1
|
Ouyang X, Ma J, Feng B, Liu Y, Yin P, Zhang X, Li P, Chen Q, Zhao Y, Weng L, Li Y. Effects of nanoplastics on the growth, transcription, and metabolism of rice (Oryza sativa L.) and synergistic effects in the presence of iron plaque and humic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125246. [PMID: 39505096 DOI: 10.1016/j.envpol.2024.125246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Nanoplastics (NPs) can adversely affect living organisms. However, the uptake of NPs by plants and the physiological and molecular mechanisms underlying NP-mediated plant growth remain unclear, particularly in the presence of iron minerals and humic acid (HA). In this study, we investigated NP accumulation in rice (Oryza sativa L.) and the physiological effects of exposure to polystyrene NPs (0, 20, and 100 mg L-1) in the presence of iron plaque (IP) and HA. NPs were absorbed on the root surface and entered cells, and confocal laser scanning microscopy confirmed NP uptake by the roots. NP treatments decreased root superoxide dismutase (SOD) activity (28.9-44.0%) and protein contents (31.2-38.6%). IP and HA (5 and 20 mg L-1) decreased the root protein content (20.44-58.3% and 44.2-45.2%, respectively) and increased the root lignin content (22.3-27.5% and 19.2-29.6%, respectively) under NP stress. IP inhibited the NP-induced decreasing trend of SOD activity (19.2-29.5%), while HA promoted this trend (48.7-50.3%). Transcriptomic and metabolomic analysis (Control, 100NPs, and IP-100NPs-20HA) showed that NPs inhibited arginine biosynthesis, and alanine, aspartate, and glutamate metabolism and activated phenylpropanoid biosynthesis related to lignin. The coexistence of IP and HA had positive effects on the amino acid metabolism and phenylpropanoid biosynthesis induced by NPs. Regulation of genes and metabolites involved in nitrogen metabolism and secondary metabolism significantly altered the levels of protein and lignin in rice roots. These findings provide a scientific basis for understanding the environmental risk of NPs under real environmental conditions.
Collapse
Affiliation(s)
- Xiaoxue Ouyang
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China; Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Bingcong Feng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Ping Yin
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xiaoyu Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Pan Li
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Qiusheng Chen
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
2
|
Liu M, Liu X, Hu Y, Zhang Q, Farooq U, Qi Z, Lu L. Mobility of biochar-derived dissolved organic matter and its effects on sulfamerazine transport through saturated soil porous media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2264-2278. [PMID: 39526417 DOI: 10.1039/d4em00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dissolved organic matter (DOM) released from biochar may impact antibiotic mobility and environmental fate in subsurface environments. Here, DOM samples derived from biochars (BDOM) generated by pyrolyzing corn straw at 300, 450, and 600 °C were employed to elucidate the mobility characteristics of these organic substances and their influences on the transport of sulfamerazine (SMZ, a typical sulfonamide antibiotic) in soil porous media. The results demonstrated that BDOM produced at a lower pyrolysis temperature exhibited greater mobility owing to the weaker hydrophobic and H-bonding interactions between BDOM and soil particles. Additionally and importantly, BDOM facilitated the promotion of SMZ mobility owing to the increased electrostatic repulsion between SMZ- forms and soil grains, the steric hindrance effect induced by the deposition of organic matter, and the competitive retention between SMZ molecules and BDOM. Meanwhile, the promotion effects of BDOM enhanced with improving pyrolysis temperature owing to the promoted deposition of organic matter on soil surfaces and the strengthened electrostatic repulsion. Moreover, the facilitated effects of BDOM on SMZ mobility declined as the solution pH values were raised from 5.0 to 9.0 or the flow rate increased from 0.18 to 0.51 cm min-1. This trend was due to decreased deposition competition and the steric effect caused by decreased retention of BDOM on soil particles. Furthermore, the cation-bridging effect emerged as an important mechanism contributing to the promotion effects of BDOM when the solution contained divalent cations (Cu2+ or Ca2+). Moreover, a two-site non-equilibrium model was used to interpret the controlling mechanisms for the effects of BDOM on the transport of SMZ. Findings from this work highlight that biochar-derived dissolved organic matter can remarkably affect the environmental behaviors of antibiotics in aquatic environments.
Collapse
Affiliation(s)
- Mengya Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Xiaochen Liu
- Hydrogeology and Engineering Geology Institute of Hubei Geological Bureau, Jinzhou, 434020, P. R. China
| | - Yalu Hu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Laotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, P. R. China.
| |
Collapse
|
3
|
Liu Y, Ma J, Feng B, Zhang X, Zhao Y, Weng L, Chen Y, Xie H, Li Y. Effect of isomeric polysaccharides on heteroaggregation of nanoplastics in high ionic strength conditions: Synergies of morphology and molecular conformation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135818. [PMID: 39307017 DOI: 10.1016/j.jhazmat.2024.135818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Polysaccharides with various molecular structures and morphology may influence the aggregation kinetics of nanoplastics. This study used various characterization methods to elucidate the heteroaggregation mechanism of polystyrene nanoplastics (PSNPs) in the presence of polysaccharides (ionic strength (IS) 1-800 mM NaCl and 0.01-60 mM CaCl2). The results showed that under high IS, cellulose (CL) accelerated the heteroaggregation of PSNPs, and the aggregation rate of PSNPs increased by approximately 62.05 %, while amylose (AM) had little effect (10.38 %). Compared with AM (43.2 nm), the morphology of the CL (78.4 nm) gully had improved surface roughness, leading to its decisive role in the heteroaggregation of PSNPs. Quantum chemistry calculations indicated that van der Waals forces of PSNPs-CL systems (-217.28 kJ mol-1) were stronger than those of PSNPs-AM systems (-184.62 kJ mol-1) based on the subtle molecular conformation differences between CL and AM (opposite and same sides of OH groups in CL and AM, respectively). The morphology and molecular conformation of polysaccharides collaboratively controlled the heteroaggregation of PSNPs. Because the morphology of polysaccharides was based on their molecular conformation, the latter is the most critical factor. These findings provide new insights into the effects of PSNPs stability in the environment.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Bingcong Feng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Natural Resources and Environment, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Xiaoyu Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands.
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Zhou Z, Wu H, Fu B, Wang Z, Hong R, Huang L, Gu X, Gu C, Jin X. Dissolved black carbon incorporating with ferric minerals promoted photo-Fenton-like degradation of triclosan in acidic conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132253. [PMID: 37567135 DOI: 10.1016/j.jhazmat.2023.132253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Dissolved black carbon (DBC) has been recognized as an important organic matter that influences the photochemical processes of organic pollutants. The excited triplet state (3DBC*) of DBC usually exhibits activity in neutral and basic aqueous conditions, rather than in acidic conditions. In this study, we found the crop (wheat, rice, maize) straw sourced DBC can substantially enhance the photodegradation of triclosan in relatively acidic conditions, and in the presence of ferric minerals (ferrihydrite and lepidocrocite), when exposed to simulated sunlight irradiation. This should be ascribed to the rapid non-reductive dissolution of ferric minerals by DBC, which leads to the generation of abundant hydrogen peroxides (H2O2) and hydroxyl radicals (•OH) through photo Fenton-like reactions. •OH is the dominant reactive species that leads to triclosan degradation in acidic conditions. Otherwise, triclosan itself is resistant to direct photolysis at pH < 5.0. The triplet state (3DBC*) plays a critical role in accelerating the Fe3+/Fe2+ cycling, which further promotes •OH generation. This study provides a new perspective on the role of DBC in surface water or mineral-water interfaces with acidic conditions and adds a more comprehensive understanding about the environmental implications of the DBC-ferric mineral system in sunlit surface water.
Collapse
Affiliation(s)
- Ziyan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Boming Fu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Jiangsu Environmental Protection Group Co., Ltd, Nanjing 210019, PR China
| | - Zhe Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Liuqing Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xinyue Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China; School of Environment, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
5
|
Liu Y, Wang L, Liu C, Ma J, Ouyang X, Weng L, Chen Y, Li Y. Enhanced cadmium removal by biochar and iron oxides composite: Material interactions and pore structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117136. [PMID: 36584474 DOI: 10.1016/j.jenvman.2022.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The combination of biochar (BC) and iron minerals improves their pollutant adsorption capacity. However, little is known about the reactivity of BC-iron mineral composites regarding their interaction and change in the pore structure. In this study, the mechanism of cadmium (Cd) adsorption by BC-iron oxide composites, such as BC combined with ferrihydrite (FH) or goethite (GT), was explored. The synergistic effect of the BC-FH composite significantly improved its Cd adsorption capacity. The adsorption efficiencies of BC-FH and BC-GT increased by 15.0% and 10.8%, respectively, compared with that of uncombined BC, FH, and GT. The strong Cd adsorption by BC-FH was attributed to stable interactions and stereoscopic pore filling between BC and FH. The scanning electron microscopy results showed that FH particles entered the BC pores, whereas GT particles were loaded onto the BC surface. FTIR spectroscopy showed that GT covered a larger area of the BC surface than FH. After loading FH and GT, BC porosities decreased by 9.3% and 4.1%, respectively. Quantum chemical calculations and independent gradient mode analysis showed that van der Waals interactions, H-bonds, and covalent-like interactions maintained stability between iron minerals and BC. Additionally, humic acid increased the agglomeration of iron oxides and formed larger particles, causing additional aggregates to load onto the BC surface instead of entering the BC pores. Our results provide theoretical support to reveal the interfacial behavior of BC-iron mineral composites in soil and provide a reference for field applications of these materials for pollution control and environmental remediation.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Long Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Chang Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xiaoxue Ouyang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongtao Li
- College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi, 341000, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
6
|
Ma J, Li J, Weng L, Ouyang X, Chen Y, Li Y. Phosphorus-Enhanced and Calcium-Retarded Transport of Ferrihydrite Colloid: Mechanism of Electrostatic Potential Changes Regulated via Adsorption Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4219-4230. [PMID: 36848599 DOI: 10.1021/acs.est.2c09670] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The transport of ferrihydrite colloid (FHC) through porous media is influenced by anions (e.g., PO43-) and cations (e.g., Ca2+) in the aqueous environment. This study investigated the cotransport of FHC with P and P/Ca in saturated sand columns. The results showed that P adsorption enhanced FHC transport, whereas Ca loaded onto P-FHC retarded FHC transport. Phosphate adsorption provided a negative potential on the FHC, while Ca added to P-FHC led to electrostatic screening, compression of the electric double layer, and formation of Ca5(PO4)3OH followed by heteroaggregation at pH ≥ 6.0. The monodentate and bidentate P surface complexes coexisted, and Ca mainly formed a ternary complex with bidentate P (≡(FeO)2PO2Ca). The unprotonation bidentate P at the Stern 1-plane had a considerable negative potential at the Van der Waals molecular surface. Extending the potential effect to the outer layer of FHC, the potential at the Stern 2-plane and zeta potential exhibited a corresponding change, resulting in a change in FHC mobility, which was validated by comparison of experimental results, DFT calculations, and CD-MUSIC models. Our results highlighted the influence of P and Ca on FHC transport and elucidated their interaction mechanisms based on quantum chemistry and colloidal chemical interface reactions.
Collapse
Affiliation(s)
- Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jinbo Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Department of Soil Quality, Wageningen University, P.O. Box 47, Wageningen 6700 AA, The Netherlands
| | - Xiaoxue Ouyang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Peng Y, Zhang B, Guan CY, Jiang X, Tan J, Li X. Identifying biotic and abiotic processes of reversing biochar-induced soil phosphorus leaching through biochar modification with MgAl layered (hydr)oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157037. [PMID: 35777556 DOI: 10.1016/j.scitotenv.2022.157037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Biochar (BC) as a increasing widely adopted soil amendments showed potential threat to soil P leaching, but the relevant mechanisms were not clear enough and relevant strategy should be proposed to address the P leaching induced by BC application. In this study, effects of ordinary corn straw BC, and a fabricated Mg/Al-LDHs modified biochar (LBC) on soil P availability, adsorption, fraction and mobility were compared and investigated by conducting the column and incubation experiments at biochar to soil rate of 1 %, 2 % and 4 % (w/w). Chemical sequential extraction methods and various solid-state method (i.e., three-dimensional excitation emission matrix (EEM), x-ray diffraction (XRD), scanning electron micrograph (SEM) and P K-edge X-ray absorption near edge structure (XANES)) were utilized to give deep insights into the P mobilization and immobilization mechanisms by respectively applying the BC and LBC. Results of incubation experiments showed that applying the LBC reduced the labile P with significant CaP transformation to Al-retained P, while ordinary BC promoted the Fe/Al-P transformation to labile dibasic calcium phosphate and monobasic calcium phosphate evidenced by the EEM analysis, in-situ XANES investigation and chemical sequential extraction methods. Results of phosphatase and microbial analyses indicated that the decreased labile P after 30 days' incubation and the mitigated P leaching in LBC treatment were dominantly ascribed to abiotic processes of inorganic P transformation and (de)sorption. This research gave deep insights into abiotic and biotic processes of ordinary biochar promoting soil P leaching, and important implications for applying engineered biochar in reducing P leaching and improving soil productivity.
Collapse
Affiliation(s)
- Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China.
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Xiaoqian Jiang
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Jinfang Tan
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China.
| |
Collapse
|
8
|
Wu A, Zhao X, Yang C, Wang J, Wang X, Liang W, Zhou L, Teng M, Niu L, Tang Z, Hou G, Wu F. A comparative study on aggregation and sedimentation of natural goethite and artificial Fe 3O 4 nanoparticles in synthetic and natural waters based on extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and molecular dynamics simulations. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128876. [PMID: 35468390 DOI: 10.1016/j.jhazmat.2022.128876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/06/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Natural iron oxides nanomaterials have important roles in biogeochemical processes. In this study, the effects of pH, natural organic matter, and cations on aggregation and sedimentation of natural goethite and artificial Fe3O4 nanoparticles in water were investigated to learn more about the environmental behaviors of engineered and natural nanomaterials and how they differ. In addition, a novel extended DLVO theory that considered steric, gravitational, and magnetic attraction forces concurrently was specifically developed to provide mechanisms explanations. Specifically, Fe3O4 NPs were more likely than bulk goethite to aggregate (because of magnetic attraction interactions) at low HA concentrations and disperse at high HA concentrations. Besides, goethite was less prone to settle with the same concentration of NaCl than Fe3O4 NPs, but the opposite trend was found for the same concentration of CaCl2 because of the difference in maximum net energy (barrier) and strong Ca2+ bridging effectiveness of goethite in CaCl2 solution. Statistical models were established to evaluate colloidal stability of the particles. XPS and molecular dynamics simulation results suggested that ions were adsorbed onto particles via ionic polarization and that the binding free energies at high coverage followed the order Ca2+ > Na+ > Cl- and presence of cation bridging between particles.
Collapse
Affiliation(s)
- Aiming Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chunyan Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environment Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guoqing Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Ma J, Qiu Y, Zhao J, Ouyang X, Zhao Y, Weng L, MD Yasir A, Chen Y, Li Y. Effect of Agricultural Organic Inputs on Nanoplastics Transport in Saturated Goethite-Coated Porous Media: Particle Size Selectivity and Role of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3524-3534. [PMID: 35226472 PMCID: PMC8928475 DOI: 10.1021/acs.est.1c07574] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 05/04/2023]
Abstract
The transport of nanoplastics (NPs) through porous media is influenced by dissolved organic matter (DOM) released from agricultural organic inputs. Here, cotransport of NPs with three types of DOM (biocharDOM (BCDOM), wheat strawDOM (WSDOM), and swine manureDOM (SMDOM)) was investigated in saturated goethite (GT)-coated sand columns. The results showed that codeposition of 50 nm NPs (50NPs) with DOM occurred due to the formation of a GT-DOM-50NPs complex, while DOM loaded on GT-coated sand and 400 nm NPs (400NPs) aided 400NPs transport due to electrostatic repulsion. According to the quantum chemical calculation, humic acid and cellulose played a significant role in 50NPs retardation. Owing to its high concentration, moderate humification index (HIX), and cellulose content, SMDOM exhibited the highest retardation of 50NPs transport and promoting effect on 400NPs transport. Owing to a high HIX, the effect of BCDOM on the mobility of 400NPs was higher than that of WSDOM. However, high cellulose content in WSDOM caused it to exhibit a 50NPs retardation ability that was similar to that of BCDOM. Our results highlight the particle size selectivity and significant influence of DOM type on the transport of NPs and elucidate their quantum and colloidal chemical-interface mechanisms in a typical agricultural environment.
Collapse
Affiliation(s)
- Jie Ma
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Ministry of Agriculture and Rural
Affairs, Tianjin, 300191, China
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
| | - Yan Qiu
- School
of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Junying Zhao
- School
of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaoxue Ouyang
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Ministry of Agriculture and Rural
Affairs, Tianjin, 300191, China
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
| | - Yujie Zhao
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Ministry of Agriculture and Rural
Affairs, Tianjin, 300191, China
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Ministry of Agriculture and Rural
Affairs, Tianjin, 300191, China
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
- Department
of Soil Quality, Wageningen University, Wageningen 6700 HB, The Netherlands
| | - Arafat MD Yasir
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Ministry of Agriculture and Rural
Affairs, Tianjin, 300191, China
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
| | - Yali Chen
- Key
Laboratory for Environmental Factors Control of Agro-Product Quality
Safety, Ministry of Agriculture and Rural
Affairs, Tianjin, 300191, China
- Agro-Environmental
Protection Institute, Ministry of Agriculture
and Rural Affairs, Tianjin 300191, China
| | - Yongtao Li
- College
of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi 341000, China
- College of
Natural Resources and Environment, South
China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Yasir AM, Ma J, Ouyang X, Zhao J, Zhao Y, Weng L, Islam MS, Chen Y, Li Y. Effects of selected functional groups on nanoplastics transport in saturated media under diethylhexyl phthalate co-contamination conditions. CHEMOSPHERE 2022; 286:131965. [PMID: 34449324 DOI: 10.1016/j.chemosphere.2021.131965] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 05/20/2023]
Abstract
The production and degradation of plastic remains can result in nanoplastics (NPs) formation. However, insufficient information regarding the environmental behaviors of NPs impedes comprehensive assessment of their significant threats. In this study, the transport behavior of unmodified NPs (PSNPs), carboxyl-modified NPs (PSNPs-COOH), and amino-modified NPs (PSNPs-NH2) was investigated using column experiments in the presence and absence of goethite (GT) and diethylhexyl phthalate (DEHP). Quantum chemical computation was performed to reveal the transport mechanisms. The results showed that GT decreased the transport of NPs and the presence of DEHP decreased it further. Van der Waals forces and small electrostatic interactions coexisted between the PSNPs and GT and caused deposition. Ligand exchange caused greater deposition of PSNPs-COOH on GT-coated sand than that of PSNPs. Although hydrogen bonding existed between the DEHP and NPs with functional groups, an increase in the positive charge and chemical heterogeneity of the collector was the main reason for DEHP promoting the deposition of NPs. Because of low absolute negative zeta potential values, PSNPs-NH2 was sensitive to chemical heterogeneity, and thus fully deposited (over 96.9%) in GT and GT-DEHP-coated columns. Generally, the deposition of NPs due to chemical heterogeneity was more significant than that due to the formation of chemical bonds and van der Waals, electrostatic, and hydrogen interactions. Our results highlight that the surface charge and functional groups significantly influence the transport behaviors of NPs and elucidate the fate of NPs in the terrestrial environment.
Collapse
Affiliation(s)
- Arafat Md Yasir
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xiaoxue Ouyang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Junying Zhao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands.
| | - Md Shafiqul Islam
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yongtao Li
- College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
11
|
Wu H, Chen Z, Sheng F, Wang C, Jin X, Gu C. Mechanisms for the dissolved biochar promoted iron dissolution and consequential chromium release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148923. [PMID: 34271391 DOI: 10.1016/j.scitotenv.2021.148923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Biochar is widely applied in soil for agricultural and environmental purposes. Soluble fraction of biochar may be released from bulk biochar as dissolved biochar (DBC) after irrigation or rainfall. DBC had been reported to possess high chemical activity in aqueous system, while less attention was paid to the impact of DBC on the soil environmental processes. In this work, the impact of DBC on ferric (hydro) oxides was systematically examined. Our study showed that DBC prepared from rice straw could significantly promote the dissolution of ferric oxides with unstable and metastable crystalline structures, e.g., ferrihydrite under relatively acidic condition. Organic ligand-promoted dissolution was the main mechanism for iron release from ferrihydrite, and the low-molecular-weight DBC component (less than 1000 Da) was the major contributor for this process. Furthermore, the organic carbon content normalized ligand-promoted dissolution capacity for DBC was much higher than common dissolved organic matters. More importantly, DBC could promote the release of Cr from dichromate-adsorbed ferric mineral. Our results suggest that in soils with relatively low pH and high contents of ferric hydroxides, e.g., red soil in southern China, DBC derived from applied biochar could enhance the mobility and bioavailability of iron and other heavy metals. The dissolved metals would play active roles in soil redox cycle and biotic processes. Therefore, it's necessary to evaluate the long-term impact of biochar application on acidic field soils with high iron content.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Feng Sheng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, PR China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
12
|
Ouyang X, Ma J, Li P, Chen Y, Weng L, Li Y. Comparison of the effects of large-grained and nano-sized biochar, ferrihydrite, and complexes thereof on Cd and As in a contaminated soil-plant system. CHEMOSPHERE 2021; 280:130731. [PMID: 33971411 DOI: 10.1016/j.chemosphere.2021.130731] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Cd and As are difficult to co-remediate in co-contaminated soils. In this study, remediation materials comprising large-grained and nano-sized biochar (BC), ferrihydrite (FH), and complexes thereof were added to Cd- and As-contaminated soil. The uptake of Cd and As by pak choi (Brassica chinensis L.) was then evaluated using a pot experiment and the Cd and As concentrations of the soil pore water and leaching water were measured. The Cd and As concentrations of the pore and leaching water were slightly increased with the addition of BC, and decreased with addition of FH and the biochar-ferrihydrite complex (BC-FH). However, nano-sized BC (BCN), FH (FHN), and BC-FH (BC-FHN) had little influence on the decreases in Cd and As of the two monitored water types. Large-grained remediation materials, rather than nanomaterials, decreased the Cd and As concentrations of the two monitored water types. Nonetheless, nanomaterial treatments more effectively decreased the Cd and As concentrations in plants by an average of >10% relative to the large-grained treatments. The DLVO theory analysis suggested that BCN, FHN, and BC-FHN, immobilized in the topsoil, adsorbed heavy metals in the rhizosphere soil. The remainder of the nano-sized materials was dispersed in the rhizosphere soil pores, shielding the uptake of Cd and As by the roots. Although the doses of nanomaterials used in this study were less than one-fortieth of those of the large-grained materials, changes in the plant rhizosphere microenvironment caused by the nanomaterials decreased the risk of toxicity transfer from the soil to the plants.
Collapse
Affiliation(s)
- Xiaoxue Ouyang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Ma
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Pan Li
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yali Chen
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands.
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
13
|
Liu G, Li H, Liu Y, Jin R, Zhou J, Ren Z, Wang Z, Yan C. Extracellular electron transfer influences the transport and retention of ferrihydrite nanoparticles in quartz sand coated with Shewanella oneidensis biofilm. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126023. [PMID: 33992002 DOI: 10.1016/j.jhazmat.2021.126023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Microbial biofilm has been found to impact the mobility of nanoparticles in saturated porous media by altering physicochemical properties of collector surface. However, little is known about the influence of biofilm's biological activity on nanoparticle transport and retention. Here, the transport of ferrihydrite nanoparticles (FhNPs) was studied in quartz sands coated with biofilm of Shewanella oneidensis MR-1 that is capable of reducing Fe(III) through extracellular electron transfer (EET). It was found that MR-1 biofilm coating enhanced FhNPs' deposition under different pH/ionic strength conditions and humic acid concentrations. More importantly, when the influent electron donor (glucose) concentration was increased to promote biofilm's EET activity, the breakthrough of FhNPs in biofilm-coated sands was inhibited. A lack of continuous and stable supply of electron donor, on the contrary, led to remobilization and release of the originally retained FhNPs. Column experiments with biofilm of EET-deficient MR-1 mutants (ΔomcA/ΔmtrC and ΔcymA) further indicated that the impairment of EET activity decreased the retention of FhNPs. It is proposed that the effective surface binding and adhesion of FhNPs that is required by direct EET cannot be neglected when evaluating the transport of FhNPs in sands coated with electroactive biofilm.
Collapse
Affiliation(s)
- Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Eco-restoration of Regional Contaminated Environment, Shenyang University, Shenyang 110000, China.
| | - Hanyi Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhen Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chen Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Ma J, Jing Y, Gao L, Chen J, Wang Z, Weng L, Li H, Chen Y, Li Y. Hetero-aggregation of goethite and ferrihydrite nanoparticles controlled by goethite nanoparticles with elongated morphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141536. [PMID: 32798881 DOI: 10.1016/j.scitotenv.2020.141536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 05/20/2023]
Abstract
The dispersities of goethite nanoparticles (GTNPs) and ferrihydrite nanoparticles (FHNPs) affect the transport and retention of nanoparticle-associated contaminants. However, the effects of interaction on nanoparticle stability under varying environmental conditions have not been previously investigated. This study utilized settling experiments, a semi-empirical model, and the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to study the homo-aggregation and hetero-aggregation of GTNPs and FHNPs. The pure system of GTNPs tended to aggregate more easily than that of FHNPs, especially under the conditions of high pH (7.0-9.0), high ionic strength (IS, 10 mM), and low concentrations of humic acid (HA) (2 mg L-1). This aggregation was attributed to the elongated morphology of GTNPs, which contributed to surface heterogeneity. The GTNPs and FHNPs mixtures rapidly coagulated, particularly under the surface-charge disequilibrium caused by an increase in negative charges or IS. Hetero-aggregation increased with increase in the GTNPs ratio, indicating that the elongated GTNPs dominated the coagulation of the Fe mineral nanoparticle mixture, which was attributed to the surface heterogeneity and high probability collisions between the GTNPs. Although DLVO neglects the influence of heterogeneity on the nanoparticle surfaces, SEM revealed that hetero-aggregation of GTNPs and FHNPs occurred. The results obtained in this study provide novel and valuable insights into the behaviors of GTNPs and FHNPs mixtures and suggest that during the gradual transformation of FHNPs to GTNPs in soil or aquatic environments, the hetero-aggregation of GTNPs and FHNPs may be enhanced, thus promoting contaminant immobilization.
Collapse
Affiliation(s)
- Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yilun Jing
- College of Marine and Environmental Science, Tianjin University of Science and Technology, Tianjin 300457, China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lijun Gao
- College of Marine and Environmental Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingping Chen
- College of Marine and Environmental Science, Tianjin University of Science and Technology, Tianjin 300457, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiao Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Haiming Li
- College of Marine and Environmental Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Ouyang X, Ma J, Weng L, Chen Y, Wei R, Zhao J, Ren Z, Peng H, Liao Z, Li Y. Immobilization and release risk of arsenic associated with partitioning and reactivity of iron oxide minerals in paddy soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36377-36390. [PMID: 32562227 DOI: 10.1007/s11356-020-09480-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The consumption of agricultural products grown on paddy soils contaminated with toxic element has a detrimental effect on human health. However, the processes and mechanisms of iron (Fe) mineral-associated arsenic (As) availability and As reactivity in different paddy soil profiles are not well understood. In this study, the fractions, immobilization, and release risk of As in eleven soil profiles from the Changzhutan urban agglomeration in China were investigated; these studied soils were markedly contaminated with As. Sequential extraction experiments were used to analyze fractions of As and Fe oxide minerals, and kinetic experiments were used to characterize the reactivity of Fe oxide minerals. The results showed that concentrations of total As and As fractions had a downward trend with depth, but the average proportions of As fractions only showed relatively small changes, which implied that the decrease in the total As concentrations influenced the changes in fraction concentrations along the sampling depth. Moreover, we found that easily reducible Fe (Feox1) mainly controlled the reductive dissolution of the Fe oxides, which suggest that the reductive dissolution process could potentially release As during the flooded period of rice production. In addition, a high proportion of As was specifically absorbed As (As-F2) (average 20.4%) in paddy soils, higher than that in other soils. The total organic carbon (TOC) content had a positive correlation with the amount of non-specifically bound As (As-F1) (R = 0.56), which means that TOC was one factor that affected the As extractability in the As-F1. Consequently, high inputs of organic fertilizers may elevate the release of As and accelerate the diffusion of As. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoxue Ouyang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junying Zhao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zongling Ren
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Peng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhongbin Liao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
16
|
Sedimentation and Transport of Different Soil Colloids: Effects of Goethite and Humic Acid. WATER 2020. [DOI: 10.3390/w12040980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Soil colloids significantly facilitate the transport of contaminants; however, little is known about the effects of highly reactive iron oxide and the most representative organic matter on the transport of soil colloids with different physicochemical properties. This study investigated the effects of goethite (GT) and humic acid (HA) on the sedimentation and transport of soil colloids using settling and column experiments. The stability of soil colloids was found to be related to their properties and decreased in the following order: black soil colloids (BSc) > yellow soil colloids (YSc) > fluvo-aquic soil colloids (FSc). Organic matter increased the stability of BSc, and ionic strength (Ca2+) promoted the deposition of FSc. Colloids in individual and GT colloids (GTc) coexistence systems tended to stabilize at high pH and showed a pH-dependence whereby the stability decreased with decreasing pH. The interaction of GTc and kaolinite led to a dramatic sedimentation of YSc at pH 4.0. HA enhanced the stability of soil colloids, especially at pH 4.0, and obscured the pH-dependent sedimentation of soil colloids. The transport ability of soil colloids was the same as their stability. The addition of GT retarded the transport of soil colloids, which was quite obvious at pH 7.0. This retardation effect was attributed to the transformation of the surface charge of sand from negative to positive, which increased the electrical double-layer attraction. Although sand coated with GT–HA provided more favorable conditions for the transport of soil colloids in comparison to pure sand, the corresponding transport was relatively slow. This suggests that the filtration effect, heterogeneity, and increased surface roughness may still influence the transport of soil colloids.
Collapse
|