1
|
Gao Y, Yue Y, Yang W. Correlating grain yield with irrigation in a spatio-temporal context on the North China Plain. Heliyon 2024; 10:e32745. [PMID: 39021981 PMCID: PMC11252881 DOI: 10.1016/j.heliyon.2024.e32745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Irrigation plays a crucial role in enhancing agricultural productivity. The spatiotemporal variability and correlation between historical irrigation and grain yield not only illuminate existing challenges in irrigation, but also offer valuable insights for formulating effective irrigation strategies, which have been previously overlooked. Taking the North China Plain (NCP) as a case study, this study aims to elucidate regional divergence patterns and the dynamic evolution of the spatiotemporal relationship between grain yield and irrigation through time series analysis, GIS spatial analysis, and geographically weighted regression (GWR). The findings reveal that grain yields are higher in the northern regions of NCP compared to the southern regions, with significant variations among prefecture-level cities; maize yields slightly surpass wheat yields. Moreover, there has been a noticeable decrease in irrigation across approximately 49 % of the areas since 2004. Spatial autocorrelation analysis indicates clear spatial aggregation for both grains yields and irrigation. The coupled correlation between wheat yield and effective irrigation has shown a slight increase from 1990 to 2015, while that of maize has significantly decreased. The positive impact of irrigation on grain yield has nearly vanished since 2002. It is recommended to implement sprinkler irrigation in low-yield, low-irrigation areas in the south; deficit irrigation and water-saving technologies may benefit regions with medium yield and negative correlation with irrigation in central parts; maintaining current irrigation strategies is suggested for high-yield and high-irrigation regions. Additionally, relying solely on irrigation to boost yields is unsustainable; it is critical to adopt a combination of agricultural management practices along with planting high water-utilization efficient crop varieties. This study underscores the significance of developing rational irrigational strategies based on a comprehensive understanding of the intricate relationship between irrigation and grain yields-ensuring food security while sustaining agricultural water utilization.
Collapse
Affiliation(s)
- Yulian Gao
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yaojie Yue
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Wuqiong Yang
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Chen C, Ota N, Wang B, Fu G, Fletcher A. Adaptation to climate change through strategic integration of long fallow into cropping system in a dryland Mediterranean-type environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163230. [PMID: 37023813 DOI: 10.1016/j.scitotenv.2023.163230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
The crop-growing region of Western Australia characterized by a Mediterranean-type climate is projected to become warmer and drier. Appropriate selection of crop sequences will be of importance to cope with these climatic changes for this largest grain-producing region of Australia. Through linking a widely used crop model (APSIM), 26 General Circulation Models (GCMs) with one Shared Socioeconomic Pathway (SSP585) and economic analysis, we explored how the climate change would affect dryland wheat cropping and whether/how long fallow (the practice of leaving a field out of production for an entire growing season) could be integrated into wheat cropping system in Western Australia. The potential adaptation of long fallow into wheat system was assessed with four fixed rotations (fallow-wheat, fallow-wheat-wheat, fallow-wheat-wheat-wheat, and fallow-wheat-wheat-wheat-wheat) and four flexible sowing rule-based rotations (the land was fallowed if sowing rule was not met), compared with continuous wheat. The simulation results at four representing locations show that climate change would have negative impacts on both yield and economic return of continuous wheat cropping in Western Australia. Wheat after fallow out-yielded and out-profited wheat after wheat under future climate. But integrating fallow into wheat cropping systems with the above fixed rotations would lead to yield and economic loss. By contrast, cropping systems in which fallowing took place when sowing condition could not be met at a certain time would achieve comparable yield and economic return to continuous wheat, with wheat yield being only 5 % less than continuous wheat and the gross margin being $12 ha-1 more than continuous wheat averaged across locations. We highlight strategic integration of long fallow into cropping system in a dryland Mediterranean-type environment would have a great potential to cope with future climate change. These findings can be extended into other Mediterranean-type cropping regions in Australia and beyond.
Collapse
Affiliation(s)
- Chao Chen
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913, Australia.
| | - Noboru Ota
- CSIRO Health & Biosecurity, Private Bag 5, Wembley, WA 6913, Australia
| | - Bin Wang
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Guobin Fu
- CSIRO Land and Water, Private Bag 5, Wembley, WA 6913, Australia
| | - Andrew Fletcher
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
3
|
Muleke A, Harrison MT, Eisner R, de Voil P, Yanotti M, Liu K, Yin X, Wang W, Monjardino M, Zhao J, Zhang F, Fahad S, Zhang Y. Whole farm planning raises profit despite burgeoning climate crisis. Sci Rep 2022; 12:17188. [PMID: 36229485 PMCID: PMC9562302 DOI: 10.1038/s41598-022-20896-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023] Open
Abstract
The climate crisis challenges farmer livelihoods as increasingly frequent extreme weather events impact the quantum and consistency of crop production. Here, we develop a novel paradigm to raise whole farm profit by optimising manifold variables that drive the profitability of irrigated grain farms. We build then invoke a new decision support tool-WaterCan Profit-to optimise crop type and areas that collectively maximise farm profit. We showcase four regions across a climate gradient in the Australian cropping zone. The principles developed can be applied to cropping regions or production systems anywhere in the world. We show that the number of profitable crop types fell from 35 to 10 under future climates, reflecting the interplay between commodity price, yield, crop water requirements and variable costs. Effects of climate change on profit were not related to long-term rainfall, with future climates depressing profit by 11-23% relative to historical climates. Impacts of future climates were closely related to crop type and maturity duration; indeed, many crop types that were traditionally profitable under historical climates were no longer profitable in future. We demonstrate that strategic whole farm planning of crop types and areas can yield significant economic benefits. We suggest that future work on drought adaptation consider genetic selection criteria more diverse than phenology and yield alone. Crop types with (1) higher value per unit grain weight, (2) lower water requirements and (3) higher water-use efficiency are more likely to ensure the sustainability and prosperity of irrigated grain production systems under future climates.
Collapse
Affiliation(s)
- Albert Muleke
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS, 7248, Australia
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS, 7248, Australia.
| | - Rowan Eisner
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS, 7248, Australia
| | - Peter de Voil
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Gatton Campus, Gatton, QLD, 4343, Australia
| | - Maria Yanotti
- Tasmanian School of Business and Economics, University of Tasmania, Private Bag 98, Hobart, TAS, 7001, Australia
| | - Ke Liu
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS, 7248, Australia
| | - Xiaogang Yin
- College of Agronomy and Biotechnology, China Agricultural University and Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, 100193, China
| | - Weilu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Marta Monjardino
- CSIRO Agriculture and Food, Waite Campus, Waite Road, Urrbrae, SA, 5064, Australia
| | - Jin Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Yunbo Zhang
- Hubei Collaborative Innovation Centre for Grain Industry/Agriculture College, Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
Lauterberg M, Saranga Y, Deblieck M, Klukas C, Krugman T, Perovic D, Ordon F, Graner A, Neumann K. Precision phenotyping across the life cycle to validate and decipher drought-adaptive QTLs of wild emmer wheat ( Triticum turgidum ssp. dicoccoides) introduced into elite wheat varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:965287. [PMID: 36311121 PMCID: PMC9598872 DOI: 10.3389/fpls.2022.965287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Drought events or the combination of drought and heat conditions are expected to become more frequent due to global warming, and wheat yields may fall below their long-term average. One way to increase climate-resilience of modern high-yielding varieties is by their genetic improvement with beneficial alleles from crop wild relatives. In the present study, the effect of two beneficial QTLs introgressed from wild emmer wheat and incorporated in the three wheat varieties BarNir, Zahir and Uzan was studied under well-watered conditions and under drought stress using non-destructive High-throughput Phenotyping (HTP) throughout the life cycle in a single pot-experiment. Plants were daily imaged with RGB top and side view cameras and watered automatically. Further, at two time points, the quantum yield of photosystem II was measured with a top view FluorCam. The QTL carrying near isogenic lines (NILs) were compared with their corresponding parents by t-test for all non-invasively obtained traits and for the manually determined agronomic and yield parameters. Data quality of phenotypic traits (repeatability) in the controlled HTP experiment was above 85% throughout the life cycle and at maturity. Drought stress had a strong effect on growth in all wheat genotypes causing biomass reduction from 2% up to 70% at early and late points in the drought period, respectively. At maturity, the drought caused 47-55% decreases in yield-related traits grain weight, straw weight and total biomass and reduced TKW by 10%, while water use efficiency (WUE) increased under drought by 29%. The yield-enhancing effect of the introgressed QTLs under drought conditions that were previously demonstrated under field/screenhouse conditions in Israel, could be mostly confirmed in a greenhouse pot experiment using HTP. Daily precision phenotyping enabled to decipher the mode of action of the QTLs in the different genetic backgrounds throughout the entire wheat life cycle. Daily phenotyping allowed a precise determination of the timing and size of the QTLs effect (s) and further yielded information about which image-derived traits are informative at which developmental stage of wheat during the entire life cycle. Maximum height and estimated biovolume were reached about a week after heading, so experiments that only aim at exploring these traits would not need a longer observation period. To obtain information on different onset and progress of senescence, the CVa curves represented best the ongoing senescence of plants. The QTL on 7A in the BarNir background was found to improve yield under drought by increased biomass growth, a higher photosynthetic performance, a higher WUE and a "stay green effect."
Collapse
Affiliation(s)
- Madita Lauterberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Yehoshua Saranga
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mathieu Deblieck
- Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute, Quedlinburg, Germany
| | - Christian Klukas
- Digitalization in Research and Development (ROM), BASF SE, Ludwigshafen am Rhein, Germany
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute, Quedlinburg, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
5
|
Yan H, Harrison MT, Liu K, Wang B, Feng P, Fahad S, Meinke H, Yang R, Liu DL, Archontoulis S, Huber I, Tian X, Man J, Zhang Y, Zhou M. Crop traits enabling yield gains under more frequent extreme climatic events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152170. [PMID: 34875326 DOI: 10.1016/j.scitotenv.2021.152170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 05/16/2023]
Abstract
Climate change (CC) in central China will change seasonal patterns of agricultural production through increasingly frequent extreme climatic events (ECEs). Breeding climate-resilient wheat (Triticum aestivum L.) genotypes may mitigate adverse effects of ECEs on crop productivity. To reveal crop traits conducive to long-term yield improvement in the target population of environments, we created 8,192 virtual genotypes with contrasting but realistic ranges of phenology, productivity and waterlogging tolerance. Using these virtual genotypes, we conducted a genotype (G) by environment (E) by management (M) factorial analysis (G×E×M) using locations distributed across the entire cereal cropping zone in mid-China. The G×E×M invoked locally-specific sowing dates under future climates that were premised on shared socioeconomic pathways SSP5-8.5, with a time horizon centred on 2080. Across the simulated adaptation landscape, productivity was primarily driven by yield components and phenology (average grain yield increase of 6-69% across sites with optimal combinations of these traits). When incident solar radiation was not limiting carbon assimilation, ideotypes with higher grain yields were characterised by earlier flowering, higher radiation-use efficiency and larger maximum kernel size. At sites with limited solar radiation, crops required longer growing periods to realise genetic yield potential, although higher radiation-use efficiency and larger maximum kernel size were again prospective traits enabling higher rates of yield gains. By 2080, extreme waterlogging stress in some regions of mid-China will impact substantially on productivity, with yield penalties of up to 1,010 kg ha-1. Ideotypes with optimal G×M could mitigate yield penalty caused by waterlogging by up to 15% under future climates. These results help distil promising crop trait by best management practice combinations that enable higher yields and robust adaptation to future climates and more frequent extreme climatic events, including flash flooding and soil waterlogging.
Collapse
Affiliation(s)
- Haoliang Yan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, Burnie 7250, Tasmania, Australia
| | - Ke Liu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China; Tasmanian Institute of Agriculture, University of Tasmania, Burnie 7250, Tasmania, Australia.
| | - Bin Wang
- New South Wales Department of Primary Industries, Wagga Wagga Agriculture Institute, Wagga Wagga, New South Wales 2650, Australia
| | - Puyu Feng
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, Khyber Pakhtunkhwa 22620, Pakistan
| | - Holger Meinke
- University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Rui Yang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - De Li Liu
- New South Wales Department of Primary Industries, Wagga Wagga Agriculture Institute, Wagga Wagga, New South Wales 2650, Australia
| | | | - Isaiah Huber
- Department of Agronomy, Iowa State University, Ames, IA 50011, United States
| | - Xiaohai Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jianguo Man
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunbo Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Burnie 7250, Tasmania, Australia
| |
Collapse
|
6
|
Bai H, Xiao D, Wang B, Liu DL, Tang J. Simulation of Wheat Response to Future Climate Change Based on Coupled Model Inter-Comparison Project Phase 6 Multi-Model Ensemble Projections in the North China Plain. FRONTIERS IN PLANT SCIENCE 2022; 13:829580. [PMID: 35185993 PMCID: PMC8850353 DOI: 10.3389/fpls.2022.829580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 05/13/2023]
Abstract
Global climate change results in more extreme temperature events, which poses a serious threat to wheat production in the North China Plain (NCP). Assessing the potential impact of temperature extremes on crop growth and yield is an important prerequisite for exploring crop adaptation measures to deal with changing climate. In this study, we evaluated the effects of heat and frost stress during wheat sensitive period on grain yield at four representative sites over the NCP using Agricultural Production System Simulator (APSIM)-wheat model driven by the climate projections from 20 Global Climate Models (GCMs) in the Coupled Model Inter-comparison Project phase 6 (CMIP6) during two future periods of 2031-2060 (2040S) and 2071-2100 (2080S) under societal development pathway (SSP) 245 and SSP585 scenarios. We found that extreme temperature stress had significantly negative impacts on wheat yield. However, increased rainfall and the elevated atmospheric CO2 concentration could partly compensate for the yield loss caused by extreme temperature events. Under future climate scenarios, the risk of exposure to heat stress around flowering had no great change but frost risk in spring increased slightly mainly due to warming climate accelerating wheat development and advancing the flowering time to a cooler period of growing season. Wheat yield loss caused by heat and frost stress increased by -0.6 to 4.2 and 1.9-12.8% under SSP585_2080S, respectively. We also found that late sowing and selecting cultivars with a long vegetative growth phase (VGP) could significantly compensate for the negative impact of extreme temperature on wheat yields in the south of NCP. However, selecting heat resistant cultivars in the north NCP and both heat and frost resistant cultivars in the central NCP may be a more effective way to alleviate the negative effect of extreme temperature on wheat yields. Our findings showed that not only heat risk should be concerned under climate warming, but also frost risk should not be ignored.
Collapse
Affiliation(s)
- Huizi Bai
- Engineering Technology Research Center, Geographic Information Development and Application of Hebei, Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang, China
| | - Dengpan Xiao
- Engineering Technology Research Center, Geographic Information Development and Application of Hebei, Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang, China
- College of Geography Science, Hebei Normal University, Shijiazhuang, China
- Hebei Laboratory of Environmental Evolution and Ecological Construction, Shijiazhuang, China
- *Correspondence: Dengpan Xiao,
| | - Bin Wang
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - De Li Liu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
- Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, Australia
| | - Jianzhao Tang
- Engineering Technology Research Center, Geographic Information Development and Application of Hebei, Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
7
|
Kumar U, Singh RP, Dreisigacker S, Röder MS, Crossa J, Huerta-Espino J, Mondal S, Crespo-Herrera L, Singh GP, Mishra CN, Mavi GS, Sohu VS, Prasad SVS, Naik R, Misra SC, Joshi AK. Juvenile Heat Tolerance in Wheat for Attaining Higher Grain Yield by Shifting to Early Sowing in October in South Asia. Genes (Basel) 2021; 12:genes12111808. [PMID: 34828414 PMCID: PMC8622066 DOI: 10.3390/genes12111808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Farmers in northwestern and central India have been exploring to sow their wheat much earlier (October) than normal (November) to sustain productivity by escaping terminal heat stress and to utilize the available soil moisture after the harvesting of rice crop. However, current popular varieties are poorly adapted to early sowing due to the exposure of juvenile plants to the warmer temperatures in the month of October and early November. Therefore, a study was undertaken to identify wheat genotypes suited to October sowing under warmer temperatures in India. A diverse collection of 3322 bread wheat varieties and elite lines was prepared in CIMMYT, Mexico, and planted in the 3rd week of October during the crop season 2012-2013 in six locations (Ludhiana, Karnal, New Delhi, Indore, Pune and Dharwad) spread over northwestern plains zone (NWPZ) and central and Peninsular zone (CZ and PZ; designated as CPZ) of India. Agronomic traits data from the seedling stage to maturity were recorded. Results indicated substantial diversity for yield and yield-associated traits, with some lines showing indications of higher yields under October sowing. Based on agronomic performance and disease resistance, the top 48 lines (and two local checks) were identified and planted in the next crop season (2013-2014) in a replicated trial in all six locations under October sowing (third week). High yielding lines that could tolerate higher temperature in October sowing were identified for both zones; however, performance for grain yield was more promising in the NWPZ. Hence, a new trial of 30 lines was planted only in NWPZ under October sowing. Lines showing significantly superior yield over the best check and the most popular cultivars in the zone were identified. The study suggested that agronomically superior wheat varieties with early heat tolerance can be obtained that can provide yield up to 8 t/ha by planting in the third to fourth week of October.
Collapse
Affiliation(s)
- Uttam Kumar
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi 110012, India;
- International Maize and Wheat Improvement Center (CIMMYT), NASC Complex, DPS Marg, New Delhi 110012, India
| | - Ravi Prakash Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany;
| | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico-INIFAP, Carretera los Reyes-Texcoco, Coatlinchan 56250, Mexico;
| | - Suchismita Mondal
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Leonardo Crespo-Herrera
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56237, Mexico; (R.P.S.); (S.D.); (J.C.); (S.M.); (L.C.-H.)
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), ICAR, Karnal 132001, India; (G.P.S.); (C.N.M.)
| | - Chandra Nath Mishra
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), ICAR, Karnal 132001, India; (G.P.S.); (C.N.M.)
| | - Gurvinder Singh Mavi
- Plant Breeding and Genetics Department, Punjab Agricultural University, Ludhiana 141004, India; (G.S.M.); (V.S.S.)
| | - Virinder Singh Sohu
- Plant Breeding and Genetics Department, Punjab Agricultural University, Ludhiana 141004, India; (G.S.M.); (V.S.S.)
| | | | - Rudra Naik
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, Krishi Nagar, Dharwad 580005, India;
| | - Satish Chandra Misra
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune 411004, India;
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi 110012, India;
- International Maize and Wheat Improvement Center (CIMMYT), NASC Complex, DPS Marg, New Delhi 110012, India
- Correspondence:
| |
Collapse
|
8
|
Cooper M, Voss-Fels KP, Messina CD, Tang T, Hammer GL. Tackling G × E × M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1625-1644. [PMID: 33738512 PMCID: PMC8206060 DOI: 10.1007/s00122-021-03812-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/05/2021] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Climate change and Genotype-by-Environment-by-Management interactions together challenge our strategies for crop improvement. Research to advance prediction methods for breeding and agronomy is opening new opportunities to tackle these challenges and overcome on-farm crop productivity yield-gaps through design of responsive crop improvement strategies. Genotype-by-Environment-by-Management (G × E × M) interactions underpin many aspects of crop productivity. An important question for crop improvement is "How can breeders and agronomists effectively explore the diverse opportunities within the high dimensionality of the complex G × E × M factorial to achieve sustainable improvements in crop productivity?" Whenever G × E × M interactions make important contributions to attainment of crop productivity, we should consider how to design crop improvement strategies that can explore the potential space of G × E × M possibilities, reveal the interesting Genotype-Management (G-M) technology opportunities for the Target Population of Environments (TPE), and enable the practical exploitation of the associated improved levels of crop productivity under on-farm conditions. Climate change adds additional layers of complexity and uncertainty to this challenge, by introducing directional changes in the environmental dimension of the G × E × M factorial. These directional changes have the potential to create further conditional changes in the contributions of the genetic and management dimensions to future crop productivity. Therefore, in the presence of G × E × M interactions and climate change, the challenge for both breeders and agronomists is to co-design new G-M technologies for a non-stationary TPE. Understanding these conditional changes in crop productivity through the relevant sciences for each dimension, Genotype, Environment, and Management, creates opportunities to predict novel G-M technology combinations suitable to achieve sustainable crop productivity and global food security targets for the likely climate change scenarios. Here we consider critical foundations required for any prediction framework that aims to move us from the current unprepared state of describing G × E × M outcomes to a future responsive state equipped to predict the crop productivity consequences of G-M technology combinations for the range of environmental conditions expected for a complex, non-stationary TPE under the influences of climate change.
Collapse
Affiliation(s)
- Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Carlos D Messina
- Corteva Agriscience, Research and Development, Johnston, IA, 50131, USA
| | - Tom Tang
- Corteva Agriscience, Research and Development, Johnston, IA, 50131, USA
| | - Graeme L Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
9
|
Walters J, Light K, Robinson N. Using agricultural metadata: a novel investigation of trends in sowing date in on-farm research trials using the Online Farm Trials database. F1000Res 2020; 9:1305. [PMID: 34354820 PMCID: PMC8290206 DOI: 10.12688/f1000research.26903.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background: A growing ability to collect data, together with the development and adoption of the FAIR guiding principles, has increased the amount of data available in many disciplines. This has given rise to an urgent need for robust metadata. Within the Australian grains industry, data from thousands of on-farm research trials (Trial Projects) have been made available via the
Online Farm Trials (OFT) website. OFT Trial Project metadata were developed as filters to refine front-end database searches, but could also be used as a dataset to investigate trends in metadata elements. Australian grains crops are being sown earlier, but whether on-farm research trials reflect this change is currently unknown. Methods: We investigated whether OFT Trial Project metadata could be used to detect trends in sowing dates of on-farm crop research trials across Australia, testing the hypothesis that research trials are being sown earlier in line with local farming practices. The investigation included 15 autumn-sown, winter crop species listed in the database, with trial records from 1993 to 2019. Results: Our analyses showed that (i) OFT Trial Project metadata can be used as a dataset to detect trends in sowing date; and (ii) cropping research trials are being sown earlier in Victoria and Western Australia, but no trend exists within the other states. Discussion/Conclusion: Our findings show that OFT Trial Project metadata can be used to detect trends in crop sowing date, suggesting that metadata could also be used to detect trends in other elements such as harvest date. Because OFT is a national database of research trials, further assessment of metadata may uncover important agronomic, cultural or economic trends within or across the Australian cropping regions. New information could then be used to lead practice change and increase productivity within the Australian grains industry.
Collapse
Affiliation(s)
- Judi Walters
- Centre for eResearch and Digital Innovation, Federation University Australia, Mount Helen, Victoria, 3350, Australia
| | - Kate Light
- Centre for eResearch and Digital Innovation, Federation University Australia, Mount Helen, Victoria, 3350, Australia
| | - Nathan Robinson
- Centre for eResearch and Digital Innovation, Federation University Australia, Mount Helen, Victoria, 3350, Australia
| |
Collapse
|