1
|
Liu R, Li D, Ma Y, Tang L, Chen R, Tian Y. Air pollutants, genetic susceptibility and the risk of schizophrenia: large prospective study. Br J Psychiatry 2024:1-9. [PMID: 39117363 DOI: 10.1192/bjp.2024.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
BACKGROUND Evidence linking air pollutants and the risk of schizophrenia remains limited and inconsistent, and no studies have investigated the joint effect of air pollutant exposure and genetic factors on schizophrenia risk. AIMS To investigate how exposure to air pollution affects schizophrenia risk and the potential effect modification of genetic susceptibility. METHOD Our study was conducted using data on 485 288 participants from the UK Biobank. Cox proportional hazards models were used to estimate the schizophrenia risk as a function of long-term air pollution exposure presented as a time-varying variable. We also derived the schizophrenia polygenic risk score (PRS) utilising data provided by the UK Biobank, and investigated the modification effect of genetic susceptibility. RESULTS During a median follow-up period of 11.9 years, 417 individuals developed schizophrenia (mean age 55.57 years, s.d. = 8.68; 45.6% female). Significant correlations were observed between long-term exposure to four air pollutants (PM2.5; PM10; nitrogen oxides, NOx; nitrogen dioxide, NO2) and the schizophrenia risk in each genetic risk group. Interactions between genetic factors and the pollutants NO2 and NOx had an effect on schizophrenia events. Compared with those with low PRS and low air pollution, participants with high PRS and high air pollution had the highest risk of incident schizophrenia (PM2.5: hazard ratio = 6.25 (95% CI 5.03-7.76); PM10: hazard ratio = 7.38 (95% CI 5.86-9.29); NO2: hazard ratio = 6.31 (95% CI 5.02-7.93); NOx: hazard ratio = 6.62 (95% CI 5.24-8.37)). CONCLUSIONS Long-term exposure to air pollutants was positively related to the schizophrenia risk. Furthermore, high genetic susceptibility could increase the effect of NO2 and NOx on schizophrenia risk.
Collapse
Affiliation(s)
- Run Liu
- Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dankang Li
- Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yudiyang Ma
- Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingxi Tang
- Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; and Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaohua Tian
- Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ha YW, Kim TH, Kang DR, Park KS, Shin DC, Cho J, Kim C. Estimation of Attributable Risk and Direct Medical and Non-Medical Costs of Major Mental Disorders Associated With Air Pollution Exposures Among Children and Adolescents in the Republic of Korea, 2011-2019. J Korean Med Sci 2024; 39:e218. [PMID: 39106887 PMCID: PMC11301008 DOI: 10.3346/jkms.2024.39.e218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Recent studies have reported the burden of attention deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and depressive disorder. Also, there is mounting evidence on the effects of environmental factors, such as ambient air pollution, on these disorders among children and adolescents. However, few studies have evaluated the burden of mental disorders attributable to air pollution exposure in children and adolescents. METHODS We estimated the risk ratios of major mental disorders (ADHD, ASD, and depressive disorder) associated with air pollutants among children and adolescents using time-series data (2011-2019) obtained from a nationwide air pollution monitoring network and healthcare utilization claims data in the Republic of Korea. Based on the estimated risk ratios, we determined the population attributable fraction (PAF) and calculated the medical costs of major mental disorders attributable to air pollution. RESULTS A total of 33,598 patients were diagnosed with major mental disorders during 9 years. The PAFs for all the major mental disorders were estimated at 6.9% (particulate matter < 10 μm [PM10]), 3.7% (PM2.5), and 2.2% (sulfur dioxide [SO2]). The PAF of PM10 was highest for depressive disorder (9.2%), followed by ASD (8.4%) and ADHD (5.2%). The direct medical costs of all major mental disorders attributable to PM10 and SO2 decreased during the study period. CONCLUSION This study assessed the burden of major mental disorders attributable to air pollution exposure in children and adolescents. We found that PM10, PM2.5, and SO2 attributed 7%, 4%, and 2% respectively, to the risk of major mental disorders among children and adolescents.
Collapse
Affiliation(s)
- Yae Won Ha
- Department of Public Health, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Hyun Kim
- Department of Healthcare Management, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Dae Ryong Kang
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ki-Soo Park
- Department of Preventive Medicine and Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Dong Chun Shin
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Tupinier Martin F, Boudreault J, Campagna C, Lavigne É, Gamache P, Tandonnet M, Généreux M, Trottier S, Goupil-Sormany I. The relationship between hot temperatures and hospital admissions for psychosis in adults diagnosed with schizophrenia: A case-crossover study in Quebec, Canada. ENVIRONMENTAL RESEARCH 2024; 246:118225. [PMID: 38253191 DOI: 10.1016/j.envres.2024.118225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION Some studies have found hot temperatures to be associated with exacerbations of schizophrenia, namely psychoses. As climate changes faster in Northern countries, our understanding of the association between temperature and hospital admissions (HA) for psychosis needs to be deepened. OBJECTIVES 1) Among adults diagnosed with schizophrenia, measure the relationship between mean temperatures and HAs for psychosis during summer. 2) Determine the influence of individual and ecological characteristics on this relationship. METHODS A cohort of adults diagnosed with schizophrenia (n = 30,649) was assembled using Quebec's Integrated Chronic Disease Surveillance System (QICDSS). The follow-up spanned summers from 2001 to 2019, using hospital data from the QICDSS and meteorological data from the National Aeronautics and Space Administration's (NASA) Daymet database. In four geographic regions of the province of Quebec, a conditional logistic regression was used for the case-crossover analysis of the relationship between mean temperatures (at lags up to 6 days) and HAs for psychosis using a distributed lag non-linear model (DLNM). The analyses were adjusted for relative humidity, stratified according to individual (age, sex, and comorbidities) and ecological (material and social deprivation index and exposure to green space) factors, and then pooled through a meta-regression. RESULTS The statistical analyses revealed a statistically significant increase in HAs three days (lag 3) after elevated mean temperatures corresponding to the 90th percentile relative to a minimum morbidity temperature (MMT) (OR 1.040; 95% CI 1.008-1.074), while the cumulative effect over six days was not statistically significant (OR 1.052; 95% IC 0.993-1.114). Stratified analyses revealed non statistically significant gradients of increasing HAs relative to increasing material deprivation and decreasing green space levels. CONCLUSIONS The statistical analyses conducted in this project showed the pattern of admissions for psychosis after hot days. This finding could be useful to better plan health services in a rapidly changing climate.
Collapse
Affiliation(s)
- Frédéric Tupinier Martin
- Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, Quebec City (Quebec), Canada; Department of social and preventive medicine, Laval University, Quebec City (Quebec), Canada; Environmental and occupational health and toxicology unit, Quebec National Institute of Public Health, Quebec City (Quebec), Canada.
| | - Jérémie Boudreault
- Environmental and occupational health and toxicology unit, Quebec National Institute of Public Health, Quebec City (Quebec), Canada; Water Earth and Environment Research Center, National institute of scientific research (INRS), Quebec City (Quebec), Canada.
| | - Céline Campagna
- Department of social and preventive medicine, Laval University, Quebec City (Quebec), Canada; Environmental and occupational health and toxicology unit, Quebec National Institute of Public Health, Quebec City (Quebec), Canada; Water Earth and Environment Research Center, National institute of scientific research (INRS), Quebec City (Quebec), Canada.
| | - Éric Lavigne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa (Ontario), Canada; School of Epidemiology & Public Health, University of Ottawa, Ottawa (Ontario), Canada.
| | - Philippe Gamache
- Bureau d'information et d'études en santé des populations (BIESP), Quebec National Institute of Public Health, Quebec City (Quebec), Canada.
| | - Matthieu Tandonnet
- Bureau d'information et d'études en santé des populations (BIESP), Quebec National Institute of Public Health, Quebec City (Quebec), Canada.
| | - Mélissa Généreux
- Department of Community health sciences, Faculty of medicine and health sciences, Sherbrooke University, Sherbrooke (Quebec), Canada; Estrie's Public Health Department, Sherbrooke (Quebec), Canada.
| | - Simon Trottier
- Service des bibliothèques et archives, Université de Sherbrooke, Sherbrooke (Quebec), Canada.
| | - Isabelle Goupil-Sormany
- Department of social and preventive medicine, Laval University, Quebec City (Quebec), Canada; Environmental and occupational health and toxicology unit, Quebec National Institute of Public Health, Quebec City (Quebec), Canada; Axe Santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec - Laval University, Quebec City (Quebec), Canada.
| |
Collapse
|
4
|
Cheng Y, Meng Y, Li X, Yin J. Effects of ambient air pollution on the hospitalization risk and economic burden of mental disorders in Qingdao, China. Int Arch Occup Environ Health 2024; 97:109-120. [PMID: 38062177 DOI: 10.1007/s00420-023-02030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/16/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVE The aim of this study was to examine the impacts of short-term exposure to air pollutants on hospitalizations for mental disorders (MDs) in Qingdao, a Chinese coastal city, and to assess the corresponding hospitalization risk and economic cost. METHODS Daily data on MD hospitalizations and environmental variables were collected from January 1, 2015, to December 31, 2019. An overdispersed generalized additive model was used to estimate the association between air pollution and MD hospitalizations. The cost of illness method was applied to calculate the corresponding economic burden. RESULTS With each 10 μg/m3 increase in the concentration of fine particulate matter (PM2.5) at lag05, inhalable particulate matter (PM10) at lag0, sulfur dioxide (SO2) at lag06 and ozone (O3) at lag0, the corresponding relative risks (RRs) and 95% confidence intervals (CIs) were 1.0182 (1.0035-1.0332), 1.0063 (1.0001-1.0126), 1.0997 (1.0200-1.1885) and 1.0099 (1.0005-1.0194), respectively. However, no significant effects of nitrogen dioxide (NO2) or carbon monoxide (CO) were found. Stratified analysis showed that males were susceptible to SO2 and O3, while females were susceptible to PM2.5. Older individuals (≥ 45 years) were more vulnerable to air pollutants (PM2.5, PM10, SO2 and O3) than younger individuals (< 45 years). Taking the Global Air Quality Guidelines 2021 as a reference, 8.71% (2,168 cases) of MD hospitalizations were attributable to air pollutant exposure, with a total economic burden of 154.36 million RMB. CONCLUSION Short-term exposure to air pollution was associated with an increased risk of hospitalization for MDs. The economic advantages of further reducing air pollution are enormous.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong, China
| | - Yujie Meng
- Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong, China
| | - Xiao Li
- Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong, China
| | - Junbo Yin
- Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Zhang Y, Yang X, Jiang W, Gao X, Yang B, Feng XL, Yang L. Short-term effects of air pollutants on hospital admissions for asthma among older adults: a multi-city time series study in Southwest, China. Front Public Health 2024; 12:1346914. [PMID: 38347929 PMCID: PMC10859495 DOI: 10.3389/fpubh.2024.1346914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Background This study aimed to explore the relationship between air pollution and hospital admissions for asthma in older adults, and to further assess the health and economic burden of asthma admissions attributable to air pollution. Methods We collected information on asthma cases in people over 65 years of age from nine cities in Sichuan province, as well as air pollution and meteorological data. The relationship between short-term air pollutant exposure and daily asthma hospitalizations was analyzed using the generalized additive model (GAM), and stratified by gender, age, and season. In addition, we assessed the economic burden of hospitalization for air pollution-related asthma in older adults using the cost of disease approach. Results The single pollutant model showed that every 1 mg/m3 increase in CO was linked with an increase in daily hospitalizations for older adults with asthma, with relative risk values of 1.327 (95% CI: 1.116-1.577) at lag7. Each 10 μg/m3 increase in NO2, O3, PM10, PM2.5 and SO2, on asthma hospitalization, with relative risk values of 1.044 (95% CI: 1.011-1.078), 1.018 (95% CI: 1.002-1.034), 1.013 (95% CI: 1.004-1.022), 1.015 (95% CI: 1.003-1.028) and 1.13 (95% CI: 1.041-1.227), respectively. Stratified analysis shows that stronger associations between air pollution and asthma HAs among older adult in females, those aged 65-69 years, and in the warm season, although all of the differences between subgroups did not reach statistical significance. During the study period, the number of asthma hospitalizations attributable to PM2.5, PM10, and NO2 pollution was 764, 581 and 95, respectively, which resulted in a total economic cost of 6.222 million CNY, 4.73 million CNY and 0.776 million CNY, respectively. Conclusion This study suggests that short-term exposure to air pollutants is positively associated with an increase in numbers of asthma of people over 65 years of age in Sichuan province, and short-term exposure to excessive PM and NO2 brings health and economic burden to individuals and society.
Collapse
Affiliation(s)
- Yuqin Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanyanhan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Biao Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Lin Feng
- School of Public Health, Peking University, Beijing, China
| | - Lian Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Wang L, Gao X, Wang R, Song M, Liu X, Wang X, An C. Ecological correlation between short term exposure to particulate matter and hospitalization for mental disorders in Shijiazhuang, China. Sci Rep 2023; 13:11412. [PMID: 37452053 PMCID: PMC10349047 DOI: 10.1038/s41598-023-37279-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
The associations between particulate matter (PM) and overall and specific mental disorders (MDs) are investigated using data from two general hospitals in Shijiazhuang, China, from January 2014 to December 2019. A longitudinal time series study, as one type of ecological study, is conducted using a generalized additive model to examine the relationship between short-term exposure to PM2.5, PM10, and daily hospital admissions for MDs, and further stratification by subtypes, age, and gender. A total of 10,709 cases of hospital admissions for MDs have been identified. The significant short-time effects of PM2.5 on overall MDs at lag01 and PM10 at lag05 are observed, respectively. For specific mental disorders, there are substantial associations of PM pollution with mood disorders and organic mental disorders. PM2.5 has the greatest cumulative effect on daily admissions of mood disorders and organic mental disorders in lag01, and PM 10 has the greatest cumulative effect in lag05. Moreover, the effect modification by sex or age is statistically significant, with males and the elderly (≥ 45 years) having a stronger effect. Short-term exposure to PM2.5 and PM10can be associated with an increased risk of daily hospital admissions for MDs.
Collapse
Affiliation(s)
- Lan Wang
- Mental Health Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Xian Gao
- Department of Gastrointestinal Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ran Wang
- Mental Health Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Mei Song
- Mental Health Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Xiaoli Liu
- The third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xueyi Wang
- Mental Health Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, China.
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China.
- Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China.
| | - Cuixia An
- Mental Health Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, China.
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China.
- Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China.
| |
Collapse
|
7
|
He Y, Jiang W, Gao X, Lin C, Li J, Yang L. Short-term effects and economic burden of air pollutants on acute lower respiratory tract infections in children in Southwest China: a time-series study. Environ Health 2023; 22:6. [PMID: 36641448 PMCID: PMC9840265 DOI: 10.1186/s12940-023-00962-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND There are few studies on the effects of air pollutants on acute lower respiratory tract infections (ALRI) in children. Here, we investigated the relationship of fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) with the daily number of hospitalizations for ALRI in children in Sichuan Province, China, and to estimate the economic burden of disease due to exposure to air pollutants. METHODS We collected records of 192,079 cases of childhood ALRI hospitalization between January 1, 2017 and December 31, 2018 from nine municipal/prefecture medical institutions as well as the simultaneous meteorological and air pollution data from 183 monitoring sites in Sichuan Province. A time series-generalized additive model was used to analyze exposure responses and lagged effects while assessing the economic burden caused by air pollutant exposure after controlling for long-term trends, seasonality, day of the week, and meteorological factors. RESULTS Our single-pollutant model shows that for each 10 μg/m3 increase in air pollutant concentration (1 μg/m3 for SO2), the effect estimates of PM2.5, PM10, SO2, and NO2 for pneumonia reached their maximum at lag4, lag010, lag010, and lag07, respectively, with relative risk (RR) values of 1.0064 (95% CI, 1.0004-1.0124), 1.0168(95% CI 1.0089-1.0248), 1.0278 (95% CI 1.0157-1.0400), and 1.0378 (95% CI, 1.0072-1.0692). By contrast, the effect estimates of PM2.5, PM10, SO2, and NO2 for bronchitis all reached their maximum at lag010, with RRs of 1.0133 (95% CI 1.0025-1.0242), 1.0161(95% CI 1.0085-1.0238), 1.0135 (95% CI 1.0025-1.0247), and 1.1133(95% CI 1.0739-1.1541). In addition, children aged 5-14 years were more vulnerable to air pollutants than those aged 0-4 years (p < 0.05). According to the World Health Organization's air quality guidelines, the number of ALRI hospitalizations attributed to PM2.5, PM10, and NO2 pollution during the study period was 7551, 10,151, and 7575, respectively, while the incurring economic burden was CNY 2847.06, 3827.27, and 2855.91 million. CONCLUSION This study shows that in Sichuan Province, elevated daily average concentrations of four air pollutants lead to increases in numbers of childhood ALRI hospitalizations and cause a serious economic burden.
Collapse
Affiliation(s)
- Yi He
- HEOA Group, School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Road, Chengdu, China
| | - Wanyanhan Jiang
- HEOA Group, School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Road, Chengdu, China
| | - Xi Gao
- HEOA Group, School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Road, Chengdu, China
| | - Chengwei Lin
- HEOA Group, School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Road, Chengdu, China
| | - Jia Li
- HEOA Group, School of Management, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Road, Chengdu, China
| | - Lian Yang
- HEOA Group, School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Road, Chengdu, China
| |
Collapse
|
8
|
Song R, Liu L, Wei N, Li X, Liu J, Yuan J, Yan S, Sun X, Mei L, Liang Y, Li Y, Jin X, Wu Y, Pan R, Yi W, Song J, He Y, Tang C, Liu X, Cheng J, Su H. Short-term exposure to air pollution is an emerging but neglected risk factor for schizophrenia: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158823. [PMID: 36116638 DOI: 10.1016/j.scitotenv.2022.158823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This meta-analysis aimed to explore the association between short-term exposure to air pollution and schizophrenia (SCZ)1, and investigate the susceptible population and the lag characteristics of different pollutants. METHODS A systematic review and meta-analysis was conducted by searching PubMed, Cochrane, Web of Sciences, and CNKI for relevant literature published up to 28 Feb 2022. Meta-analysis was performed separately to investigate the association of ambient particulates (diameter ≤ 2.5 μm (PM2.5)2, 2.5 μm < diameter < 10 μm (PMC)3, ≤10μm (PM10)4) and gaseous pollutants (nitrogen dioxide (NO2)5, sulfur dioxide (SO2)6, carbon monoxide (CO)7) with SCZ. Relative risk (RR)8 per 10 μg/m3 increase in air pollutants concentration was used as the effect estimate. Subgroup analyses were conducted by age, gender, country, median pollutant concentration, and median temperature. RESULTS We identified 17 articles mainly conducted in Asia, of which 13 were included in the meta-analysis. Increased risk of SCZ was associated with short-term exposure to PM2.5 (RR: 1.0050, 95 % confidence interval (CI)9: 1.0017, 1.0083), PMC (1.0117, 1.0023, 1.0211), PM10 (1.0047, 1.0025, 1.0070), NO2 (1.0275, 1.0132, 1.0420), and SO2 (1.0288, 1.0146, 1.0432) exposure. Subgroup analyses showed that females may be more susceptible to SO2 and NO2, and the young seem to be more sensitive to PM2.5 and PM10. Gaseous pollutants presented the immediate risk, and particulates showed the delayed risk. CONCLUSIONS The present meta-analysis suggests that short-term exposure to PM2.5, PMC, PM10, SO2, and NO2 exposure may be associated with an elevated risk of SCZ.
Collapse
Affiliation(s)
- Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Lu Mei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yunfeng Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yuxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| |
Collapse
|
9
|
Li X, Li Y, Yu B, Zhu H, Zhou Z, Yang Y, Liu S, Tian Y, Xiao J, Xing X, Yin L. Health and economic impacts of ambient air pollution on hospital admissions for overall and specific cardiovascular diseases in Panzhihua, Southwestern China. J Glob Health 2022; 12:11012. [PMID: 36538381 PMCID: PMC9805700 DOI: 10.7189/jogh.12.11012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The associations of ambient air pollution with hospital admissions (HAs) for overall and specific causes of cardiovascular diseases (CVDs), as well as related morbidity and economic burdens remain understudied, especially in low-pollution areas of low- and middle-income countries (LMICs). We evaluated the short-term effects of exposure to PM2.5 (particles with an aerodynamic diameter ≤2.5 μm), PM10 (particles with an aerodynamic diameter ≤10 μm), and SO2 (sulfur dioxide) on HAs for CVDs in Panzhihua, China, during 2016-2020, and calculated corresponding attributable risks and economic burden. Methods We used a generalized additive model (GAM) while controlling for time trends, meteorological conditions, holidays, and days of the week to estimate the associations. The cost of illness (COI) method was adopted to further assess corresponding hospitalization costs and productivity losses. Results A total of 27 660 HAs for CVDs were included in this study. PM10 and SO2 were significantly associated with elevated risks of CVDs hospitalizations. Each 10 μg/m3 increase in PM10 and SO2 at lag06 corresponded to an increase of 2.48% (95% confidence interval (CI) = 0.92%-4.06%), and 5.50% (95% CI = 3.09%-7.97%) in risk of HAs for CVDs, respectively. The risk estimates of PM10 and SO2 on CVD hospitalizations were generally robust after adjustment for other pollutants in two-pollutant models. We found stronger associations between air pollution (PM10 and SO2) and CVDs in cool seasons than in warm seasons. For specific causes of CVDs, significant associations of PM10 and SO2 exposure with cerebrovascular disease and ischaemic heart disease were observed. Using 0 μg/m3 as the reference concentrations, 11.91% (95%CI = 4.64%-18.56%) and 15.71% (95%CI = 9.30%-21.60%) of HAs for CVDs could be attributable to PM10 and SO2, respectively. During the study period, PM10 and SO2 brought 144.34 million Yuan economic losses for overall CVDs, accounting for 0.028% of local GDP. Conclusions Our results suggest that PM10 and SO2 exposure might be an important trigger of HAs for CVDs and accounted for substantial morbidity and economic burden.
Collapse
Affiliation(s)
- Xianzhi Li
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| | - Yajie Li
- Tibet Center for Disease Control and Prevention, Lhasa, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University – Hong Kong Polytechnic University, Chengdu, China
| | - Hongwei Zhu
- Department of dermatology, Panzhihua Central Hospital, Panzhihua, China
| | - Zonglei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yan Yang
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China,Department of Respiratory and Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, China
| | - Shunjin Liu
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| | - Yunyun Tian
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| | - Junjie Xiao
- Department of Medical Records and Statistics, Panzhihua Central Hospital, Panzhihua, China
| | - Xiangyi Xing
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China,Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Li Yin
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| |
Collapse
|
10
|
Jumlongkul A. Water-based air purifier with ventilation fan system: a novel approach for cleaning indoor/outdoor transitional air during the pandemic. SN APPLIED SCIENCES 2022; 4:257. [PMID: 36091920 PMCID: PMC9443626 DOI: 10.1007/s42452-022-05142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract This article presents the design and fabrication of an air purifier that uses a water-based technique to clean indoor/outdoor transitional air to provide a low-tech air purifier against the annual smog crisis and the ongoing COVID-19 pandemic. The air purifier was designed and built. All tests were conducted in a closed room as well as a semi-outdoor area. Particle sizes of PM0.3, 0.5, 1.0, 3.0, 5.0, and 10 μm (particle/m3) were measured at an air inlet, air outlet, 2 m from an air inlet, and 4 m from an air outlet after 0, 5, 10, 15, and 20 min of air treatment, respectively, as well as CO2 levels and relative humidity (RH). The average airflow rate was also measured. When compare to 0 min, all parameters, except semi-outdoor PM0.3 and CO2 levels, tend to decrease in both indoor and semi-outdoor conditions. When measure by total airflow specification of a dual ventilation fan, the average airflow rate at an air outlet is reduced by 20 times. Article Highlights Design and fabrication of a water-based air purifier. A low-tech air purifier helping to protect against the annual smog crisis and the ongoing COVID-19 pandemic. The novel water-based air purifier effectively traps air particles ranging in size from 0.5 to 10 µm.
Collapse
|
11
|
Thuong DTH, Dang TN, Phosri A, Siriwong W, Dung TTT, Vy NTT, Kallawicha K. Fine particulate matter and daily hospitalizations for mental and behavioral disorders: A time-series study in Ho Chi Minh City, Vietnam. ENVIRONMENTAL RESEARCH 2022; 213:113707. [PMID: 35718167 DOI: 10.1016/j.envres.2022.113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Various adverse health outcomes caused by particulate matter (PM) exposure has been documented, while the evidence for the adverse effects of PM exposure on mental and behavioral disorders (MBDs) is limited. To date, few epidemiological studies, especially in developing countries, have focused on these adverse effects. In the past decade, air pollution sources in Vietnam have noticeably increased, resulting to the elevated concentrations of ambient air pollutants particularly fine PM or PM with an aerodynamic diameter ≤2.5 μm (PM2.5). Hence, investigating the short-term association between PM2.5 and MBDs is worthwhile. In this study, a quasi-Poisson time-series regression analysis was used to investigate the association between PM2.5 exposure and daily hospitalizations for MBDs to the Ho Chi Minh City Mental Health Hospital during 2017-2020. A natural cubic spline smooth function for time was used to screen out long-term and seasonality trends. Stratified analyses were also performed by sex, age, and season. During study period, 9,986 hospitalizations for MBDs were recorded and included in the analysis. Results suggested that a 10 μg/m3 daily increase in PM2.5 concentration was associated with a statistically significant 2.96% (95% confidence interval: 0.23%-5.76%) increase in hospitalizations for MBDs. The effects of PM2.5 exposure on hospital admissions were more pronounced in female patients and the middle-age group (35-59 years). This finding could increase awareness regarding prevention and minimization of MBDs on the public.
Collapse
Affiliation(s)
- Do Thi Hoai Thuong
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; Grant and Innovation Center, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Tran Ngoc Dang
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Arthit Phosri
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Wattasit Siriwong
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Truong Thi Thuy Dung
- Department of Public Health, School of Medicine, International University of Health and Welfare, Japan
| | - Nguyen Thi Tuong Vy
- MedPharmRes Journal, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Kraiwuth Kallawicha
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
12
|
Ji Y, Liu B, Song J, Pan R, Cheng J, Wang H, Su H. Short-term effects and economic burden assessment of ambient air pollution on hospitalizations for schizophrenia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45449-45460. [PMID: 35149942 DOI: 10.1007/s11356-022-19026-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The evidence on the health and economic impacts of air pollution with schizophrenia is scarce, especially in developing countries. In this study, we aimed to systemically examine the short-term effects of PM2.5 (particulate matter ≤ 2.5 μm in diameter), PM10 (≤ 10 μm in diameter), NO2 (nitrogen dioxide), SO2 (sulfur dioxide), CO (carbon monoxide), and O3 (ozone) on hospital admissions for schizophrenia in a Chinese coastal city (Qingdao) and to further assess the corresponding attributable risk and economic burden. A generalized additive model (GAM) was applied to model the impact of air pollution on schizophrenia, and the corresponding economic burden including the direct costs (medical expenses) and indirect costs (productivity loss). Stratified analyses were also performed by age, gender, and season (warm or cold). Our results showed that for a 10 μg/m3 increase in the concentrations of PM2.5, PM10, SO2, and CO at lag5, the corresponding relative risks (RRs) were 1.0160 (95% CI: 1.0038-1.0282), 1.0097 (1.0018-1.0177), 1.0738 (1.0222-1.01280), and 1.0013 (1.0001-1.0026), respectively. However, no significant effect of NO2 or O3 on schizophrenia admissions was found. The stratified analysis indicated that females and younger individuals (< 45 years old) appeared to be more vulnerable, but no significant difference was found between seasons. Furthermore, 12.41% of schizophrenia hospitalizations were attributable to exposure to air pollution exceeding the World Health Organization (WHO) air quality standard, with a total economic burden of 89.67 million RMB during the study period. At the individual level, excessive air pollution exposure resulted in an economic burden of 8232.08 RMB per hospitalization. Our study found that short-term exposure to air pollutants increased the risk of hospital admissions for schizophrenia and resulted in a substantial economic burden. Considerable health benefits can be achieved by further reducing air pollution.
Collapse
Affiliation(s)
- Yanhu Ji
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Bin Liu
- Qingdao Mental Health Center, 299 Nanjing Road, Qingdao, Shandong, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Heng Wang
- Department of Hospital Management, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
13
|
Gao X, Jiang W, Liao J, Li J, Yang L. Attributable risk and economic cost of hospital admissions for depression due to short-exposure to ambient air pollution: A multi-city time-stratified case-crossover study. J Affect Disord 2022; 304:150-158. [PMID: 35219742 DOI: 10.1016/j.jad.2022.02.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Depression has become the most common mental disease globally and is a strong predictor for suicide. Studies have indicated that exposure to high levels of air pollution increased the risk of depression, but evidence in human populations is still limited. At present, a few studies estimated the impact of multi-pollutants on hospitalization for depression in multi-city in areas with severe air pollution. We aimed to examine the association between short-term exposure to common ambient air pollutants and hospital admissions (HAs) for depression based on statistics of inpatients with depression in multi-city. METHODS The 10,459 records of HAs for depression from medical institutions in nine cities/prefectures, Sichuan Province, China, between January 1, 2017 and December 31, 2018 were collected. Air pollutant data including PM2.5, PM10, SO2 and NO2 from provincial ecological environment monitoring stations were obtained. Based on a time-stratified case-crossover design, we estimated the impact on relative risk (RR) of short-term exposure to air pollutants on hospitalization for depression, with stratification by sex, age, and economic level. The cost of illness method was used to further assess hospitalization costs. RESULTS The short-term exposure to air pollutants was positively associated with hospitalization for depression. The increase of air particulate matter (PM) had the strongest effect on lag 0 day (PM2.5:1.037 (95% CI:1.022,1.052), PM10:1.024 (95% CI:1.013,1.036)). The effects of SO2 reached the peak on lag 2 day (1.317 (95% CI:1.151,1.507)). Women and older people were more likely to be affected by air pollutants and prone to depression (P = 0.013, P = 0.006). During the study period, the economic cost of hospitalization for depression caused by PM pollution was US$ 8.36 million. LIMITATIONS The air pollutant concentration level of the monitoring stations in the study area was regarded as personal pollutant exposure, which may not accurately reflect the patient's exposure level, resulting in a certain measurement error. CONCLUSIONS Short-term changes to ambient air pollution exposure may increase the risk of hospital admissions for depression and cause economic costs due to hospitalization.
Collapse
Affiliation(s)
- Xi Gao
- HEOA Group, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Wanyanhan Jiang
- HEOA Group, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jiaqiang Liao
- HEOA Group, West China School of Public Health, Sichuan University, Chengdu, Sichuan Province, China
| | - Jia Li
- HEOA Group, School of Management, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lian Yang
- HEOA Group, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| |
Collapse
|
14
|
Qiu H, Wang L, Luo L, Shen M. Gaseous air pollutants and hospitalizations for mental disorders in 17 Chinese cities: Association, morbidity burden and economic costs. ENVIRONMENTAL RESEARCH 2022; 204:111928. [PMID: 34437848 DOI: 10.1016/j.envres.2021.111928] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The short-term morbidity effects of gaseous air pollutants on mental disorders (MDs), and the corresponding morbidity and economic burdens have not been well studied. We aimed to explore the associations of ambient sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) and carbon monoxide (CO) with MDs hospitalizations in 17 Chinese cities during 2015-2018, and estimate the attributable risk and economic costs of MDs hospitalizations associated with gaseous pollutants. City-specific relationships between gaseous pollutants and MDs hospitalizations were evaluated using over-dispersed generalized additive models, then combined to obtain the pooled effect. Concentration-response (C-R) curves of gaseous pollutants with MDs from each city were pooled to allow regional estimates to be derived. The morbidity and economic burdens of MDs hospitalizations attributable to gaseous pollutants were further assessed. A total of 171,939 MDs hospitalizations were included. We observed insignificant association of O3 with MDs. An interquartile range increase in SO2 at lag0 (9.1 μg/m³), NO2 at lag0 (16.7 μg/m³) and CO at lag2 (0.4 mg/m³) corresponded to a 3.02% (95%CI: 0.72%, 5.38%), 5.03% (95%CI: 1.84%, 8.32%) and 2.18% (95%CI: 0.40%, 4.00%) increase in daily MDs hospitalizations, respectively. These effects were modified by sex, season and cause-specific MDs. The C-R curves of SO2 and NO2 with MDs indicated nonlinearity and the slops were steeper at lower concentrations. Overall, using current standards as reference concentrations, 0.27% (95%CI: 0.07%, 0.48%) and 0.06% (95%CI: 0.02%, 0.10%) of MDs hospitalizations could be attributable to extra SO2 and NO2 exposures, and the corresponding economic costs accounted for 0.34% (95%CI: 0.08%, 0.60%) and 0.07% (95%CI: 0.03%, 0.11%) of hospitalization expenses, respectively. Moreover, using threshold values detected from C-R curves as reference concentrations, the above mentioned morbidity and economic burdens increased a lot. These findings suggest more strict emission control regulations are needed to protect mental health from gaseous pollutants.
Collapse
Affiliation(s)
- Hang Qiu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Liya Wang
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Luo
- Business School, Sichuan University, Chengdu, China
| | - Minghui Shen
- Health Information Center of Sichuan Province, Chengdu, China
| |
Collapse
|
15
|
Wang C, Feng L, Qi Y. Explainable deep learning predictions for illness risk of mental disorders in Nanjing, China. ENVIRONMENTAL RESEARCH 2021; 202:111740. [PMID: 34329635 DOI: 10.1016/j.envres.2021.111740] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological studies have revealed the associations of air pollutants and meteorological factors with a range of mental health conditions. However, little is known about local explanations and global understanding on the importance and effect of input features in the complex system of environmental stressors - mental disorders (MDs), especially for exposure to air pollution mixture. In this study, we combined deep learning neural networks (DLNNs) with SHapley Additive exPlanation (SHAP) to predict the illness risk of MDs on the population level, and then provided explanations for risk factors. The modeling system, which was trained on day-by-day hospital outpatient visits of two major hospitals in Nanjing, China from 2013/07/01 through 2019/02/28, visualized the time-varying prediction, contributing factors, and interaction effects of informative features. Our results suggested that NO2, SO2, and CO made outstanding contributions in magnitude of feature attributions under circumstances of mixed air pollutants. In particular, NO2 at high concentration level was associated with an increase in illness risk of MDs, and the maximum and mean absolute SHAP value were approximated to 10 and 2 as a local and global measure of feature importance, respectively. It presented a marginally antagonistic effect for two pairs of gaseous pollutants, i.e., NO2 vs. SO2 and CO vs. NO2. In contrast, CO and SO2 displayed the opposite direction of feature effects to the rise of observed concentrations, but an apparent synergistic effect was obviously captured. The primary risk factors driving a sharp increase in acute attack or exacerbation of MDs were also identified by depicting prediction paths of time-series samples. We believe that the significance of coupling accurate predictions from DLNNs with interpretable explanations of why a prediction is completed has broad applicability throughout the field of environmental health.
Collapse
Affiliation(s)
- Ce Wang
- School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Lan Feng
- National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Yi Qi
- School of Architecture and Urban Planning, Nanjing University, No. 22 Hankoulu Road, Nanjing, 210093, PR China.
| |
Collapse
|
16
|
Marazziti D, Cianconi P, Mucci F, Foresi L, Chiarantini I, Della Vecchia A. Climate change, environment pollution, COVID-19 pandemic and mental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145182. [PMID: 33940721 PMCID: PMC7825818 DOI: 10.1016/j.scitotenv.2021.145182] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 05/06/2023]
Abstract
Converging data would indicate the existence of possible relationships between climate change, environmental pollution and epidemics/pandemics, such as the current one due to SARS-CoV-2 virus. Each of these phenomena has been supposed to provoke detrimental effects on mental health. Therefore, the purpose of this paper was to review the available scientific literature on these variables in order to suggest and comment on their eventual synergistic effects on mental health. The available literature report that climate change, air pollution and COVID-19 pandemic might influence mental health, with disturbances ranging from mild negative emotional responses to full-blown psychiatric conditions, specifically, anxiety and depression, stress/trauma-related disorders, and substance abuse. The most vulnerable groups include elderly, children, women, people with pre-existing health problems especially mental illnesses, subjects taking some types of medication including psychotropic drugs, individuals with low socio-economic status, and immigrants. It is evident that COVID-19 pandemic uncovers all the fragility and weakness of our ecosystem, and inability to protect ourselves from pollutants. Again, it underlines our faults and neglect towards disasters deriving from climate change or pollution, or the consequences of human activities irrespective of natural habitats and constantly increasing the probability of spillover of viruses from animals to humans. In conclusion, the psychological/psychiatric consequences of COVID-19 pandemic, that currently seem unavoidable, represent a sharp cue of our misconception and indifference towards the links between our behaviour and their influence on the "health" of our planet and of ourselves. It is time to move towards a deeper understanding of these relationships, not only for our survival, but for the maintenance of that balance among man, animals and environment at the basis of life in earth, otherwise there will be no future.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy; UniCamillus - Saint Camillus University of Health Sciences, Rome, Italy
| | - Paolo Cianconi
- Institute of Psychiatry, Department of Neurosciences, Catholic University, Rome, Italy
| | - Federico Mucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Psychiatry, North-Western Tuscany Region, NHS Local Health Unit, Italy
| | - Lara Foresi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Ilaria Chiarantini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.
| |
Collapse
|
17
|
Wang KH, Liu L, Lobont OR, Nicoleta-Claudia M. Energy Consumption and Health Insurance Premiums in China's Provinces: Evidence From Asymmetric Panel Causality Test. Front Public Health 2021; 9:658863. [PMID: 33996730 PMCID: PMC8116495 DOI: 10.3389/fpubh.2021.658863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
This article employs asymmetric panel causality test to address the causal nexus between energy consumption (EC) and healthcare insurance premiums (IP) for China's different provinces. The empirical results indicate that there exist asymmetric causality runs from positive EC shocks to positive healthcare IPs in Beijing, Hebei, Tianjin, Shanxi, Inner Mongolia, Shaanxi, Gansu, Qinghai, Ningxia, Shandong, Henan, and Anhui. There is no significant link in southern and northeastern provinces mainly because of their industrial structure, high economic development level, strong insurance consciousness, and climate conditions. Therefore, governments should encourage technological innovation and further improve energy efficiency. Meanwhile, we need to optimize EC structure and raise the proportion of renewable energies. The authorities should carry out stricter environmental protection policies and protect people from pollution that comes from fossil fuel burn. The commercial health insurance should be included in the health system and become an important supplement to public health insurance.
Collapse
Affiliation(s)
- Kai-Hua Wang
- School of Economics, Qingdao University, Qingdao, China
| | - Lu Liu
- School of Management, Ocean University of China, Qingdao, China
| | | | | |
Collapse
|
18
|
Kim BE, Kim J, Goleva E, Berdyshev E, Lee J, Vang KA, Lee UH, Han S, Leung S, Hall CF, Kim NR, Bronova I, Lee EJ, Yang HR, Leung DY, Ahn K. Particulate matter causes skin barrier dysfunction. JCI Insight 2021; 6:145185. [PMID: 33497363 PMCID: PMC8021104 DOI: 10.1172/jci.insight.145185] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms that underlie the detrimental effects of particulate matter (PM) on skin barrier function are poorly understood. In this study, the effects of PM2.5 on filaggrin (FLG) and skin barrier function were investigated in vitro and in vivo. The levels of FLG degradation products, including pyrrolidone carboxylic acid, urocanic acid (UCA), and cis/trans-UCA, were significantly decreased in skin tape stripping samples of study subjects when they moved from Denver, an area with low PM2.5, to Seoul, an area with high PM2.5 count. Experimentally, PM2.5 collected in Seoul inhibited FLG, loricrin, keratin-1, desmocollin-1, and corneodesmosin but did not modulate involucrin or claudin-1 in keratinocyte cultures. Moreover, FLG protein expression was inhibited in human skin equivalents and murine skin treated with PM2.5. We demonstrate that this process was mediated by PM2.5-induced TNF-α and was aryl hydrocarbon receptor dependent. PM2.5 exposure compromised skin barrier function, resulting in increased transepidermal water loss, and enhanced the penetration of FITC-dextran in organotypic and mouse skin. PM2.5-induced TNF-α caused FLG deficiency in the skin and subsequently induced skin barrier dysfunction. Compromised skin barrier due to PM2.5 exposure may contribute to the development and the exacerbation of allergic diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jinyoung Lee
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Kathryn A Vang
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Un Ha Lee
- Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - SongYi Han
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Susan Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Na-Rae Kim
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Eu Jin Lee
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Hye-Ran Yang
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, South Korea
| | - Donald Ym Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|