1
|
An T, Liang Z, Chen Z, Li G. Recent progress in online detection methods of bioaerosols. FUNDAMENTAL RESEARCH 2024; 4:442-454. [PMID: 38933213 PMCID: PMC10239662 DOI: 10.1016/j.fmre.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 10/29/2023] Open
Abstract
The aerosol transmission of coronavirus disease in 2019, along with the spread of other respiratory diseases, caused significant loss of life and property; it impressed upon us the importance of real-time bioaerosol detection. The complexity, diversity, and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring. Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods, preventing the high-resolution time-based characteristics necessary for an online approach. Through a comprehensive literature assessment, this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors. Methods applied in online bioaerosol monitoring, including adenosine triphosphate bioluminescence, laser/light-induced fluorescence spectroscopy, Raman spectroscopy, and bioaerosol mass spectrometry are summarized. The working principles, characteristics, sensitivities, and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences. Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced. Finally, an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.
Collapse
Affiliation(s)
- Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Huang Z, Yu X, Liu Q, Maki T, Alam K, Wang Y, Xue F, Tang S, Du P, Dong Q, Wang D, Huang J. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168818. [PMID: 38036132 DOI: 10.1016/j.scitotenv.2023.168818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
In the past few decades, especially since the outbreak of the coronavirus disease (COVID-19), the effects of atmospheric bioaerosols on human health, the environment, and climate have received great attention. To evaluate the impacts of bioaerosols quantitatively, it is crucial to determine the types of bioaerosols in the atmosphere and their spatial-temporal distribution. We provide a concise summary of the online and offline observation strategies employed by the global research community to sample and analyze atmospheric bioaerosols. In addition, the quantitative distribution of bioaerosols is described by considering the atmospheric bioaerosols concentrations at various time scales (daily and seasonal changes, for example), under various weather, and different underlying surfaces. Finally, a comprehensive summary of the reasons for the spatiotemporal distribution of bioaerosols is discussed, including differences in emission sources, the impact process of meteorological factors and environmental factors. This review of information on the latest research progress contributes to the emergence of further observation strategies that determine the quantitative dynamics of public health and ecological effects of bioaerosols.
Collapse
Affiliation(s)
- Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Xinrong Yu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiantao Liu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Teruya Maki
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan
| | - Yongkai Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fanli Xue
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shihan Tang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pengyue Du
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qing Dong
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Jianping Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Markey E, Hourihane Clancy J, Martínez-Bracero M, Neeson F, Sarda-Estève R, Baisnée D, McGillicuddy EJ, Sewell G, O’Connor DJ. A Modified Spectroscopic Approach for the Real-Time Detection of Pollen and Fungal Spores at a Semi-Urban Site Using the WIBS-4+, Part I. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22228747. [PMID: 36433340 PMCID: PMC9694534 DOI: 10.3390/s22228747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 05/19/2023]
Abstract
The real-time monitoring of primary biological aerosol particles (PBAP) such as pollen and fungal spores has received much attention in recent years as a result of their health and climatic effects. In this study, the Wideband Integrated Bioaerosol Sensor (WIBS) 4+ model was evaluated for its ability to sample and detect ambient fungal spore and pollen concentrations, compared to the traditional Hirst volumetric method. Although the determination of total pollen and fungal spore ambient concentrations are of interest, the selective detection of individual pollen/fungal spore types are often of greater allergenic/agricultural concern. To aid in this endeavour, modifications were made to the WIBS-4 instrument to target chlorophyll fluorescence. Two additional fluorescence channels (FL4 and FL5 channels) were combined with the standard WIBS channels (FL1, FL2, FL3). The purpose of this modification is to help discriminate between grass and herb pollen from other pollen. The WIBS-4+ was able to successfully detect and differentiate between different bioaerosol classes. The addition of the FL4 and FL5 channels also allowed for the improved differentiation between tree (R2 = 0.8), herbaceous (R2 = 0.6) and grass (R2 = 0.4) pollen and fungal spores (R2 = 0.8). Both grass and herbaceous pollen types showed a high correlation with D type particles, showing strong fluorescence in the FL4 channel. The additional fluorescent data that were introduced also improved clustering attempts, making k-means clustering a comparable solution for this high-resolution data.
Collapse
Affiliation(s)
- Emma Markey
- School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland
- Correspondence: (E.M.); (M.M.-B.)
| | | | - Moisés Martínez-Bracero
- School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland
- Correspondence: (E.M.); (M.M.-B.)
| | - Finnian Neeson
- School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland
| | - Roland Sarda-Estève
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CNRS-CEA-UVSQ, 91191 Saint-Aubin, France
| | - Dominique Baisnée
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CNRS-CEA-UVSQ, 91191 Saint-Aubin, France
| | - Eoin J. McGillicuddy
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Gavin Sewell
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - David J. O’Connor
- School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland
| |
Collapse
|
4
|
Wei W, Qi J, Yin Y, Gong J, Yao X. Characteristics of inhalable bioaerosols on foggy and hazy days and their deposition in the human respiratory tract. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119593. [PMID: 35680068 DOI: 10.1016/j.envpol.2022.119593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric bioaerosols contain live and dead biological components that can enter the human respiratory tract (HRT) and affect human health. Here, the total microorganisms in a coastal megacity, Qingdao, were characterized on the basis of long-term observations from October 2013 to January 2021. Particular attention was given to the size dependence of inhalable bioaerosols in concentration and respiratory deposition in different populations on foggy and hazy days. Bioaerosol samples stained with 4,6-diamidino-2-phenylindole (DAPI) were selected to measure the total airborne microbe (TAM) concentrations with an epifluorescence microscope, while a multiple-path particle dosimetry model was employed to calculate respiratory deposition. The mean TAM concentrations in the particle size range of 0.65-1.1 μm (TAM0.65-1.1) were 1.23, 2.02, 1.60 and 2.33 times those on sunny reference days relative to the corresponding values on days with slight, mild, moderate and severe levels of haze, respectively. The mean concentration of TAMs in the particle size range of 0.65-2.1 μm (TAM0.65-2.1) on severely hazy days was (2.02 ± 3.28) × 105 cells/m3, with a reduction of 4.16% relative to that on the reference days. The mean TAM0.65-2.1 concentration changed from (1.50 ± 1.37) × 105 cells/m3 to (1.76 ± 1.36) × 105 cells/m3, with TAM0.65-1.1 increasing from (7.91 ± 7.97) × 104 cells/m3 to (1.76 ± 1.33) × 105 cells/m3 on days with light fog days and medium fog, respectively. The modeling results showed that the majority of TAM0.65-2.1 deposition occurred in the extrathoracic (ET) region, followed by the alveolar (AL) region. When different populations were examined separately, the deposition doses (DDs) in adult females and in children ranked at the minimum value (6.19 × 103 cells/h) and maximum value (1.08 × 104 cells/h), respectively. However, the inhalation risks on polluted days, such as hazy, foggy and mixed hazy-foggy (HF) days, were still below the threshold for adverse impacts on human health.
Collapse
Affiliation(s)
- Wenshu Wei
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Jianhua Qi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China.
| | - Yidan Yin
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Jing Gong
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Xiaohong Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| |
Collapse
|
5
|
Abstract
Fungal spores make up a significant portion of Primary Biological Aerosol Particles (PBAPs) with large quantities of such particles noted in the air. Fungal particles are of interest because of their potential to affect the health of both plants and humans. They are omnipresent in the atmosphere year-round, with concentrations varying due to meteorological parameters and location. Equally, differences between indoor and outdoor fungal spore concentrations and dispersal play an important role in occupational health. This review attempts to summarise the different spore sampling methods, identify the most important spore types in terms of negative effects on crops and the public, the factors affecting their growth/dispersal, and different methods of predicting fungal spore concentrations currently in use.
Collapse
|
6
|
Zhang M, Su H, Li G, Kuhn U, Li S, Klimach T, Hoffmann T, Fu P, Pöschl U, Cheng Y. High-Resolution Fluorescence Spectra of Airborne Biogenic Secondary Organic Aerosols: Comparisons to Primary Biological Aerosol Particles and Implications for Single-Particle Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16747-16756. [PMID: 34699200 PMCID: PMC8697557 DOI: 10.1021/acs.est.1c02536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Aqueous extracts of biogenic secondary organic aerosols (BSOAs) have been found to exhibit fluorescence that may interfere with the laser/light-induced fluorescence (LIF) detection of primary biological aerosol particles (PBAPs). In this study, we quantified the interference of BSOAs to PBAPs by directly measuring airborne BSOA particles, rather than aqueous extracts. BSOAs were generated by the reaction of d-limonene (LIM) or α-pinene (PIN) and ozone (O3) with or without ammonia in a chamber under controlled conditions. With an excitation wavelength of 355 nm, BSOAs exhibited peak emissions at 464-475 nm, while fungal spores exhibited peak emissions at 460-483 nm; the fluorescence intensity of BSOAs with diameters of 0.7 μm was in the same order of magnitude as that of fungal spores with diameters of 3 μm. The number fraction of 0.7 μm BSOAs that exhibited fluorescence above the threshold was in the range of 1.9-15.9%, depending on the species of precursors, relative humidity (RH), and ammonia. Similarly, the number fraction of 3 μm fungal spores that exhibited fluorescence above the threshold was 4.9-36.2%, depending on the species of fungal spores. Normalized fluorescence by particle volumes suggests that BSOAs exhibited fluorescence in the same order of magnitude as pollen and 10-100 times higher than that of fungal spores. A comparison with ambient particles suggests that BSOAs caused significant interference to ambient fine particles (15 of 16 ambient fine particle measurements likely detected BSOAs) and the interference was smaller for ambient coarse particles (4 of 16 ambient coarse particle measurements likely detected BSOAs) when using LIF instruments.
Collapse
Affiliation(s)
- Minghui Zhang
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Hang Su
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Guo Li
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Uwe Kuhn
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Siyang Li
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Thomas Klimach
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Thorsten Hoffmann
- Institute
for Inorganic and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Pingqing Fu
- Institute
of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Minerva
Research Group, Max Planck Institute for
Chemistry, Mainz 55128, Germany
| |
Collapse
|
7
|
Han R, Yu C, Tang X, Yu S, Song M, Shen F, Fu P, Hu W, Du L, Wang X, Herrmann H, Wu Y. Release of inhalable particles and viable microbes to the air during packaging peeling: Emission profiles and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117338. [PMID: 34051562 DOI: 10.1016/j.envpol.2021.117338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Packaging is necessary for preserving and delivering products and has significant impacts on human health and the environment. Particle matter (PM) may be released from packages and transferred to the air during a typical peeling process, but little is known about this package-to-air migration route of particles. Here, we investigated the emission profiles of total and biological particles, and the horizontal and vertical dispersion abilities and community structure of viable microbes released from packaging to the air by peeling. The results revealed that a lot of inhalable particles and viable microbes were released from package to the air in different migration directions, and this migration can be regulated by several factors including package material, effective peeling area, peeling speed and angles, as well as the characteristics of the migrant itself. Dispersal of package-borne viable microbes provides direct evidence that viable microbes, including pathogens, can survive the aerosolization caused by peeling and be transferred to air over different distances while remaining alive. Based on the experimental data and visual proof in movies, we speculate that nonbiological particles are package fibers fractured and released to air by the external peeling force exerted on the package and that microbe dispersal is attributed to surface-borne microbe suspension by vibration caused by the peeling force. This investigation provides new information that aerosolized particles can deliver package-borne substances and viable microbes from packaging to the ambient environment, motivating further studies to characterize the health effects of such aerosolized particles and the geographic migration of microbes via packaging.
Collapse
Affiliation(s)
- Ruining Han
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chenglin Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xuening Tang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Song Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Min Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Fangxia Shen
- School of Space and Environment, Beihang University, Beijing, 100083, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Lin Du
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Xinfeng Wang
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Hartmut Herrmann
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research, 04318, Leipzig, Germany
| | - Yan Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
8
|
Duca ZA, Speller NC, Cantrell T, Stockton AM. A modular, easy-to-use microcapillary electrophoresis system with laser-induced fluorescence for quantitative compositional analysis of trace organic molecules. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:104101. [PMID: 33138565 DOI: 10.1063/5.0008734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Microcapillary electrophoresis (μCE) enables high-resolution separations in miniaturized, automated microfluidic devices. Pairing this powerful separation technique with laser-induced fluorescence (LIF) enables a highly sensitive, quantitative, and compositional analysis of organic molecule monomers and short polymers, which are essential, ubiquitous components of life on Earth. Improving methods for their detection has applications to multiple scientific fields, particularly those related to medicine, industry, and space science. Here, a modular benchtop system using μCE with LIF detection was constructed and tested by analyzing standard amino acid samples of valine, serine, alanine, glycine, glutamic acid, and aspartic acid in multiple borate buffered solutions of increasing concentrations from 10 mM to 50 mM, all pH 9.5. The 35 mM borate buffer solution generated the highest resolution before Joule heating dominated. The limits of detection of alanine and glycine using 35 mM borate buffer were found to be 2.12 nM and 2.91 nM, respectively, comparable to other state-of-the-art μCE-LIF instruments. This benchtop system is amenable to a variety of detectors, including a photomultiplier tube, a silicon photomultiplier, or a spectrometer, and currently employs a spectrometer for facile multi-wavelength detection. Furthermore, the microdevice is easily exchanged to fit the desired application of the system, and optical components within the central filter cube can be easily replaced to target alternative fluorescent dyes. This work represents a significant step forward for the analysis of small organic molecules and biopolymers using μCE-LIF systems.
Collapse
Affiliation(s)
- Zachary A Duca
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - Thomas Cantrell
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|