1
|
Dueñas-Moreno J, Mora A, Narvaez-Montoya C, Mahlknecht J. Trace elements and heavy metal(loid)s triggering ecological risks in a heavily polluted river-reservoir system of central Mexico: Probabilistic approaches. ENVIRONMENTAL RESEARCH 2024; 262:119937. [PMID: 39243840 DOI: 10.1016/j.envres.2024.119937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The contamination of trace elements and heavy metal(loid)s in water bodies has emerged as a global environmental concern due to their high toxicity at low concentrations to both biota and humans. This study aimed to evaluate the ecological risk associated with the occurrence and spatial distribution of Mn, Fe, Co, Cd, Ni, Zn, Sb, As, Tl, Cu, Pb, U, and V in the heavily polluted waters of an important river-reservoir system (Atoyac River Basin) in central Mexico, using two-level tired probabilistic approaches: Risk Quotient based on Species Sensitivity Distribution (RQSSD) and Joint Probability Curves (JPCs). The concentrations of these elements varied widely, ranging from 0.055 μg L-1 to 9200 μg L-1 and from 0.056 μg L-1 to 660 μg L-1, in both total and dissolved fractions, respectively. Although geogenic and anthropogenic sources contribute to the presence of these elements in waters, the discharge of untreated or poorly treated industrial wastewater is the main source of contamination. In this regard, the RQSSD results indicated high ecological risk for Mn, Fe, Co, Ni, Zn, and Sb, and medium or low ecological risk for As, Tl, U, and V at almost all sampling sites. The highest RQSSD values were found downstream of a large industrial corridor for Co, Zn, Tl, Pb, and V, with Tl, Pb, and V escalating to higher risk levels, highlighting the negative impact of industrial contamination on biota. The JPC results for these elements are consistent with the RQSSD approach, indicating an ecological risk to species from Mn, Fe, Co, Ni, Zn, and Sb in waters of the Atoyac River Basin. Therefore, the results of this study offer a thorough assessment of pollution risk, providing valuable insights for legislators on managing and mitigating exposure.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Christian Narvaez-Montoya
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
2
|
Wang LM, Ran ZY, Wu XL, Wang HY, Zhao LB. Spatialtemporal evolution characteristics of ozone in China and its response to urbanization. PLoS One 2024; 19:e0300185. [PMID: 38820439 PMCID: PMC11142485 DOI: 10.1371/journal.pone.0300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 06/02/2024] Open
Abstract
Based on the background of urbanization in China, we used the dynamic spatial panel Durbin model to study the driving mechanism of ozone pollution empirically. We also analyzed the spatial distribution of ozone driving factors using the GTWR. The results show that: i) The average annual increase of ozone concentration in ambient air in China from 2015 to 2019 was 1.68μg/m3, and 8.39μg/m3 elevated the year 2019 compared with 2015. ii) The Moran's I value of ozone in ambient air was 0.027 in 2015 and 0.209 in 2019, showing the spatial distribution characteristics of "east heavy and west light" and "south low and north high". iii) Per capita GDP industrial structure, population density, land expansion, and urbanization rate have significant spillover effects on ozone concentration, and the regional spillover effect is greater than the local effect. R&D intensity and education level have a significant negative impact on ozone concentration. iv) There is a decreasing trend in the inhibitory effect of educational attainment and R&D intensity on ozone concentration, and an increasing trend in the promotional effect of population urbanization rate, land expansion, and economic development on ozone concentration. Empirical results suggest a twofold policy meaning: i) to explore the causes behind the distribution of ozone from the new perspective of urbanization, and to further the atmospheric environmental protection system and ii) to eliminate the adverse impacts of ozone pollution on nature and harmonious social development.
Collapse
Affiliation(s)
- Li-Min Wang
- College of Geographical Sciences, Harbin Normal University, Harbin, China
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment of Heilongjiang Province, Harbin Normal University, Harbin, China
| | - Zi-Yi Ran
- Artificial Rainfall Office of the People’s Government of Heilongjiang Province, Harbin, China
| | - Xiang-Li Wu
- College of Geographical Sciences, Harbin Normal University, Harbin, China
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment of Heilongjiang Province, Harbin Normal University, Harbin, China
| | - Heng-Yu Wang
- Artificial Rainfall Office of the People’s Government of Heilongjiang Province, Harbin, China
| | - Li-Bin Zhao
- Artificial Rainfall Office of the People’s Government of Heilongjiang Province, Harbin, China
| |
Collapse
|
3
|
Kim S, Ko HS, Shin DH. Enhanced performance of algal decomposition of electrolysis under cavitation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Kibuye FA, Zamyadi A, Wert EC. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods. HARMFUL ALGAE 2021; 109:102099. [PMID: 34815017 DOI: 10.1016/j.hal.2021.102099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms produce nuisance metabolites (e.g., cyanotoxins and T&O compounds) thereby posing water quality management issues for aquatic sources used for potable water production, aquaculture, and recreation. A variety of in-lake/reservoir control measures are implemented to reduce the abundance of nuisance cyanobacteria biomass or decrease the amount of available phosphorous (P). This paper critically reviews the chemical control strategies implemented for in-lake/reservoir management of cyanobacterial blooms, i.e., algaecides and nutrient sequestering coagulants/flocculants, by highlighting (i) their mode of action, (ii) cases of successful and unsuccessful treatment, (iii) and factors influencing performance (e.g., water quality, process control techniques, source water characteristics, etc.). Algaecides generally result in immediate improvements in water quality and offer selective cyanobacterial control when peroxide-based alagecides are used. However, they have a range of limitations: causing cell lysis and release of cyanotoxins, posing negative impacts on aquatic plants and animals, leaving behind environmentally relevant treatment residuals (e.g., Cu in water and sediments), and offering only short-term bloom control characterized by cyanobacterial rebound. Coagulants/flocculants (alum, iron, calcium, and lanthanum bentonite) offer long-term internal nutrient control when external nutrient loading is controlled. Treatment performance is often influenced by background water quality conditions, and source water characteristics (e.g., surface area, depth, mixing regimes, and residence time). The reviewed case studies highlight that external nutrient load reduction is the most fundamental aspect of cyanobacterial control. None of the reviewed control strategies provide a comprehensive solution to cyanobacterial blooms.
Collapse
Affiliation(s)
- Faith A Kibuye
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States
| | - Arash Zamyadi
- Walter and Eliza Hall Institute of Medical Research (WEHI), 1G, Royal Parade, Parkville VIC 3052, Australia; Water Research Australia (WaterRA) Melbourne based position hosted by Melbourne Water, 990 La Trobe St, Docklands VIC 3008, Australia
| | - Eric C Wert
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States.
| |
Collapse
|
5
|
Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S, Chen J. Enhanced adsorption and reduction performance of nitrate by Fe-Pd-Fe 3O 4 embedded multi-walled carbon nanotubes. CHEMOSPHERE 2021; 281:130718. [PMID: 34044302 DOI: 10.1016/j.chemosphere.2021.130718] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Multi walled carbon nanotubes (MWCNTs) have attracted more and more attention as adsorbents due to their excellent adsorption properties. By loading metal particles on MWCNTs, the chemical reduction ability of adsorbed pollutants could be provided, so as to achieve the purpose of adsorption and degradation of pollutants. Therefore, the removal process of NO3--N by Fe-Pd-Fe3O4/MWCNTs was studied, including rapid adsorption of initial pollutants, gradual reduction of intermediate products and re-adsorption of final products. The results showed that Fe-Pd-Fe3O4/MWCNTs completely removed NO3--N within 2 h, 39% and 25% of which were converted into NO2--N and NH4+-N. The adsorption efficiency, kinetics, capacity and adsorption energy all followed the order of NH4+-N > NO2--N > NO3--N. With the recoverability and reusability of Fe-Pd-Fe3O4/MWCNTs having been confirmed in 5 consecutive cycles, the removal rate of NO3--N still reached 43%. It has been shown that MWCNTs prolonged the reducing power for NO3--N, due to avoiding the aggregation of metal particles. The rapid adsorption of initial pollutants, effective stepwise reduction and convenient recovery processes were of great value for the rehabilitation of polluted water.
Collapse
Affiliation(s)
- Zeyu Wang
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Tianjiao Guo
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| |
Collapse
|
6
|
Martinez-Tavera E, Duarte-Moro AM, Sujitha SB, Rodriguez-Espinosa PF, Rosano-Ortega G, Expósito N. Microplastics and metal burdens in freshwater Tilapia (Oreochromis niloticus) of a metropolitan reservoir in Central Mexico: Potential threats for human health. CHEMOSPHERE 2021; 266:128968. [PMID: 33246699 DOI: 10.1016/j.chemosphere.2020.128968] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 05/07/2023]
Abstract
In the present study, microplastics (MPs) and metal concentrations were studied in the widely consumed tilapia (Oreochromis niloticus) fishes (n = 15) collected from a metropolitan reservoir of the Atoyac River basin, Mexico. Nearly 139 fibers were extracted from the gastrointestinal tracts and assessed using optical microscopy to evaluate their physical characteristics. The colour distribution of the fibers was mainly black (40%), blue (19%), red and white (14%). SEM images represented the surface morphology, while the elemental composition of the fibers was studied using EDX spectra. Polymer characterization using μFTIR aided in confirming the fibers as plastics (polyamide, polyester, and synthetic cellulose) and non-plastics (natural cellulose). Henceforth, ∼33% of the fibers, provisionally thought to be plastics, were natural fibers. The total metal concentrations were higher in the liver (259.24 mg kg-1) than the muscle (122.56 mg kg-1) due to diverse metabolic functions in the hepatic tissues. Human health risk assessment in terms of Hazard Index (HI) presented Pb and Zn values above unity in both adults and children, prompting regulatory measures. Statistical tests between MPs and fish biometry did not present any substantial correlations. The present study also affirmed that the presence of MPs and metals in fishes of a highly contaminated region is not only governed by their bioavailabilities, but also on the physiological characteristics of the individual organism.
Collapse
Affiliation(s)
- E Martinez-Tavera
- UPAEP Universidad, 21 Sur No. 1103, Barrio de Santiago, Puebla, C.P. 72410, Mexico.
| | - A M Duarte-Moro
- UPAEP Universidad, 21 Sur No. 1103, Barrio de Santiago, Puebla, C.P. 72410, Mexico
| | - S B Sujitha
- Centro Mexicano para La Producción Más Limpia (CMP+L), Instituto Politécnico Nacional (IPN), Av. Acueducto S/n, Col. Barrio La Laguna Ticomán, Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - P F Rodriguez-Espinosa
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio La Laguna Ticomán, Del. Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - G Rosano-Ortega
- UPAEP Universidad, 21 Sur No. 1103, Barrio de Santiago, Puebla, C.P. 72410, Mexico
| | - Nora Expósito
- Chemical Engineering School, Rovira I Virgili University, Carrer de L'Escorxador, S/n, 43003, Tarragona, Spain
| |
Collapse
|
7
|
Zhan Y, Hong N, Yang B, Du Y, Wu Q, Liu A. Toxicity variability of urban road stormwater during storage processes in Shenzhen, China: Identification of primary toxicity contributors and implications for reuse safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140964. [PMID: 32717603 DOI: 10.1016/j.scitotenv.2020.140964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 05/18/2023]
Abstract
Urban road stormwater reuse is one of the most important ways to mitigate water resource shortage. Generally, stormwater is stored prior to reuse or further treatment. This study explored the stormwater toxicity variability during two types of storages, closed and open storages using Chinese hamster ovary cells (CHO), which are mammalian cells. The toxicity test by CHO cells can indirectly represent the risk related to human health. Both rainfall (without reaching ground surfaces) and urban road stormwater were collected to undertake laboratory-scaled storage experiments and basic water quality parameters (pH and dissolved oxygen), microorganisms (E.coli and total bacteria), total organic carbon and heavy metals (copper, Cu, zinc, Zn, nickel, Ni, chromium, Cr, cadmium, Cd and lead, Pb) were also investigated during storage processes. The outcomes showed that rainfall has a better water quality with lower toxicity than urban road stormwater (EC50 values of rainfall were generally twice higher than road stormwater). Additionally, it is found that storing road stormwater for a certain period would reduce the toxicity and hence improve their reuse safety (EC50 values in Day 1 were 10.30 mL and 8.46 mL for closed and open storage respectively while they were 14.3 mL and 13.0 mL in Day 7). Organic matters and Cu are important contributors of toxicity during both closed and open storages while bacteria is also essential in toxicity contribution in open storage. The research results implied that storing stormwater for a certain period has a benefit for reuse safety. This is related to cost-effectiveness in terms of treatment system design to avoid over engineering. Additionally, it is suggested that for reducing toxicity, the stormwater treatment designed before/after storage devices should focus on removal of organic matters and heavy metals (specially Cu) as well as restraining bacteria growth.
Collapse
Affiliation(s)
- Yuting Zhan
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Nian Hong
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Ye Du
- Guangdong Provincial Engineering Technology Research Centre for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, China
| | - Qianyuan Wu
- Guangdong Provincial Engineering Technology Research Centre for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|