1
|
Kedves A, Kónya Z. Effects of nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge: A comprehensive review. Biofilm 2024; 8:100234. [PMID: 39524692 PMCID: PMC11550140 DOI: 10.1016/j.bioflm.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment. CeO2 and Ag NPs demonstrated adverse effects on aerobic granular sludge (AGS), reducing nutrient removal and cellular function, while anaerobic granular sludge (AnGS) and anammox granular sludge (AxGS) showed greater resilience due to their higher extracellular polymeric substance (EPS) content. TiO2 NPs had fewer negative effects on algal-bacterial granular sludge (ABGS) than on AGS, as algae played a crucial role in enhancing EPS production and stabilizing the granules. The addition of Fe3O4 NPs significantly enhanced both aerobic and anammox granulation by reducing granulation time, promoting microbial interactions, improving granule stability, and increasing nitrogen removal efficiency, primarily through increased EPS production and enzyme activity. However, Cu and CuO NPs exhibited strong inhibitory effects on aerobic, anammox, and anaerobic systems, affecting EPS structure, cellular integrity, and microbial viability. ZnO NPs demonstrated dose-dependent toxicity, with higher concentrations inducing oxidative stress and reducing performance in AGS and AnGS, whereas AxGS and ABGS were more tolerant due to enhanced EPS production and algae-mediated protection. The existing knowledge gaps and directions for future research on NPs are identified and discussed.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
2
|
Sun H, Chang H, Zhu Y, Li X, Yang X, Zhou X, Wu D, Ding J, Liu Y. Strong suppression of silver nanoparticles on antibiotic resistome in anammox process. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134128. [PMID: 38555673 DOI: 10.1016/j.jhazmat.2024.134128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This study comprehensively deciphered the effect of silver nanoparticles (AgNPs) on anammox flocculent sludge, including nitrogen removal performance, microbial community structure, functional enzyme abundance, antibiotic resistance gene (ARGs) dissemination, and horizontal gene transfer (HGT) mechanisms. After long-term exposure to 0-2.5 mg/L AgNPs for 200 cycles, anammox performance significantly decreased (P < 0.05), while the relative abundances of dominant Ca. Kuenenia and anammox-related enzymes (hzsA, nirK) increased compared to the control (P < 0.05). For antibiotic resistome, ARG abundance hardly changed with 0-0.5 mg/L AgNPs but decreased by approximately 90% with 1.5-2.5 mg/L AgNPs. More importantly, AgNPs effectively inhibited MGE-mediated HGT of ARGs. Additionally, structural equation model (SEM) disclosed the underlying relationship between AgNPs, the antibiotic resistome, and the microbial community. Overall, AgNPs suppressed the anammox-driven nitrogen cycle, regulated the microbial community, and prevented the spread of ARGs in anammox flocs. This study provides a theoretical baseline for an advanced understanding of the ecological roles of nanoparticles and resistance elements in engineered ecosystems.
Collapse
Affiliation(s)
- Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China.
| | - Huanhuan Chang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuliang Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China; School of Civil Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Xiaoli Li
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Daishun Wu
- Fujian Provincial Key Laboratory of Coastal Basin Environment, School of Marine and Biochemical Engineering, Fujian Polytechnic Normal University, Fuqing, Fujiang 350300, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Yucan Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China; School of Civil Engineering, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
3
|
Xiao C, Wan K, Hu J, Deng X, Liu X, Zhou F, Yu J, Chi R. Performance changes in the anammox process under the stress of rare-earth element Ce(III) and the evolution of microbial community and functional genes. BIORESOURCE TECHNOLOGY 2023:129349. [PMID: 37336455 DOI: 10.1016/j.biortech.2023.129349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The high Ce(III) content in ionic rare-earth tailings wastewater has hindered the application of anammox process in this field. Here, the effect of Ce(III) on the performance of anammox processes was investigated, and the evolution of microbial communities and functional genes was explored using metagenomic sequencing. The results showed that the reactor nitrogen removal rate decreased when the Ce(III) concentration reached 25 mg/L, although ammonia nitrogen removal (92.31%) and nitrogen removal efficiency (81.33%) remained at a high level; however, both showed a significant decreasing trend. The relative abundance of anammox bacteria increased continuously from P1-P5, reaching 48.81%, whereas the relative abundance of Candidatus jettenia reached 33.71% at P5, which surpassed that of Candidatus brocadia as the most abundant anammox bacteria, and further analysis of functional genes and metabolic pathways revealed that Candidatus brocadia was richer in biochemical metabolic genes, whereas Candidatus jettenia had richer efflux genes.
Collapse
Affiliation(s)
- Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China.
| | - Kai Wan
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Jinggang Hu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiangyi Deng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xuemei Liu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China
| |
Collapse
|
4
|
Wu Y, Zhao Y, Liu Y, Niu J, Zhao T, Bai X, Hussain A, Li YY. Insights into heavy metals shock on anammox systems: Cell structure-based mechanisms and new challenges. WATER RESEARCH 2023; 239:120031. [PMID: 37172374 DOI: 10.1016/j.watres.2023.120031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 05/01/2023] [Indexed: 05/14/2023]
Abstract
Anaerobic ammonium oxidation (anammox) as a low-carbon and energy-saving technology, has shown unique advantages in the treatment of high ammonia wastewater. However, wastewater usually contains complex heavy metals (HMs), which pose a potential risk to the stable operation of the anammox system. This review systematically re-evaluates the HMs toxicity level from the inhibition effects and the inhibition recovery process, which can provide a new reference for engineering. From the perspective of anammox cell structure (extracellular, anammoxosome membrane, anammoxosome), the mechanism of HMs effects on cellular substances and metabolism is expounded. Furthermore, the challenges and research gaps for HMs inhibition in anammox research are also discussed. The clarification of material flow, energy flow and community succession under HMs shock will help further reveal the inhibition mechanism. The development of new recovery strategies such as bio-accelerators and bio-augmentation is conductive to breaking through the engineered limitations of HMs on anammox. This review provides a new perspective on the recognition of toxicity and mechanism of HMs in the anammox process, as well as the promotion of engineering applicability.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xinhao Bai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
5
|
Sari T, Akgul D, Mertoglu B. Accumulation of TiO2 nanoparticles in the anammox bioreactor: Their effects on treatment performance and microbial dynamics. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Gao H, Ye J, Zhao R, Zhan M, Yang G, Yu R. Pluripotency of endogenous AHL-mediated quorum sensing in adaptation and recovery of biological nitrogen removal system under ZnO nanoparticle long-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156911. [PMID: 35753480 DOI: 10.1016/j.scitotenv.2022.156911] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The impacts of quorum sensing (QS) on nanoparticle (NP)-stressed biological nitrogen removal (BNR) system have seldom been addressed yet. In this study, the contributions of endogenous N-acyl-homoserine lactone (AHL)-based QS regulation to the BNR system's adaptation to the zinc oxide (ZnO) NP stress and its recovery potential were systematically investigated. Although 1 mg/L ZnO NPs exerted little impact on the BNR system, chronic exposure to 10 mg/L ones depressed the system's BNR performance which irreversibly impaired the nitrification process even when the system entered the recovery period with no NP added anymore. Meanwhile, ZnO NPs exhibited hormesis effects on the production of AHLs and extracellular polymeric substance (EPS), and activities of superoxide dismutase and catalase. During the ZnO NP exposure period, C4-HSL, C6-HSL, and C10-HSL were discovered to be positively associated with nitrogen removal efficiency, tightly-bound EPS production, and antioxidase activities. Besides, the shifts of Nitrospira, Dechloromonas, Aeromonas, Acinetobacter, Delftia, and Bosea were expected to determine the AHL's dynamic distribution. During the system's recovery stage, Dechloromonas replaced Candidatus_Competibacter as the dominant denitrification-related genus. Dechloromonas abundance elevated with the increased contents of C4-HSL in the aqueous and EPS phases and C10-HSL in EPS and sludge phases, and were expected to promote the activities of BNR-related and antioxidant enzymes, and the EPS production to assist in the recovery of the impaired system's BNR performance. The QS-related BNR genera exhibited higher resilience to ZnO NPs than quorum quenching-related ones, indicating their critical role in nitrogen removal in the restored system. This work provided an insight into the potential pluripotency of AHL-based QS regulation on the ZnO NP-stressed BNR system's adaptation and recovery.
Collapse
Affiliation(s)
- Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jinyu Ye
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Runyu Zhao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu 210013, China
| | - Guangping Yang
- Chinair Envir. Sci-Tech Co., Ltd., Nanjing, Jiangsu 210019, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
7
|
Chen Z, Qiu S, Li M, Zhou D, Ge S. Instant Inhibition and Subsequent Self-Adaptation of Chlorella sp. Toward Free Ammonia Shock in Wastewater: Physiological and Genetic Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9641-9650. [PMID: 35737736 DOI: 10.1021/acs.est.1c08001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Free ammonia (FA) has been recently demonstrated as the primary stress factor suppressing microalgal activities in high-ammonium wastewater. However, its inhibition mechanism and microalgal self-adaptive regulations remain unknown. This study revealed an initial inhibition and subsequent self-adaptation of a wastewater-indigenous Chlorella sp. exposed to FA shock. Mutual physiological and transcriptome analysis indicated that genetic information processing, photosynthesis, and nutrient metabolism were the most influenced metabolic processes. Specifically, for the inhibition behavior, DNA damage was indicated by the significantly up-regulated related genes, leading to the activation of cell cycle checkpoints, programmed apoptosis, and suppressed microalgal growth; FA shock inhibited the photosynthetic activities including both light and dark reactions and photoprotection through non-photochemical quenching; ammonium uptake was also suppressed with the inhibited glutamine synthetase/glutamine α-oxoglutarate aminotransferase cycle and the inactivated glutamate dehydrogenase pathway. With respect to microalgal self-adaptation, DNA damage possibly enhanced overall cell viability through reprogramming the cell fate; recovered nutrient uptake provided substances for self-adaptation activities including amino acid biosynthesis, energy production and storage, and genetic information processing; elevated light reactions further promoted self-adaptation through photodamage repair, photoprotection, and antioxidant systems. These findings enrich our knowledge of microalgal molecular responses to FA shock, facilitating the development of engineering optimization strategies for the microalgal wastewater bioremediation system.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Di Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| |
Collapse
|
8
|
Ma XL, He EJ, Cao FT, Fan YY, Zhou XT, Xiao X. Re-evaluation of the environmental hazards of nZnO to denitrification: Performance and mechanism. CHEMOSPHERE 2022; 291:132824. [PMID: 34752835 DOI: 10.1016/j.chemosphere.2021.132824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have shown that zinc oxide nanoparticles (nZnO) have an inhibitory effect on wastewater biotreatment, where doses exceeding ambient concentrations are used. However, the effect of ambient concentrations of ZnO (<1 mg/L) on anaerobic digestion processes is not clear. Herein, this study comprehensively explored the impact of nZnO on the denitrification performance and core microbial community of activated sludge under ambient concentrations. Results showed that only 0.075 mg/L nZnO had shown a beneficial effect on nitrogen removal by activated sludge. When nZnO concentration reached 0.75 mg/L, significant enhancement of nitrate reduction and mitigation of nitrite accumulation were observed, indicating a remarkable stimulatory effect on nitrogen removal. Simultaneously, nZnO could weaken the sludge surface charge and improve the secretion of extracellular polymeric substances, thus enhancing sludge flocculation for denitrification. Microbial community analysis revealed that nZnO exposure increased the relative abundance of denitrifying bacteria, which could contribute to the reinforcement of traditional denitrification. Furthermore, exogenous addition of NH4+ significantly inhibited the accumulation of nitrite, implying that nZnO had a potential to improve the denitrification process via a partial denitrification-anammox pathway. Considering current ambient concentration, the stimulatory effect shown in our work may better represent the actual behavior of ZnO in wastewater biotreatment.
Collapse
Affiliation(s)
- Xiao-Lin Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - En-Jing He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Feng-Ting Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiang-Tong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
9
|
Huang DQ, Fu JJ, Li ZY, Fan NS, Jin RC. Inhibition of wastewater pollutants on the anammox process: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150009. [PMID: 34492484 DOI: 10.1016/j.scitotenv.2021.150009] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has been recognized as an efficient nitrogen removal technology. However, anammox bacteria are susceptible to surrounding environments and different pollutants, which limits the extensive application of the anammox process worldwide. Numerous researchers investigate the effects of various pollutants on the anammox process or bacteria, and related findings have also been reviewed with the focused on their inhibitory effects on process performance and microbial community. This review systemically summarized the recent advances in the inhibition, mechanism and recovery process of traditional and emerging pollutants on the anammox process over a decade, such as organics, metals, antibiotics, nanoparticles, etc. Generally, low-concentration pollutants exhibited a promotion on the anammox activity, while high-concentration pollutants showed inhibitory effects. The inhibitory threshold concentration of different pollutants varied. The combined effects of multipollutant also attracts more attentions, including synergistic, antagonistic and independent effects. Additionally, remaining problems and research needs are further proposed. This review provides a foundation for future research on the inhibition in anammox process, and promotes the proper operation of anammox processes treating different types of wastewaters.
Collapse
Affiliation(s)
- Dong-Qi Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Yue Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Chen Y, Zhang X, Liu W. Effect of metal and metal oxide engineered nano particles on nitrogen bio-conversion and its mechanism: A review. CHEMOSPHERE 2022; 287:132097. [PMID: 34523458 DOI: 10.1016/j.chemosphere.2021.132097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Metal and metal oxide engineered nano particles (MMO-ENPs) are widely applied in various industries due to their unique properties. Thus, many researches focused on the influence on nitrogen transformation processes by MMO-ENPs. This review focuses on the effect of MMO-ENPs on nitrogen fixation, nitrification, denitrification and Anammox. Firstly, based on most of the researches, it can be concluded MMO-ENPs have negative effect on nitrogen fixation, nitrification and denitrification while the MMO-ENPs have no promotion effect on Anammox. Then, the influence factors are discussed in detail, including MMO-ENPs dosage, MMO-ENPs kind and exposure time. Both the microbial morphology and population structure were altered by MMO-ENPs. Also, the mechanisms of MMO-ENPs affecting the nitrogen transformation are reviewed. The inhibition of key enzymes and functional genes, the promotion of reactive oxygen species (ROS) production, MMO-ENPs themselves and the suppression of electron transfer all contribute to the negative effect. Finally, the key points for future investigation are proposed that more attention should be attached to the effect on Anammox and the further mechanism in the future studies.
Collapse
Affiliation(s)
- Yinguang Chen
- Coll Resource & Environm Sci, Xinjiang Univ, 666 Shengli Rd, Urumqi, PR China; Coll Environm Sci & Engn, Tongji Univ, 1239 Siping Rd, Shanghai, PR China
| | - Xiaoyang Zhang
- Coll Environm Sci & Engn, Tongji Univ, 1239 Siping Rd, Shanghai, PR China.
| | - Weiguo Liu
- Coll Resource & Environm Sci, Xinjiang Univ, 666 Shengli Rd, Urumqi, PR China
| |
Collapse
|
11
|
Can S, Sari T, Akgul D. Recovery profile of anaerobic ammonium oxidation (anammox) bacteria inhibited by ZnO nanoparticles. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:342-353. [PMID: 35050887 DOI: 10.2166/wst.2021.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The potential effects of nanoparticles (NPs) on biological treatment processes have become significant due to their increasing industrial applications. The purpose of this research was to investigate the self-recovery ability of anammox bacteria following acute ZnO NPs toxicity. In this context, a 2-liter lab-scale anammox reactor was operated for 550 days to enrich the biomass required to the batch exposure tests. Anammox culture was firstly exposed to four different doses of ZnO NPs (50, 75, 100 and 200 mg/L) for 24 h. Then, the ZnO NPs were removed and self-recovery performance of the anammox bacteria was assessed by evaluating the nitrogen removal capacities for 72 h. Besides the nitrogen removal performance, extracellular polymeric substances (EPS) production was also detected to deeply understand the response of the enriched anammox culture against ZnO NPs exposure. The results revealed that sudden and high load of ZnO NPs (100 and 200 mg/L) resulted in persistent impairment to the nitrogen removal performance of the enriched anammox culture. However, relatively lower doses (50 and 75 mg/L) caused deceleration of the nitrogen removal performance during the recovery period. In addition, EPS content in the reactor decreased along with escalating load of ZnO NPs.
Collapse
Affiliation(s)
- Safiye Can
- Department of Environmental Engineering, Marmara University, Goztepe 34722, Istanbul, Turkey E-mail:
| | - Tugba Sari
- Department of Bioengineering, Marmara University, Goztepe 34722, Istanbul, Turkey
| | - Deniz Akgul
- Department of Environmental Engineering, Marmara University, Goztepe 34722, Istanbul, Turkey E-mail:
| |
Collapse
|
12
|
Madeira CL, de Araújo JC. Inhibition of anammox activity by municipal and industrial wastewater pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149449. [PMID: 34371406 DOI: 10.1016/j.scitotenv.2021.149449] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The use of the anammox process for nitrogen removal has gained popularity across the world due to its low energy consumption and waste generation. Anammox reactors have been used to treat ammonium-rich effluents such as chemical, pharmaceutical, semiconductor, livestock, and coke oven wastewater. Recently, full-scale installations have been implemented for municipal wastewater treatment. The efficiency of biological processes is susceptible to inhibitory effects of pollutants present in wastewater. Considering the increasing number of emerging contaminants detected in wastewater, the impacts of the different types of pollutants on anammox bacteria must be understood. This review presents a compilation of the studies assessing the inhibitory effects of different wastewater pollutants towards anammox activity. The pollutants were classified as antibiotics, aromatics, azoles, surfactants, microplastics, organic solvents, humic substances, biodegradable organic matter, or metals and metallic nanoparticles. The interactions between the pollutants and anammox bacteria have been described, as well as the interactions between different pollutants leading to synergistic effects. We also reviewed the effects of pollutants on distinct species of anammox bacteria, and the main toxicity mechanisms leading to irreversible loss of anammox activity have been identified. Finally, we provided an analysis of strategies to overcome the inhibitory effects of wastewater pollutants on the nitrogen removal performance. We believe this review will contribute with essential information to assist the operation and design of anammox reactors treating different types of wastewaters.
Collapse
Affiliation(s)
- Camila Leite Madeira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil.
| | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Wang Y, Ji XM, Jin RC. How anammox responds to the emerging contaminants: Status and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112906. [PMID: 34087646 DOI: 10.1016/j.jenvman.2021.112906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Numerous researches have been carried out to study the effects of emerging contaminants in wastewater, such as antibiotics, nanomaterials, heavy metals, and microplastics, on the anammox process. However, they are fragmented and difficult to provide a comprehensive understanding of their effects on reactor performance and the metabolic mechanisms in anammox bacteria. Therefore, this paper overviews the effects on anammox processes by the introduced emerging contaminants in the past years to fulfill such knowledge gaps that affect our perception of the inhibitory mechanisms and limit the optimization of the anammox process. In detail, their effects on anammox processes from the aspects of reactor performance, microbial community, antibiotic resistance genes (ARGs), and functional genes related to anammox and nitrogen transformation in anammox consortia are summarized. Furthermore, the metabolic mechanisms causing the cell death of anammox bacteria, such as induction of reactive oxygen species, limitation of substrates diffusion, and membrane binding are proposed. By offering this review, the remaining research gaps are identified, and the potential metabolic mechanisms in anammox consortia are highlighted.
Collapse
Affiliation(s)
- Ye Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiao-Ming Ji
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
14
|
Yang Y, Xue T, Xiang F, Zhang S, Hanamoto S, Sun P, Zhao L. Toxicity and combined effects of antibiotics and nano ZnO on a phosphorus-removing Shewanella strain in wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125532. [PMID: 33823479 DOI: 10.1016/j.jhazmat.2021.125532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Antibiotics and nanoparticles, which are emerging contaminants, can occur simultaneously in biological wastewater treatment systems, potentially resulting in complex interactive effects. This study investigated the effects of individual and complex zinc oxide nanoparticles (nZnO) and antibiotics (quinolone and sulfonamide), on the Shewanella strain used to remove phosphorus (PO43-), metabolic processes, as well as its complexing and toxicity mechanisms. The inhibition of PO43- removal increased from 30.7% to 100.0% with increased nZnO concentrations (half maximal effective concentration (EC50) = 1.1 mg Zn/L) by affecting poly-p and glycogen metabolites. The combined exposure to nZnO and ciprofloxacin/norfloxacin (CIP/NOR) had a significant antagonistic effect on the removal of PO43- and on the metabolism of poly-p and glycogen in phosphate-accumulating organisms (PAOs), whereas the complexing of sulfonamide and nZnO had no significant additional effect. Thus, the complexing of nanoparticles and antibiotics exhibited different toxicity effects from the antibiotic structure-based complex reactions. These results can be used to improve wastewater treatment processes and reduce risks associated with wastewater discharge.
Collapse
Affiliation(s)
- Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tongyu Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Xiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shaoyi Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|