1
|
Mironov V, Trofimchuk E, Plutalova A. Degradation of high concentrations of commercial polylactide packaging on food waste composting in pilot-scale test. BIORESOURCE TECHNOLOGY 2024; 410:131288. [PMID: 39153689 DOI: 10.1016/j.biortech.2024.131288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The increasing use of synthetic biodegradable polymers, such as aliphatic polyesters, has led to a greater need to understand their behavior in an end-of-life scenario as food packaging materials. The aim of this work was to investigate the effect on composting of high to 10 wt% concentration of commercial polylactide packaging in food waste during a 98-day pilot-scale test. Members of the genera Bacillus, Geobacillus, Caldibacillus, Compostibacillus, Novibacillus, Planifilum and Aeribacillus accounted for 77 % of the bacterial community at the initial stage. Significant fragmentation of the polylactide packaging was observed after 14 days, and the appearance of low-molecular weight (approximately 5.4 kDa) hydrolytic degradation products led to an increase in biodiversity and a prolongation of the thermophilic stage by 12 days. The results obtained show the possibility of efficient disposal of food waste with high concentration of polylactide packaging under industrial composting conditions.
Collapse
Affiliation(s)
- Vladimir Mironov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
| | - Elena Trofimchuk
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anna Plutalova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Vršanská M, Veselá L, Baláková I, Kovaříková E, Jansová E, Knoll A, Voběrková S, Kubíčková L, Vaverková MD. A comprehensive study of food waste management and processing in the Czech Republic: Potential health risks and consumer behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172214. [PMID: 38580122 DOI: 10.1016/j.scitotenv.2024.172214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Food waste is currently a widely discussed phenomenon with significant economic and social consequences. One third of the food produced in the world is wasted at various points along the food supply chain. This article presents a comprehensive study that examines consumer behavior in dealing with food waste and activities in the composting process that enable waste sanitation. The survey conducted as part of this study showed that consumers want to eliminate odors, are concerned about potential infections, and generally sort less food waste. This study suggested that the addition of appropriate additives could be a solution. The results indicated that additives could eliminate negative side effects such as unpleasant odors, the presence of insects and rodents, and act as a prevention of the occurrence of pathogenic organisms. Tea tree oil showed the best positive physical and chemical properties among the additives tested (CaCO3 and citric acid) with a significant effect on inhibiting the growth of bacterial strains such as Salmonella strains and had the strongest antibacterial effect, neutralized unpleasant odors, and stabilized the waste. The use of additives could be a future solution to meet consumer demands, improve the quality of food waste and advance the circular economy to improve the sustainability of agricultural systems.
Collapse
Affiliation(s)
- Martina Vršanská
- Department of Chemistry and Biochemistry, Mendel University in Brno, třída Generála Píky 1999/5, 613 00 Brno, Czech Republic
| | - Lucie Veselá
- Department of Marketing and Trade, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Irena Baláková
- Department of Marketing and Trade, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Ester Kovaříková
- Department of Chemistry and Biochemistry, Mendel University in Brno, třída Generála Píky 1999/5, 613 00 Brno, Czech Republic
| | - Eva Jansová
- Department of Chemistry and Biochemistry, Mendel University in Brno, třída Generála Píky 1999/5, 613 00 Brno, Czech Republic
| | - Aleš Knoll
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Stanislava Voběrková
- Department of Chemistry and Biochemistry, Mendel University in Brno, třída Generála Píky 1999/5, 613 00 Brno, Czech Republic
| | - Lea Kubíčková
- Department of Marketing and Trade, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02 776 Warsaw, Poland.
| |
Collapse
|
3
|
Liu S, Hou J, Zhang S, Zhang X, Zhang Q. The transformation of heavy metal speciation during rapid high-temperature aerobic fermentation of food waste and their potential mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119030. [PMID: 37741195 DOI: 10.1016/j.jenvman.2023.119030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
In this study, the content changes of multiple trace heavy metals (HMs) in food waste using a new rapid high-temperature aerobic fermentation (RTAF) technology and their relationships with different physicochemical factors were researched. The results indicated that the content of HMs in the decomposed products met the industry standards for organic fertilizers (NY/T525-2021, China). Physicochemical factors played an important role in controlling the changes in HM content. The component evolution of dissolved organic matter was studied, and its influences on the transformation of HM speciation showed that the RTAF process converted proteins into humus-like substances. Redundancy analysis revealed that the main factors driving the speciation transformation of HMs were tyrosine-like substances or microbial-derived humus (C3), molecular weight of dissolved organic matter (SUVA254) and humification degree (E250/E365). The increase in humification degree contributed to passivating HMs. The correlation network analysis results showed that the exchangeable HMs (Exc-HMs) were related to Lactobacillus and Pediococcu. Additionally, the cytoskeleton, coenzyme transport and metabolic function of microorganisms affected the Exc-HM content. These research results can provide a scientific basis for the prevention and control of HM pollution during the treatment of food waste.
Collapse
Affiliation(s)
- Shujia Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Shanghai SUS Environment Co, LTD., Shanghai, 201703, China
| | - JinJu Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai, 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
4
|
Li S, Xu S, Chen S, Zhang H, Zhan Y, Jia K, Cheng M, Wei Y. Carbon-containing additives changes the phosphorus flow by affecting humification and bacterial community during composting. BIORESOURCE TECHNOLOGY 2023; 379:129066. [PMID: 37075850 DOI: 10.1016/j.biortech.2023.129066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Phosphorus recycling from organic wastes to prepare a fertilizer by composting is promising. The aim of this study was to compare the effect of diverse carbon-containing additives (T1, glucose; T2, biochar; T3, woody peat) on phosphorus (P) fractions transformations, humus formation and bacterial community succession in chicken manure composting. Results showed that orthophosphate monoester was significantly related to the humification process, and glucose or woody peat addition increased the P in humus. Lentibacillus was a key carbon cycle bacteria related to organics stabilization affected by carbon-containing additives. Redundancy analysis and variation partitioning indicated that phosphatase enzyme activity driven by bacterial community and humic substance had 59.7% contribution to P fractions dynamics. The findings highlight an efficient humus-regulation P stabilization way, notably in composting adding glucose to form humus with a better binding ability to labile P forms and phosphatase.
Collapse
Affiliation(s)
- Shuxin Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Shuo Chen
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yabin Zhan
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Kaixue Jia
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yuquan Wei
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China.
| |
Collapse
|
5
|
Ahmed S, Moni MIZ, Begum M, Sultana MR, Kabir A, Eqbal MJ, Das SK, Ullah W, Haque TS. Poultry farmers' knowledge, attitude, and practices toward poultry waste management in Bangladesh. Vet World 2023; 16:554-563. [PMID: 37041846 PMCID: PMC10082732 DOI: 10.14202/vetworld.2023.554-563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/05/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim The improper handling of poultry litter and waste poses risks to humans and environment by introducing certain compounds, elements, and pathogenic microorganisms into the surrounding environment and food chain. However, understanding the farmers' knowledge, attitude, and practices (KAP) could provide insights into the constraints that hinder the appropriate adoption of waste management. Therefore, this study aimed to assess poultry farmers' KAP regarding waste management issues. Materials and Methods A cross-sectional KAP study was conducted with native poultry keepers and small-scale commercial poultry farmers in seven districts of Bangladesh. In the survey, 385 poultry producers were interviewed using validated structured questionnaires through face-to-face interviews to collect the quantitative data in their domiciles. Results The overall KAP of farmers regarding poultry waste management issues demonstrated a low level of KAP (p = 0.001). The analysis shows that roughly 5% of farmers have a high level of knowledge of poultry waste management issues, followed by around one-third of respondents having a moderate level of knowledge. Considering the attitude domain, more than one-fifth of native poultry keepers and nearly two-thirds of commercial producers demonstrated a low level of attitude toward poultry waste management. Considering the overall analysis, roughly half of the respondents found a high level of attitude, and over half of the farmers showed a moderate level of attitude toward poultry waste management issues. The analysis showed that the level of good practices for native and commercial poultry production systems is estimated at 77.3% versus 45.9%, respectively, despite the farmers' lesser knowledge and attitudes toward poultry waste management systems. Overall, analysis showed that nearly 60% and 40% of poultry producers had high and moderate levels, respectively, of good practices in poultry waste management issues. Conclusion Analysis of the KAP data shows that farmers had a low level of KAP toward poultry waste management. The result of this study will assist in formulating appropriate strategies and to adopt poultry waste management solutions by poultry farmers to reduce environmental degradation.
Collapse
Affiliation(s)
- Soshe Ahmed
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
- Corresponding author: Soshe Ahmed, e-mail: Co-authors: MIZM: , MB: , MRS: , AK: , MJE: , SKD: , WU: , TSH:
| | - Mst. I. Z. Moni
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Maksuda Begum
- Department of Poultry Science, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Mst. R. Sultana
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Aurangazeb Kabir
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. J. Eqbal
- Palli Karma Sahayak Foundation, Dhaka, Bangladesh
| | - Sunny K. Das
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Woli Ullah
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Tasmin S. Haque
- Department of Anthropology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
6
|
Winkler J, Matsui Y, Filla J, Vykydalová L, Jiroušek M, Vaverková MD. Responses of synanthropic vegetation to composting facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160160. [PMID: 36375549 DOI: 10.1016/j.scitotenv.2022.160160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Composting facilities are habitats where biological materials are bio-oxidized. Biological waste represents a source of plant species diaspores and may promote changes in the species composition of the surrounding. The studied composting facility is situated in the Bohemian-Moravian Highlands, Czech Republic. Four sites, the composting pile and three habitats nearby were chosen of different use and disturbance conditions. Phytosociological plots were recorded in each of the habitat and the results were processed using multivariate analyses of ecological data. The information about plant species indication values was also analysed: (i) the relationship between soil disturbance and plant species occurrence, (ii) seed dormancy, (iii) seed bank, and (iv) vector of seed dispersion. During the research, 119 plant taxa were found in total. Conditions of the composting process (frequent disturbances, excessive available nutrients, enough water, and supply of new diaspores) represent a challenge for plant species. The presence of plant diaspores in the biowaste is a reason why the fundamental principle of appropriate composting process has to be adhered to. Another important task is to give attention to the methods determining the share of living diaspores in the final compost, which is still missing in practice. Compost might become a vehicle for spreading weeds. The capacity of vegetation to survive and multiply on the premises of composting facilities increases the importance of vegetation monitoring and control of the adjacent areas. The usual occurrence of rural brownfields near composting facilities increases the risk of diaspores being transmitted into biowaste or compost, thus increasing the share of undesirable viable diaspores. Composting facilities generate specific synanthropic conditions for the vegetation. Therefore, the composting facility projects should take into consideration the surrounding areas and vegetation management. It is recommended that the project should include semi-natural vegetation, which can create efficient barriers to the spreading of undesirable ruderal plant species. The novelty of this study is the confirmation that composting facilities and compost become a new factor affecting vegetation, which has been disregarded so far. The link between composting facilities and vegetation has to be included in the legislation related to parameters of compost quality. Moreover, the issue of weeds, their reproductive organs and their spread should be considered in the guidelines for the design, location, construction, and operation of composting facilities.
Collapse
Affiliation(s)
- Jan Winkler
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Yasuhiro Matsui
- Faculty of Environmental and Life Sciences, Faculty of Sciences, Okayama University, Japan.
| | - Jan Filla
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Lucie Vykydalová
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Martin Jiroušek
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02 776 Warsaw, Poland.
| |
Collapse
|
7
|
Zhan J, Han Y, Xu S, Wang X, Guo X. Succession and change of potential pathogens in the co-composting of rural sewage sludge and food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 149:248-258. [PMID: 35760013 DOI: 10.1016/j.wasman.2022.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Composting is an effective way to prevent and control the spread of pathogenic microorganisms which could put potential risk to humans and environment, from rural solid waste, especially sewage sludge and food waste. In the study, we aim to analyze the changes of pathogenic bacteria during the co-composting of rural sewage sludge and food waste. The results showed that only 27 pathogenic bacteria were detected after composting, compared to 50 pathogenic bacteria in the raw mixed pile. About 74% of pathogen concentrations dropped below 1000 copies/g after composting. Lactobacillus, Bacillus, Paenibacillus and Comamonas were the core pathogenic bacteria in the compost, of which concentrations were all significantly lower than that in the raw mixed pile at the end of composting. The concentration of Lactobacillus decreased to 3.03 × 103 copies/g compared to 0 d with 1.25 × 109 copies/g by the end of the composting, while that of Bacillus, Paenibacillus and Comamonas decreased to 2.77 × 104 copies/g, 2.13 × 104 copies/g and 3.38 × 102 copies/g, respectively, with 1.26 × 107 copies/g, 4.71 × 106 copies/g, 1.69 × 108 copies/g on 0 d. Redundancy analysis (RDA) indicated that physicochemical factors and substances could affect the changes of pathogenic bacteria during composting, while temperature was the key influencing factor. In addition, certain potential pathogenic bacteria, such as Bacteroides-Bifidobacterium, show statistically strong and significant co-occurrence during composting, which may increase the risk of multiple infections and also influence their distribution. These findings provide a theoretical reference for biosafety prevention and control in the treatment and disposal of rural solid waste.
Collapse
Affiliation(s)
- Jun Zhan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
8
|
Ravindran B, Karmegam N, Awasthi MK, Chang SW, Selvi PK, Balachandar R, Chinnappan S, Azelee NIW, Munuswamy-Ramanujam G. Valorization of food waste and poultry manure through co-composting amending saw dust, biochar and mineral salts for value-added compost production. BIORESOURCE TECHNOLOGY 2022; 346:126442. [PMID: 34848334 DOI: 10.1016/j.biortech.2021.126442] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The present study proposes a system for co-composting food waste and poultry manure amended with rice husk biochar at different doses (0, 3, 5, 10%, w/w), saw dust, and salts. The effect of rice husk biochar on the characteristics of final compost was evaluated through stabilization indices such as electrical conductivity, bulk density, total porosity, gaseous emissions and nitrogen conservation. Results indicated that when compared to control, the biochar amendment extended the thermophilic stage of the composting, accelerated the biodegradation and mineralization of substrate mixture and helped in the maturation of the end product. Carbon dioxide, methane and ammonia emissions were reduced and the nitrogen conservation was achieved at a greater level in the 10% (w/w) biochar amended treatments. This study implies that the biochar and salts addition for co-composting food waste and poultry manure is beneficial to enhance the property of the compost.
Collapse
Affiliation(s)
- Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea; Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong.
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3#, Yangling, Shaanxi 712100, PR China
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - P K Selvi
- Central Pollution Control Board, Nisarga Bhawan, Shivanagar, Bengaluru, India
| | - Ramalingam Balachandar
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayaka Missions University (Deemed to Be University), Paiyanoor, Chennai, 603 104, Tamil Nadu, India
| | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Kanchipuram Dist, TN, India
| |
Collapse
|
9
|
ZININA O, MERENKOVA S, REBEZOV M. Analysis of modern approaches to the processing of poultry waste and by-products: prospects for use in industrial sectors. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Maksim REBEZOV
- Vasily Matveyevich Gorbatov Federal Research Center for Food Systems, Russian Federation
| |
Collapse
|
10
|
Fung AHY, Rao S, Ngan WY, Sekoai PT, Touyon L, Ho TM, Wong KP, Habimana O. Exploring the optimization of aerobic food waste digestion efficiency through the engineering of functional biofilm Bio-carriers. BIORESOURCE TECHNOLOGY 2021; 341:125869. [PMID: 34523579 DOI: 10.1016/j.biortech.2021.125869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The possibility of breaking down cellulose-rich food waste through biofilm engineering was investigated. Six previously isolated strains from naturally degrading fruits and vegetables, screened for biofilm-forming ability and cellulolytic activity, were selected to enrich a biocarrier seeding microbial consortium. The food waste model used in this study was cabbage which was aerobically digested under repeated water rinsing and regular effluent drainage. The engineered biocarrier biofilm's functionality was evaluated by tracing microbial succession following metagenomic sequencing, quantitative PCR, scanning electron microscopy, and cellulolytic activity before and after the digestion processes. The engineered microbial consortium demonstrated superior biofilm-forming ability on biocarriers than the original microbial consortium and generally displayed a higher cellulolytic activity. The presented study provides one of the few studies of food waste aerobic digestion using engineered biofilms. Insights presented in this study could help further optimize aerobic food waste digestion.
Collapse
Affiliation(s)
- Aster Hei Yiu Fung
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, Hong Kong
| | - Subramanya Rao
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, Hong Kong
| | - Wing Yui Ngan
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, Hong Kong
| | - Patrick Thabang Sekoai
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, Hong Kong
| | - Lisa Touyon
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, Hong Kong
| | - Tsoi Man Ho
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, Hong Kong
| | - Kwan-Po Wong
- Ecopia (Hong Kong) Co. Limited, Unit 349, 3F, Building 19W, No. 19 Science Park West Ave., Shatin, NT, Hong Kong
| | - Olivier Habimana
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, Hong Kong.
| |
Collapse
|
11
|
Song B, Manu MK, Li D, Wang C, Varjani S, Ladumor N, Michael L, Xu Y, Wong JWC. Food waste digestate composting: Feedstock optimization with sawdust and mature compost. BIORESOURCE TECHNOLOGY 2021; 341:125759. [PMID: 34461407 DOI: 10.1016/j.biortech.2021.125759] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Direct land application of food waste digestate (FWD) leads to 60-70% of nitrogen loss through NH3 volatilization due to its innate characteristics like high ammonium nitrogen (NH4+-N) (~6000 mg/kg dry matter) and high moisture content (~75%). Hence, bio stabilization of FWD through composting is a promising solution to curb the environmental and occupational hazards. Hence the aim of this study was to assess the feasibility of using sawdust and/or mature compost as a bulking agent to achieve effective composting. The results showed that mixing of FWD with sawdust alone or together with mature compost could produce quality compost with reduced NH4+-N (<700 mg/kg dry matter) and increased seed germination index (>80%) within 2 weeks of co-composting. Composting FWD with both sawdust and mature compost effectively reduced ~ 83% of NH3 volatilization demonstrating that this approach can effectively produce mature nitrogen enriched FWD compost.
Collapse
Affiliation(s)
- Bing Song
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Chen Wang
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | | | - Lui Michael
- Environmental Protection Department, Hong Kong
| | - Yunjie Xu
- School of Technology, Huzhou University, Huzhou 311800, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China.
| |
Collapse
|
12
|
Raclavská H, Růžičková J, Juchelková D, Šafář M, Brťková H, Slamová K. The quality of composts prepared in automatic composters from fruit waste generated by the production of beverages. BIORESOURCE TECHNOLOGY 2021; 341:125878. [PMID: 34523548 DOI: 10.1016/j.biortech.2021.125878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Ensuring the processing of food waste from the production of food and beverages intheautomatic composters can be difficult because of the physicochemical properties of input raw materials. Very often, the final product does not meet the requirements forcomposts according to the European Compost Network. Optimisation of input food waste from theproduction ofbeverages was performed by the addition of the bulk materials such assawdust and clay minerals (bentonite). Toxicity of the compost is caused by organic compounds with polar and non-polar properties. These compounds belong to the groups ofalcohols, aldehydes and ketones, carboxylic acids, tannin, and phenols, coumarins and terpenes. Phytotoxicity is mostly influenced by the group of terpenes. The addition ofsawdust used as bulking agent decreases the concentrations of almost all chemical compounds. Thegroup of tannin and compounds containing phenols represents an exception because these compounds are released from sawdust.
Collapse
Affiliation(s)
- Helena Raclavská
- ENET Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
| | - Jana Růžičková
- ENET Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
| | - Dagmar Juchelková
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
| | - Michal Šafář
- ENET Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic.
| | - Hana Brťková
- ENET Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
| | - Karolina Slamová
- Institute of Foreign Languages, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
13
|
Wang P, Qiao Z, Li X, Su Y, Xie B. Functional characteristic of microbial communities in large-scale biotreatment systems of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141086. [PMID: 32750579 DOI: 10.1016/j.scitotenv.2020.141086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
In order to evaluate microbial community structure dominated metabolic function profiles in large-scale food waste (FW) biotreatment systems, bacterial, archaeal and fungal community associated with metabolic function in high-temperature aerobic fermentation (AF) and anaerobic co-digestion (AcoD) processes were comprehensively investigated in this study. The qPCR results showed the higher gene copies of bacteria and fungi in initial and AF-treated FW compared with AcoD-treated FW, as well as bacteria and archaea in AcoD-treated FW were highly abundant among detected samples. Furthermore, the total abundances of archaea ((1.18-4.88) × 106 copies/ng DNA) in AcoD system were 2-3 orders of magnitude higher than that in other samples (P < 0.01), indicating active archaeal activity in AcoD system. Correlation analysis of microbial community and metabolic function indicated that the higher abundances of Kazachstania, Pyrobaculum, Sulfophobococcus, Lactobacillus and Candida in initial FW had close linkages with lipid metabolism (P < 0.05). Abundant Aspergillus, Staphylococcus, Pelomonas, Corynebacterium, Faecalibacterium, Methanobacterium and Xeromyces in AF system were positively and significantly correlated with high metabolic activities of energy metabolism, carbohydrate metabolism, amino acid metabolism, fatty acid metabolism, glycosaminoglycan degradation, sulfur metabolism and nitrogen metabolism. As for AcoD system, dominant genera Methanosaeta, Methanoculleus, Methanobacterium, Fastidiosipila, Rikenellaceae RC9, Bifidobacterium and Xeromyces had close relationships with metabolism of cofactors and vitamins, energy metabolism, methane metabolism, carbohydrate metabolism and glycosaminoglycan degradation (P < 0.05). These results are expected to improve the metabolic efficiency by functional microorganism in different large-scale FW treatment systems.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ziru Qiao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
14
|
Siles-Castellano AB, López MJ, Jurado MM, Suárez-Estrella F, López-González JA, Estrella-González MJ, Moreno J. Industrial composting of low carbon/nitrogen ratio mixtures of agri-food waste and impact on compost quality. BIORESOURCE TECHNOLOGY 2020; 316:123946. [PMID: 32769001 DOI: 10.1016/j.biortech.2020.123946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The agri-food waste (AW) require amendments for composting to adjust nutritional and physicochemical deficiencies. The theoretical mixtures formulation is difficult to reach on an industrial scale. The main objective of this work was to evaluate to what extent the composition of AW-based mixtures determines the quality of the final compost produced at the industrial scale. Raw materials having the same AW share characteristics, irrespectively of the amendments added, but their compost were different. All the materials were biological stable at the cooling phase, and mature enough at the end, although the degree of humification did not match with the absence of phytotoxicity. The final compost had sufficient quality even though the AW-based raw materials have a low C/N ratio (<20) and other characteristics such as high electrical conductivity (13 mS·cm-1) and pH (<8.5) that are unfavorable for composting. The management operations during industrial composting correct the deficiencies of raw materials.
Collapse
Affiliation(s)
- Ana B Siles-Castellano
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - María J López
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120 Almeria, Spain.
| | - Macarena M Jurado
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Francisca Suárez-Estrella
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Juan A López-González
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - María J Estrella-González
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Joaquín Moreno
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|