1
|
Li X, Ma Y, Zhang Y, Zhang X, Li H, Sun Y, Niu Z. Porphyrin metabolism and carbon fixation response of Skeletonema costatum at different growth phases to mixed emerging PFASs at environmental concentrations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1465-1475. [PMID: 38973378 DOI: 10.1039/d4em00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), especially as emerging compounds, have been widely detected in coastal seawater. However, the awareness of the interaction between PFASs at environmental concentrations and marine diatoms is still limited. In this study, Skeletonema costatum was exposed to three co-existing PFASs, namely hexafluoropropylene oxide dimer acid (HFPO-DA), 6 : 2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES), and perfluoroethylcyclohexane sulfonate (PFECHS) (15-300 ng L-1 in total), for 14 days. In the 300 ng L-1 test group, the significant down-regulation of chlorophyllide a in porphyrin metabolism, light-harvesting capacity and carbon fixation were the main inhibitory mechanisms of photosynthesis by emerging PFASs at the 14th day compared to the 8th day, which indicated that they may have a shading effect on S. costatum. Additionally, mixed PFASs could also activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by up-regulating gene gp91 and down-regulating genes CaM4 and NDPK2 to generate excessive ROS. This resulted in a decrease in the algal biomass, which would further weaken the primary productivity of S. costatum. Our findings illustrated that mixed emerging PFASs at environmental concentrations may interfere with the carbon balance of marine diatoms.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyu Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yueling Sun
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Abate R, Oon YL, Oon YS, Bi Y, Mi W, Song G, Gao Y. Diverse interactions between bacteria and microalgae: A review for enhancing harmful algal bloom mitigation and biomass processing efficiency. Heliyon 2024; 10:e36503. [PMID: 39286093 PMCID: PMC11402748 DOI: 10.1016/j.heliyon.2024.e36503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The interactions between bacteria and microalgae play pivotal roles in resource allocation, biomass accumulation, nutrient recycling, and species succession in aquatic systems, offering ample opportunities to solve several social problems. The escalating threat of harmful algal blooms (HABs) in the aquatic environment and the lack of cheap and eco-friendly algal-biomass processing methods have been among the main problems, demanding efficient and sustainable solutions. In light of this, the application of algicidal bacteria to control HABs and enhance algal biomass processing has been promoted in the past few decades as potentially suitable mechanisms to solve those problems. Hence, this comprehensive review aims to explore the diverse interaction modes between bacteria and microalgae, ranging from synergistic to antagonistic, and presents up-to-date information and in-depth analysis of their potential biotechnological applications, particularly in controlling HABs and enhancing microalgal biomass processing. For instance, several studies revealed that algicidal bacteria can effectively inhibit the growth of Microcystis aeruginosa, a notorious freshwater HAB species, with an antialgal efficiency of 24.87 %-98.8 %. The review begins with an overview of the mechanisms behind algae-bacteria interactions, including the environmental factors influencing these dynamics and their broader implications for aquatic ecosystems. It then provides a detailed analysis of the role of algicidal bacteria in controlling harmful algal blooms, as well as their role in bioflocculation and the pretreatment of microalgal biomass. Additionally, the review identifies and discusses the constraints and challenges in the biotechnological application of these interactions. By exploring the strategic use of algicidal bacteria, this review not only underscores their importance in maintaining aquatic environmental health but also in enhancing biomass processing efficiency. It offers valuable insights into future research avenues and the potential scalability of these applications, both in situ and at an industrial level.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Natural and Computatinal Science, Arba Minch University, Ethiopia
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wujuan Mi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofei Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
3
|
Zhang B, Hu S, Sun S, Fang T, Yu Y, Sun X, Xu N. Transcriptomic analysis provides insights into the algicidal mechanism of cocamidopropyl betaine against the red tide microalgae Skeletonema costatum. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105838. [PMID: 36525828 DOI: 10.1016/j.marenvres.2022.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effect of the surfactant cocamidopropyl betaine (CAB) on the growth of red tide microalgae Skeletonema costatum. It was found that CAB caused cell lysis in a time- and dose-dependent manner and significantly inhibited the growth of S. costatum. Additionally, the transcriptomic approach was coupled with physiological analysis to elucidate the inhibitory mechanism of CAB on S. costatum. Among the 30726 genes identified, 17720 and 20583 genes were differentially expressed after treatment for 3 h and 6 h, respectively, which revealed that CAB redirected metabolic pathways, of which the expressions of genes related to the proteasome, ABC transporters, and amino acid-related metabolism were significantly upregulated, while genes involved in photosynthesis, biofilm and cell wall synthesis, mitogen-activated protein kinase (MAPK) cascades and antioxidant system were downregulated. The results above corresponded to the decreasing antioxidant enzymes activities, protein and photosynthetic pigments contents, as well as the increasing malondialdehyde (MDA) content. Our study presented herein shed light on the algicidal mechanism of CAB at the transcriptome level and was useful to red tide control, and marine environmental protection.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shanshan Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Siqi Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tian Fang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yanyan Yu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
4
|
Ko SR, Le VV, Srivastava A, Kang M, Oh HM, Ahn CY. Algicidal activity of a novel bacterium, Qipengyuania sp. 3-20A1M, against harmful Margalefidinium polykrikoides: Effects of its active compound. MARINE POLLUTION BULLETIN 2023; 186:114397. [PMID: 36493515 DOI: 10.1016/j.marpolbul.2022.114397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Margalefidinium polykrikoides causes significant economic losses in the aquaculture industry by red tide formation. Algicidal bacteria have attracted research interests as a potential bloom control approach without secondary pollution. Qipengyuania sp. 3-20A1M, isolated from surface seawater, exerted an algicidal effect on M. polykrikoides. However, it exhibited a significantly lower algicidal activity toward other microalgae. It reduced photosynthetic efficiency of M. polykrikoides and induced lipid peroxidation and cell disruption. The growth inhibition of M. polykrikoides reached 64.9 % after 24 h of co-culturing, and expression of photosynthesis-related genes was suppressed. It killed M. polykrikoides indirectly by secreting algicidal compounds. The algicide was purified and identified as pyrrole-2-carboxylic acid. After 24 h of treatment with pyrrole-2-carboxylic acid (20 μg/mL), 60.8 % of the M. polykrikoides cells were destroyed. Overall, our results demonstrated the potential utility of Qipengyuania sp. 3-20A1M and its algicidal compound in controlling M. polykrikoides blooms in the marine ecosystem.
Collapse
Affiliation(s)
- So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ankita Srivastava
- Department of Botany, Siddharth University, Kapilvastu, Siddharth Nagar, 272202, Uttar Pradesh, India
| | - Mingyeong Kang
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
5
|
Yilimulati M, Zhou L, Shevela D, Zhang S. Acetylacetone Interferes with Carbon and Nitrogen Metabolism of Microcystis aeruginosa by Cutting Off the Electron Flow to Ferredoxin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9683-9692. [PMID: 35696645 DOI: 10.1021/acs.est.2c00776] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of photosynthetic machinery with a nonoxidative approach is a powerful but challenging strategy for the selective inhibition of bloom-forming cyanobacteria. Acetylacetone (AA) was recently found to be a target-selective cyanocide for Microcystis aeruginosa, but the cause and effect in the studied system are still unclear. By recording of the chemical fingerprints of the cells at two treatment intervals (12 and 72 h with 0.1 mM AA) with omics assays, the molecular mechanism of AA in inactivating Microcystis aeruginosa was elucidated. The results clearly reveal the effect of AA on ferredoxin and the consequent effects on the physiological and biochemical processes of Microcystis aeruginosa. In addition to its role as an electron acceptor of photosystem I, ferredoxin plays pivotal roles in the assimilation of nitrogen in cyanobacterial cells. The effect of AA on ferredoxin and on nonheme iron of photosystem II first cut off the photosynthetic electron transfer flow and then interrupted the synthesis of adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), which ultimately might affect carbon fixation and nitrogen assimilation metabolisms. The results here provide missing pieces in the current knowledge on the selective inhibition of cyanobacteria, which should shed light on the better control of harmful blooms.
Collapse
Affiliation(s)
- Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
6
|
Coyne KJ, Wang Y, Johnson G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front Microbiol 2022; 13:871177. [PMID: 35464927 PMCID: PMC9022068 DOI: 10.3389/fmicb.2022.871177] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.
Collapse
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, United States
| | | | | |
Collapse
|
7
|
You X, Li H, Pan B, You M, Sun W. Interactions between antibiotics and heavy metals determine their combined toxicity to Synechocystis sp. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127707. [PMID: 34798547 DOI: 10.1016/j.jhazmat.2021.127707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Co-pollution of antibiotics and metals is prevailing in aquatic environments. However, risks of coexisted antibiotics and metals on aquatic organisms is unclear. This study investigated the combined toxicity of antibiotics and metals towards Synechocystis sp. PCC 6803, a cyanobacterium. We found that the joint toxicity of antibiotics and metals is dependent on their interplays. The complexation between chlortetracycline (CTC) and copper/cadmium (Cu(II)/Cd(II)) resulted in their antagonistic toxicity. Contrarily, an additive toxicity was found between florfenicol (FLO) and Cu(II)/Cd(II) due to lack of interactions between them. CTC facilitated the intracellular uptake of Cu(II) and Cd(II) by increasing the membrane permeability. However, FLO had no obvious effects on the internalization of metals in Synechocystis sp. Proteomic analysis revealed that the photosynthetic proteins was down-regulated by CTC and FLO, and ribosome was the primary target of FLO. These results were verified by parallel reaction monitoring (PRM). Cu(II) induced the up-regulation of iron-sulfur assembly, while Cd(II) disturbed the cyclic electron transport in Synechocystis sp. The co-exposure of CTC and metals markedly alleviated the dysregulation of proteins, while the co-exposure of FLO and metals down-regulated biological functions such as ATP synthesis, photosynthesis, and carbon fixation of Synechocystis sp., compared with their individuals. This supports their joint toxicity effects. Our findings provide better understanding of combined toxicity between multiple pollutants in aquatic environments.
Collapse
Affiliation(s)
- Xiuqi You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Haibo Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Mingtao You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
8
|
Jiang R, Li Y, Wang H, Kong D, Wu X, Xu J. A study on the degradation efficiency of fluoranthene and the transmembrane protein mechanism of Rhodococcus sp. BAP-1 based on iTRAQ. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140208. [PMID: 32783839 DOI: 10.1016/j.scitotenv.2020.140208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Based on previous studies that examined the whole proteome of Rhodococcus sp. BAP-1 during the degradation of polycyclic aromatic hydrocarbons (PAHs), transmembrane proteins have a large role in the degradation of fluoranthene. To further study the specific functions and mechanisms of transmembrane proteins from Rhodococcus sp. BAP-1 involved in the degradation process of fluoranthene, the degradation of PAHs and the membrane permeability were determined. In addition, the isobaric tags for relative and absolute quantization (iTRAQ) method were used to conduct a proteomics analysis of Rhodococcus sp. BAP-1 after exposure to fluoranthene for 1 d, 3 d, and 6 d. The results showed that the degradation rate was the highest on the first and sixth days, and the membrane permeability was also the highest on the sixth day. The iTRAQ analysis results showed 18, 29, and 48 upregulated proteins and 111, 97, and 21 downregulated proteins in the 1 d group vs control group, 3 d group vs control group, and 6 d group vs control group samples respectively. According to a Clusters of Orthologous Groups of proteins (COG) analysis, amino acid transport and metabolism are the most important functions. According to functional analysis from the gene ontology (GO) database, the oxidation-reduction process is the most important biological process; transporter activity is the main molecular function; and transmembrane proteins are the most important in the cell composition. This study combined the degradation rate, membrane permeability and transmembrane protein functions to analyze the functions and mechanisms of transmembrane proteins from Rhodococcus sp. BAP-1, which are involved in the degradation of fluoranthene at the protein level, and this study provides a solid foundation for further research on the metabolic processes of bacteria.
Collapse
Affiliation(s)
- Ruhan Jiang
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China, Guangxi Normal University, 541004 Guilin, Guangxi, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, Guangxi, China.
| | - Hongqi Wang
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China.
| | - Dekang Kong
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Xiaoxiong Wu
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Jie Xu
- Shunyi District Ecological Protection Bureau, 101300 Beijing, China
| |
Collapse
|