mussel gills, despite a relevant hemocyte infiltration was observed throughout the exposure as a defensive response to SA. Temporal modulation of glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) activities suggested the occurrence of antioxidant and detoxifying responses against SA exposure, while lipid peroxidation (LPO), except for a partial increase at T3, was prevented. Inhibition of the cholinergic system was also reported by reduced acetylcholinesterase (AChE) activity, mainly at T12. Overall, findings from this study contribute to enlarge the current knowledge on the cytotoxicity of SA, on non-target aquatic organisms, and might for the enhancement of new ecopharmacovigilance programs and optimization of the efficacy of wastewater treatment plants for mitigation of pharmaceutical pollution in coastal areas.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Giulia Guerriero
- Department of Biology, University of Naples "Federico II", 80126, Naples, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| |
Collapse
|
9
|
Xing S, Li P, He S, Cao Z, Wang X, Cao X, Liu B, Chen C, You H, Li ZH. Physiological responses in Nile tilapia (Oreochromis niloticus) induced by combined stress of environmental salinity and triphenyltin. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105736. [PMID: 36049432 DOI: 10.1016/j.marenvres.2022.105736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Triphenyltin (TPT) has attracted considerable attention owing to its vitality, bioaccumulation, and lurking damage. TPT widely exists in complex salinity areas such as estuaries and coastal regions. However, there are few studies on the toxicological behavior of TPT under different salinity. In the study, juvenile Nile tilapia (Oreochromis niloticus) were utilized as model animals to investigate the effects of environmental relevant TPT exposure on the osmoregulation and energy metabolism in gill under different salinity. The results showed that salinity and TPT single or combined exposure affected the morphology of the gill tissue. After TPT exposure, Na+-K+-ATPase (NKA) activity significantly decreased at 0 ppt, while NKA and Ca2+-Mg2+-ATPase (CMA) activities significantly increased at 15 ppt. In addition, significantly higher succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activities were found in the control fish compared to the TPT-exposed ones at 15 ppt. Quantitative real-time PCR results showed that TPT exposure affected the expression of osmoregulation and energy metabolism-related genes under different salinity. Overall, TPT exposure interfered with osmoregulation and energy metabolism under different salinity. The study will provide reference data for assessing the toxicity of organotin compounds in complex-salinity areas.
Collapse
Affiliation(s)
- Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
10
|
De Marco G, Afsa S, Galati M, Billè B, Parrino V, Ben Mansour H, Cappello T. Comparison of cellular mechanisms induced by pharmaceutical exposure to caffeine and its combination with salicylic acid in mussel Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103888. [PMID: 35598756 DOI: 10.1016/j.etap.2022.103888] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Urban and hospital-sourced pharmaceuticals are continuously discharged into aquatic environments, threatening biota. To date, their impact as single compounds has been widely investigated, whereas few information exists on their effects as mixtures. We assessed the time-dependent biological impact induced by environmental concentrations of caffeine alone (CAF; 5 ng/L to 10 µg/L) and its combination with salicylic acid (CAF+SA; 5 ng/L+0.05 µg/L to 10 µg/L+100 µg/L) on gills of mussel Mytilus galloprovincialis during a 12-day exposure. Although no histological alteration was observed in mussel gills, haemocyte infiltration was noticed at T12 following CAF+SA exposure, as confirmed by flow cytometry with increased hyalinocytes. Both the treatments induced lipid peroxidation and cholinergic neurotoxicity, which the antioxidant system was unable to counteract. We have highlighted the biological risks posed by pharmaceuticals on biota under environmental scenarios, contributing to the enhancement of ecopharmacovigilance programmes and amelioration of the efficacy of wastewater treatment plants.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
11
|
Xing SY, Li ZH, Li P, You H. A Mini-review of the Toxicity of Pollutants to Fish Under Different Salinities. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1001-1005. [PMID: 35486156 DOI: 10.1007/s00128-022-03528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In recent years, with the development of the global economy, water pollution has increased. Pollutants migrate, accumulate, and diffuse in aquatic environments. Most of the pollutants eventually enter aquatic organisms. The accumulation of pollutants affects the development and reproduction of organisms, and many pollutants have teratogenic, carcinogenic, and/or mutagenic effects. Aquatic organisms in estuaries and coastal areas are under pressure due to both salinity and pollutants. Among them, salinity, as an environmental factor, may affect the behavior of pollutants in the aquatic environment, causing changes in their toxic effects on fishes. Salinity also directly affects the growth and development of fishes. Therefore, this paper focuses on metals and organic pollutants and discusses the toxic effects of pollutants on fish under different salinities. This research is of great significance to environmental protection and ecological risk assessment of aquatic environments.
Collapse
Affiliation(s)
- Shao-Ying Xing
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Zhi-Hua Li
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Ping Li
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, P. R. China.
| |
Collapse
|
12
|
Curpan AS, Impellitteri F, Plavan G, Ciobica A, Faggio C. Review: Mytilus galloprovincialis: An essential, low-cost model organism for the impact of xenobiotics on oxidative stress and public health. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109302. [PMID: 35202823 DOI: 10.1016/j.cbpc.2022.109302] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
The level of pollution becomes more and more of a pressuring matter for humankind at a worldwide level. Often the focus is on the effects that we can directly and see such as decreased air quality and higher than normal temperatures and weather, but the effects we cannot see are frequently overlooked. For at least the past decade increasing importance has been given towards the effects of pollution of living animals or non-target organisms and plants. For this purpose, one model animal that surfaced is the purpose, one model animal surfaced is Mytilus galloprovincialis. As all mussels, this species is capable of bio-accumulating important quantities of different xenobiotics such as pesticides, paints, medicines, heavy metals, industrial compounds, and even compounds marketed as antioxidants and antivirals. Their toxic effects can be assessed through their impact on oxidative stress, lysosomal membrane stability, and cell viability through trypan blue exclusion test and neutral red retention assay techniques. The purpose of this paper is to highlight the benefits of using M. galloprovincialis as an animal model for toxicological assays of various classes of xenobiotics by bringing to light the studies that have approached the matter.
Collapse
Affiliation(s)
- Alexandrina-Stefania Curpan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania
| | - Federica Impellitteri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale, Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania..
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania..
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale, Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy..
| |
Collapse
|
13
|
Coppola F, Russo T, Soares AMVM, Marques PAAP, Polese G, Pereira E, Freitas R. The influence of salinity on the toxicity of remediated seawater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32967-32987. [PMID: 35022978 DOI: 10.1007/s11356-021-17745-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is one of the most hazardous pollutants, due to its toxicity, biological magnification and worldwide persistence in aquatic systems. Thus, new efficient nanotechnologies (e.g. graphene oxide functionalized with polyethyleneimine (GO-PEI)) have been developed to remove this metal from the water. Aquatic environments, in particular transitional systems, are also subjected to disturbances resulting from climate change, such as salinity shifts. Salinity is one of the most relevant factors that influences the distribution and survival of aquatic species such as mussels. To our knowledge, no studies assessed the ecotoxicological impairments induced in marine organisms exposed to remediate seawater (RSW) under different salinity levels. For this, the focus of the present study was to evaluate the effects of seawater previously contaminated with Hg and remediated with GO-PEI, using the species Mytilus galloprovincialis, maintained at three different salinities (30, 20 and 40). The results obtained demonstrated similar histopathological and metabolic alterations, oxidative stress and neurotoxicity in mussels under RSW treatment at stressful salinity conditions (20 and 40) in comparison to control salinity (30). On the other hand, the present findings revealed toxicological effects including cellular damage and histopathological impairments in mussels exposed to Hg contaminated seawater in comparison to non-contaminated ones, at each salinity level. Overall, these results confirm the high efficiency of GO-PEI to sorb Hg from water with no noticeable toxic effects even under different salinities, leading to consider it a promising eco-friendly approach to remediate contaminated water.
Collapse
Affiliation(s)
- Francesca Coppola
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Paula A A P Marques
- Department of Mechanical Engineering & TEMA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Afsa S, De Marco G, Giannetto A, Parrino V, Cappello T, Ben Mansour H, Maisano M. Histological endpoints and oxidative stress transcriptional responses in the Mediterranean mussel Mytilus galloprovincialis exposed to realistic doses of salicylic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103855. [PMID: 35342010 DOI: 10.1016/j.etap.2022.103855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Despite the availability of analytic data, little is known about the toxicity of salicylic acid (SA) on aquatic non-target organisms. The present study aimed at evaluating the impact of SA through a short-term exposure of the Mediterranean mussel Mytilus galloprovincialis to five environmentally relevant concentrations of SA. A set of suitable biomarkers was applied at selected time-points on mussel digestive glands, including histological observations and expression of oxidative stress related genes. The obtained results showed a conspicuous hemocytic infiltration among mussel digestive tubules, as confirmed also by a flow cytometric approach that revealed an increase of halinocytes and granulocytes. Interestingly, a significant dose and time dependent decrease in the expression levels of oxidative stress related genes was found in mussels exposed to SA except for the glutathione S-transferase gene that was significantly up-regulated in a time-dependent manner confirming its important role against oxidant species and in the metabolism of pharmaceuticals.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy.
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| |
Collapse
|
15
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Freitas R. Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150369. [PMID: 34571231 DOI: 10.1016/j.scitotenv.2021.150369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
In coastal systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, coastal systems are prone to changes in environmental parameters, as the alteration of salinity values because of Climate Change. Together, these stressors (pharmaceutical drugs and salinity changes) can exert different threats than each stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15, 25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days of exposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic capacity and oxidative stress were evaluated. The results showed that clams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the clams, since they caused higher levels of cellular damage. It stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Will climate changes enhance the impacts of e-waste in aquatic systems? CHEMOSPHERE 2022; 288:132264. [PMID: 34624793 DOI: 10.1016/j.chemosphere.2021.132264] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The increase of the worlds' population is being accompanied by the exponential growth in waste of electrical and electronic equipment (e-waste) generation as a result of the rapid technological implementations. The inappropriate processing and disposal of this e-waste, containing rare-earth elements (REEs) such as gadolinium (Gd), may enhance its occurrence in the environment. In particular, the presence of Gd in marine systems may lead to environmental risks which are still unknown, especially considering foreseen climate modifications such as water salinity shifts due to extreme weather events. Within this context, the present study intended to assess the combined effects of Gd at variable salinities. For that, biochemical modifications were assessed in mussels, Mytilus galloprovincialis, exposed to Gd (0 and 10 μg/L) and different salinity levels (20, 30 and 40), acting individually and in combination. A decrease in salinity, induced an array of biochemical effects associated to hypotonic stress in non-contaminated and contaminated mussels, including metabolism, antioxidant and biotransformation defenses activation. Moreover, in Gd-contaminated organisms, the increase in salinity was responsible for a significant reduction of metabolic and defense mechanisms, possibly associated with a mussels' physiological response to the stress caused by the combination of both factors. In particular, Gd caused cellular damage at all salinities, but mussels adopted different strategies under each salinity to limit the extent of oxidative stress. That is, an increase in metabolism was associated to hypotonic stress and Gd exposure, an activation of defense enzymes was revealed at the control salinity (30) and a decrease in metabolism and non-activation of defenses, associated with a possible physiological defense trait, was evidenced at the highest salinity. The different strategies adopted highlight the need to investigate the risk of emerging contaminants such as REEs at present and forecasted climate change scenarios, thus providing a more realistic environmental risk assessment.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & CESAM/LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Stara A, Pagano M, Albano M, Savoca S, Di Bella G, Albergamo A, Koutkova Z, Sandova M, Velisek J, Fabrello J, Matozzo V, Faggio C. Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117892. [PMID: 34385134 DOI: 10.1016/j.envpol.2021.117892] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 05/24/2023]
Abstract
Thiacloprid is a neonicotinoid insecticide widely exploited in agriculture and easily mobilized towards aquatic environments by atmospheric agents. However, little information about its toxicological effects on aquatic invertebrate bioindicators is available. In this study, specimens of the mussel Mytilus galloprovincialis were exposed to thiacloprid at environmental (4.5 μg L-1) and 100 times higher than environmental (450 μg L-1) concentrations for 20 days. Thiacloprid affected haemolymph biochemical parameters, cell viability in the digestive gland, antioxidant biomarkers and lipid peroxidation in the digestive gland and gills at environmentally relevant concentrations (4.5 μg L-1). In addition, thiacloprid exposure caused histological damage to the digestive gland and gills. Interestingly, the pesticide was detected at levels equal to 0.14 ng g-1 in the soft tissues of sentinels exposed for 20 days to 450 μg L-1 thiacloprid in seawaterμ. Due to its harmful potential and cumulative effects after long-term exposure of M. galloprovincialis, thiacloprid may pose a potential risk to nontarget aquatic organisms, as well as to human health. This aspect requires further in-depth investigation.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Serena Savoca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, Messina, Italy
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, Messina, Italy
| | - Zuzana Koutkova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
18
|
Environmentally Relevant Concentrations of Triclosan Induce Cyto-Genotoxicity and Biochemical Alterations in the Hatchlings of Labeo rohita. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110478] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Xenobiotic Triclosan (TCS) is of great concern because of its existence in a variety of personal, household and healthcare products and continuous discharge in water worldwide. Excessive use of TCS-containing sanitizers and antiseptic products during the COVID-19 pandemic further increased its content in aquatic ecosystems. The present study deals with the cyto-genotoxic effects and biochemical alterations in the hatchlings of Labeo rohita on exposure to environmentally relevant concentrations of TCS. Three-days-old hatchlings were exposed to tap water, acetone (solvent control) and 4 environmentally relevant concentrations (6.3, 12.6, 25.2 and 60 µg/L) of TCS for 14 days and kept for a recovery period of 10 days. The significant concentration-dependent decline in cell viability but increase in micronucleated cells, nucleo-cellular abnormalities (NCAs) and DNA damage parameters like tail length, tail moment, olive tail moment and percent of tail DNA after exposure persisted till the end of recovery period. Glucose, triglycerides, cholesterol, total protein, albumin, total bilirubin, uric acid and urea (except for an increase at 60 µg/L) showed significant (p ≤ 0.05) concentration-dependent decrease after 14 days of exposure. The same trend (except for triglycerides, albumin and total bilirubin) continued till 10 days post exposure. In comparison to control, transaminases (alanine and aspartate aminotransferases) increased (p ≤ 0.05) after exposure as well as the recovery period, while a decline in alkaline phosphatase after exposure was followed by a significant increase during the recovery period. The results show that the environmentally relevant concentrations of TCS cause deleterious effects on the hatchlings of L. rohita.
Collapse
|
19
|
Freitas R, Coppola F, Meucci V, Battaglia F, Soares AMVM, Pretti C, Faggio C. The influence of salinity on sodium lauryl sulfate toxicity in Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103715. [PMID: 34311115 DOI: 10.1016/j.etap.2021.103715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The influence of salinity on the effects of sodium lauryl sulfate (SLS) was evaluated using the Mediterranean mussel Mytilus galloprovincialis, exposed for 28 days to SLS (control-0.0 and 4.0 mg/L) under three salinity levels (Control-30, 25 and 35). The effects were monitored using biomarkers related to metabolism and energy reserves, defence mechanisms (antioxidant and biotransformation enzymes) and cellular damage. The results revealed that non-contaminated mussels tended to maintain their metabolic capacity regardless of salinity, without activation of antioxidant defence strategies. On the contrary, although contaminated mussels presented decreased metabolic capacity at salinities 25 and 35, they were able to activate their antioxidant mechanisms, preventing cellular damage. Overall, the present findings indicate that SLS, especially under stressful salinity levels, might potentially jeopardize population survival and reproduction success since reduced metabolism and alterations on mussels' antioxidant mechanisms will impair their biochemical and, consequently, physiological performance.
Collapse
Affiliation(s)
- Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Francesca Coppola
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S. Agata-Messina, Italy.
| |
Collapse
|
20
|
Javanshir Khoei A, Rezaei K. Toxicity of titanium nano-oxide nanoparticles (TiO2) on the pacific oyster, Crassostrea gigas: immunity and antioxidant defence. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1864649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Kiadokht Rezaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
21
|
Aliko V, Korriku RS, Pagano M, Faggio C. Double-edged sword: Fluoxetine and ibuprofen as development jeopardizers and apoptosis' inducers in common toad, Bufo bufo, tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145945. [PMID: 33639467 DOI: 10.1016/j.scitotenv.2021.145945] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Nowadays the presence of pharmaceuticals in the environment is a real problem. Ending up in aquatic environments they negatively affect non-target organisms. Considering the limited studies on the negative effects of pharmaceuticals in amphibians, a better understanding of the mechanisms underlying the sub-lethal effects of drug mixtures in wildlife is an urgent call. Representing particularly vulnerable organisms currently at risk of extinction, amphibians are perfect non-target organisms to explore the consequences of pharmaceuticals during sensitive life-stages. To address this existing research gap, the effects of two drugs, the antidepressant fluoxetine and the anti-inflammatory ibuprofen, as well as their combination has been studied. Tadpoles of Bufo bufo were exposed for seven days to two environmentally realistic concentrations of fluoxetine, ibuprofen and their mixture. The development, behavior and erythron profile were then evaluated as endpoints of exposure response. Both drugs negatively affected tadpoles' growth and development by significantly delayed their time to metamorphosis and reduced body weight. Behaviors were also impaired with a significant increase of unresponsiveness to different stimuli. Mutagenic analysis of blood revealed a significant increase in the frequency of cellular and nuclear abnormalities. Given the complexity of systems and functions affected, our work confirms the toxicological potential of fluoxetine and ibuprofen in B. bufo tadpoles by emphasizing their role as tadpole development delayers and erythrocyte apoptosis-inducers. To our knowledge, this is the first study trying to elucidate the potentially toxic effects of a mixture of an antidepressant with a non-steroidal anti-inflammatory drug using bullfrog tadpole as model organism. Both drugs interacted in impairing development and fitness in tadpoles, which might affect long-term species perpetuation and population dynamic. More in-depth research is needed to elucidate the nature of interaction and molecular mechanisms of mixed pharmaceutical compounds on non-targeted organisms.
Collapse
Affiliation(s)
- Valbona Aliko
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania
| | - Regi Subashi Korriku
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania
| | - Maria Pagano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy.
| |
Collapse
|
22
|
Afsa S, Sallem OF, Abdeljelil NB, Feriani A, Najjar MF, Mansour HB. In vivo toxicities of the hospital effluent in Mahdia Tunisia. JOURNAL OF WATER AND HEALTH 2021; 19:499-511. [PMID: 34152302 DOI: 10.2166/wh.2021.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hospital effluent (HE) is one of the most important sources of pharmaceuticals released into the environment. This kind of pollution is a recognized problem for both human health and aquatic life. Consequently, in the present study, we assessed the effects of untreated hospital effluent on mice via biochemical and histopathological determinations. Female mice were given free access to water bottles containing untreated HE at different dilutions for 21 days. Then clinical biochemistry and histopathology evaluation were conducted. Serum biochemistry analysis showed the presence of significant increase in cholesterol, triglycerides, glycaemia and total bilirubin. However, phosphatase alkaline and urea activities have been significantly decreased compared to the control group. No significant variation was observed for the rest of the studied parameters (high-density lipoproteins; low-density lipoproteins and uric acid). Additionally, multiple alterations, including cellular necrosis, leucocyte infiltration and congestion, were observed in different tissues of mice exposed to the tested HE.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to the Environment (APAE UR17ES32), Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia 5100, Tunisia E-mail:
| | - Ons Fekih Sallem
- Research Unit of Analysis and Process Applied to the Environment (APAE UR17ES32), Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia 5100, Tunisia E-mail:
| | - Nouha Ben Abdeljelil
- Department of Pathology, Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | - Anouar Feriani
- Research Unit of Analysis and Process Applied to the Environment (APAE UR17ES32), Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia 5100, Tunisia E-mail:
| | - Mohamed Fadhel Najjar
- Laboratory of Biochemistry and Toxicology, Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to the Environment (APAE UR17ES32), Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia 5100, Tunisia E-mail:
| |
Collapse
|
23
|
Abo-Al-Ela HG, Faggio C. MicroRNA-mediated stress response in bivalve species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111442. [PMID: 33038725 DOI: 10.1016/j.ecoenv.2020.111442] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Bivalve mollusks are important aquatic organisms, which are used for biological monitoring because of their abundance, ubiquitous nature, and abilities to adapt to different environments. MicroRNAs (miRNAs) are small noncoding RNAs, which typically silence the expression of target genes; however, certain miRNAs directly or indirectly upregulate their target genes. They are rapidly modulated and play an essential role in shaping the response of organisms to stresses. Based on the regulatory function and rapid alteration of miRNAs, they could act as biomarkers for biotic and abiotic stress, including environmental stresses and contaminations. Moreover, mollusk, particularly hemocytes, rapidly respond to environmental changes, such as pollution, salinity changes, and desiccation, which makes them an attractive model for this purpose. Thus, bivalve mollusks could be considered a good animal model to examine a system's response to different environmental conditions and stressors. miRNAs have been reported to adjust the adaptation and physiological functions of bivalves during endogenous and environmental stressors. In this review, we aimed to discuss the potential mechanisms underlying the response of bivalves to stressors and how miRNAs orchestrate this process; however, if necessary, other organisms' response is included to explain specific processes.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
24
|
Marisa I, Asnicar D, Matozzo V, Martucci A, Finos L, Marin MG. Toxicological effects and bioaccumulation of fullerene C 60 (FC 60) in the marine bivalve Ruditapes philippinarum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111560. [PMID: 33254414 DOI: 10.1016/j.ecoenv.2020.111560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Fullerene C60 (FC60), with its unique physical properties, has been used in many applications in recent decades. The increased likelihood of direct release into the environment has raised interest in understanding the biological effects of FC60 to aquatic organisms. Nowadays, only few studies have analysed FC60 effects and bioaccumulation in marine organisms following in vivo exposure. To provide new data about FC60 toxicity, Ruditapes philippinarum was selected as target species to assess potential adverse effects of the contaminant. Clams were exposed for 1, 3 and 7 days to predicted environmental concentrations of FC60 (1 and 10 μg/L) and cellular and biochemical responses were evaluated in clams' gills, digestive gland and haemolymph. The FC60 content in gills and digestive gland was determined in all experimental conditions after 7 days of exposure. Results showed an increase in oxidative stress. In particular, a significant modulation in antioxidant enzyme activities, and changes in glutathione S-transferase activity were observed in gills. Moreover, damage to lipids and proteins was detected in FC60-treated (10 µg/L) clams. In digestive gland, slighter variations in antioxidant enzyme activities and damage to molecules were detected. CAT activity was significantly affected throughout the exposure, whereas damage to lipids was evident only at the end of exposure. FC60 accumulation was revealed in both gills and digestive gland, with values up to twelve-fold higher in the latter. Interestingly, haemolymph parameters were slightly affected by FC60 compared to the other tissues investigated. Indeed, only Single Cell Gel Electrophoresis and Neutral Red uptake assays showed increased values in FC60-exposed clams. Moreover, volume and diameter of haemocytes, haemocyte proliferation, and micronucleus assay highlighted significant variations in treated clams, but only in the first phases of exposure, and no changes were detected after 7 days. Our results suggested clam gills as the target tissue for FC60 toxicity under the exposure conditions tested: the high damage detected to lipids and proteins could contribute to long-term problems for the organism.
Collapse
Affiliation(s)
- Ilaria Marisa
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Davide Asnicar
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Alessandro Martucci
- Industrial Engineering Department and INSTM, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, Padova, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
25
|
Impact of Neonicotinoids to Aquatic Invertebrates—In Vitro Studies on Mytilus galloprovincialis: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100801] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of pesticides in agriculture has always had a strong impact on environmental contamination. Since the 1990s, neonicotinoids have grown increasingly more popular, targeting specific receptors for insects, especially bees, which is why the use of some neonicotinoids has been banned. Much is known about the effects they have on insects, but very little about the effect they can have on non-target organisms. Several studies have shown how these neonicotinoids interact negatively with the normal physiology of aquatic organisms. For the genus Mytilus, even though the neonicotinoids did not show an interaction with specific receptors, a chronic and acute exposure to them causes damage. In these animals, a reduced production of byssus, alteration of the normal antioxidant systems and tissue damage have been found. Therefore, an analysis of the entire ecosystem in which the pollutant enters is of great importance in evaluating any possible alterations.
Collapse
|
26
|
Stara A, Pagano M, Capillo G, Fabrello J, Sandova M, Albano M, Zuskova E, Velisek J, Matozzo V, Faggio C. Acute effects of neonicotinoid insecticides on Mytilus galloprovincialis: A case study with the active compound thiacloprid and the commercial formulation calypso 480 SC. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110980. [PMID: 32888623 DOI: 10.1016/j.ecoenv.2020.110980] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 05/24/2023]
Abstract
Pesticides can enter aquatic environments potentially affecting non-target organisms. Unfortunately, the effects of such substances are still poorly understood. This study investigated the effects of the active neonicotinoid substance thiacloprid (TH) and the commercial product Calypso 480 SC (CA) (active compound 40.4% TH) on Mytilus galloprovincialis after short-term exposure to sublethal concentrations. Mussels were tested for seven days to 0, 1, 5 and 10 mg L-1 TH and 0, 10, 50 and 100 mg L-1 CA. For this purpose, several parameters, such as cell viability of haemocytes and digestive cells, biochemical haemolymph features, superoxide dismutase (SOD) and catalase (CAT) enzymatic activity of gills and digestive gland, as well as histology of such tissues were analysed. The sublethal concentrations of both substances lead to abatement or completely stopping the byssal fibres creation. Biochemical analysis of haemolymph showed significant changes (P < 0.01) in electrolytes ions (Cl-, K+, Na+, Ca2+, S-phosphor), lactate dehydrogenase (LDH) enzyme activity and glucose concentration following exposure to both substances. The TH-exposed mussels showed significant imbalance (P < 0.05) in CAT activity in digestive gland and gills. CA caused significant decrease (P < 0.05) in SOD activity in gills and in CAT activity in both tissues. Results of histological analyses showed severe damage in both digestive gland and gills in a time- and concentration-dependent manner. This study provides useful information about the acute toxicity of a neonicotinoid compound and a commercial insecticide on mussels. Nevertheless, considering that neonicotinoids are still widely used and that mussels are very important species for marine environment and human consumption, further researches are needed to better comprehend the potential risk posed by such compounds to aquatic non-target species.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Maria Pagano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Gioele Capillo
- University of Messina, Department of Veterinary Sciences, Polo Universitario Dell'Annunziata, 98168, Messina, Italy
| | - Jacopo Fabrello
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Marco Albano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Eliska Zuskova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Valerio Matozzo
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
27
|
Freitas R, Marques F, De Marchi L, Vale C, Botelho MJ. Biochemical performance of mussels, cockles and razor shells contaminated by paralytic shellfish toxins. ENVIRONMENTAL RESEARCH 2020; 188:109846. [PMID: 32846638 DOI: 10.1016/j.envres.2020.109846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Marine toxins in bivalves pose an important risk to human health, and regulatory authorities throughout the world impose maximum toxicity values. In general, bivalve toxicities due to paralytic shellfish toxins (PSTs) above the regulatory limit occur during short periods, but in some cases, it may be extended from weeks to months. The present study examines whether cockles (Cerastoderme edule), mussels (Mytilus galloprovincialis) and razor shells (Solen marginatus) naturally exposed to a bloom of Gymnodinium catenatum activated or suppressed biochemical responses as result of the presence of PSTs in their soft tissues. Toxins (C1+2, C3+4, GTX5, GTX6, dcSTX, dcGTX2+3 and dcNEO) and a set of biomarkers (ETS, electron transport system activity; GLY, glycogen; PROT, protein; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GST, glutathione S-transferases; LPO, lipid peroxidation; reduced (GSH) and oxidized (GSSG) glutathione contents and AChE, acetylcholinesterase activity) were determined in the three bivalve species. Specimens were harvested weekly in Aveiro lagoon, Portugal, along thirteen weeks. This period included three weeks in which bivalve toxicity exceeded largely the regulatory limit and the subsequence recovery period of ten weeks. Biochemical performance of the surveyed species clearly indicated that PSTs induce oxidative stress and neurotoxicity, with higher impact on mussels and razor shells than in cockles. The antioxidant enzymes CAT and GPx seemed to be the biomarkers better associated with toxin effects.
Collapse
Affiliation(s)
- Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Marques
- IPMA, Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Vale
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida Norton de Matos, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
28
|
Sun S, Shi W, Tang Y, Han Y, Du X, Zhou W, Hu Y, Zhou C, Liu G. Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138852. [PMID: 32570313 DOI: 10.1016/j.scitotenv.2020.138852] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Both the frequent occurrence of accidental petroleum spills and the ubiquitous presence of microplastics (MPs) in the sea may pose severe threats to marine species. However, the immunotoxic impacts of these two types of pollutants and the underlying toxication mechanisms still remain largely unknown in sessile filter-feeding bivalve mollusks. Therefore, the impacts of exposure to petroleum hydrocarbons and MPs alone or in combination on the total count, cell type composition, and phagocytic activity of hemocytes were investigated in the blood clam, Tegillarca granosa. In addition, the intracellular ROS content, cell viability, degree of DNA damage, and expression levels of genes from immune-, apoptosis-, and immunotoxicity-related pathways were analyzed to reveal the potential toxication mechanisms. The results demonstrated that exposure to petroleum hydrocarbons and MPs alone or in combination at environmentally realistic concentrations could exert significant immunotoxic impacts on the blood clam, which may be caused by alterations in a series of physiological and molecular processes. In addition, the immunotoxicity of petroleum hydrocarbons could be significantly aggravated by the copresence of MPs, which suggests that coexposure to these two pollutants deserves closer attention.
Collapse
Affiliation(s)
- Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Chaosheng Zhou
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
29
|
Evaluation of Tramadol Hydrochloride Toxicity to Juvenile Zebrafish—Morphological, Antioxidant and Histological Responses. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072349] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The presence of pharmaceuticals in water bodies is associated with the increasing consumption of these substances and limited elimination from wastewater. Pharmaceutical residues and their metabolites may have an unfavorable impact on fish and other aquatic biota. As the purification of wastewater from tramadol is very limited and the knowledge on its effects on non-target organisms is low, we decided to assess the subchronic impact of tramadol hydrochloride on fish—on the mortality, growth and histopathology, together with the impact on selected indices of oxidative stress. The juvenile growth toxicity test was carried out on zebrafish (Danio rerio), in accordance with the Organisation for European Economic Cooperation Guidelines 215 (Fish, Juvenile Growth Test). The fish were exposed to a range of tramadol hydrochloride concentrations (0.2, 2, 20, 200 and 600 µg/L) for 28 days. The outcome of this study suggests that chosen concentrations of tramadol hydrochloride did not affect either mortality or growth (regarding weight, length and specific growth rate). However, the results of this study indicate that 28-day exposure can negatively influence selected indices of oxidative stress, which is a harmful imbalance between free radicals and antioxidants in an organism. A significant increase was observed in glutathione S-transferase activity in the experimental group exposed to 2 µg/L tramadol hydrochloride, compared to the control. Moreover, lipid peroxidation was observed in groups exposed to 20 and 200 µg/L, in comparison to the control.
Collapse
|