1
|
Galvão A, Rodrigues M, Mata J, Silva CM. Green walls for greywater treatment: A comprehensive review of operational parameters and climate influence on treatment performance. WATER RESEARCH 2025; 272:122948. [PMID: 39706059 DOI: 10.1016/j.watres.2024.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Green walls for greywater treatment have emerged as a solution to increase green spaces in densely urbanized areas while providing treated greywater for reuse. Over the past decade, numerous studies have focused on optimizing these systems, though most address specific operational conditions and evaluate a limited set of performance parameters. This review synthesizes the existing literature using a meta-analysis to identify key operational factors and treatment performance metrics. A systematic search was conducted across Google Scholar, Scopus, and Web of Science, resulting in the selection of 33 studies. These studies were classified using the Köppen-Geiger climate classification, and a comprehensive database with over 8500 entries was built to analyse performance of COD, BOD, TOC, TSS, NH₄⁺, TN, TP, and bacteriological parameters across different climate zones. Results revealed performance variations across climate zones, with temperate climates outperforming dry regions. Regression equations between areal mass load and removal efficiency are proposed as design guidelines, and recommendations are made regarding optimal filling media. Additionally, for specific reuse applications, the inclusion of a disinfection unit is advised to meet microbiological quality standards.
Collapse
Affiliation(s)
- A Galvão
- CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
| | - M Rodrigues
- Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - J Mata
- Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - C M Silva
- CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| |
Collapse
|
2
|
Fang X, Li J, Ma Q, Zhou R, Du S. A quantitative review of nature-based solutions for urban sustainability (2016-2022): From science to implementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172219. [PMID: 38580120 DOI: 10.1016/j.scitotenv.2024.172219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Nature-based solutions (NBS) have great potential for achieving urban sustainability. While several reviews have comprehensively examined NBS, few have focused on its role in addressing urban sustainability challenges. Here we present a systematic review of 142 case studies selected from English papers published in SCI journals (i.e., indexed by Web of Science) during 2016-2022, whose titles, abstracts or keywords contain both urban-related terms and NBS-related terms. Using multiple methods, including statistical analysis, deductive content analysis, and inductive content analysis, we found that: (1) NBS have primarily been utilized to address urban flooding (43 %) and heat stress (21 %), with green roofs (24 %) and urban forests (16 %) being the most extensively studied NBS for tackling these challenges. (2) The ecosystem services (ES) capacity of NBS has been heavily researched (57 %), while studies addressing ES flows (7 %) and ES demand (18 %) are limited. (3) Most studies involved at least one NBS implementation process (83 %), but primarily focused on selecting and assessing NBS and related actions (66 %), with fewer studies on designing and implementing NBS and transferring & upscale NBS. We suggest that future research should contribute to the establishment of a checklist to assist in identifying which NBS types are effective in addressing specific urban sustainability challenges in varying contexts. Integrating the science and practice of NBS for urban sustainability is also crucial for advancing this field.
Collapse
Affiliation(s)
- Xuening Fang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 200234, China
| | - Jingwei Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 200234, China
| | - Qun Ma
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 200234, China
| | - Rui Zhou
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 200234, China
| | - Shiqiang Du
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 200234, China.
| |
Collapse
|
3
|
Stefanatou A, Vouzi L, Petousi I, Koukoura A, Gatidou G, Stasinakis AS, Fountoulakis MS. Treatment of real laundry wastewater using vertical flow constructed wetland planted with the ornamental climbing plant Trachelospermum jasminoides: assessing the removal of conventional pollutants and benzotriazoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43281-43291. [PMID: 38902442 DOI: 10.1007/s11356-024-34035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
This study investigates the effectiveness of vertical flow constructed wetlands (VFCWs) planted with a climbing ornamental plant for on-site treatment of real laundry wastewater. Specifically, the presence or absence of Trachelospermum jasminoides was evaluated for the removal performance of conventional pollutants (turbidity, TSS, COD, TP) and benzotriazoles (BTRs): 1H-benzotriazole (BTR), 5-methyl-1H-benzotriazole (5-TTR), 5-chlorobenzotriazole (CBTR), and xylytriazole (XTR). Results revealed that high removal efficiencies ranging from 92 to 98% were presented in both planted and unplanted systems for turbidity, TSS, and COD. Moreover, high removal rates were observed for CBTR and XTR, which were the only compounds found in real laundry wastewater, in both VFCW systems (planted: 100%; 94%; unplanted: 87%; 92%, respectively). The contribution of plants to the pollutant's removal was not statistically significant for all examined parameters. However, T. jasminoides demonstrated the ability to survive and grow without any visible symptoms under the harsh conditions of laundry wastewater, enabling the development of green facade. According to the findings, the application of VFCWs for on-site laundry wastewater treatment in buildings seems to be a highly promising solution, not only for primarily removing conventional pollutants but also for addressing emerging contaminants, specifically BTRs.
Collapse
Affiliation(s)
- Aimilia Stefanatou
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece.
| | - Lydia Vouzi
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Ioanna Petousi
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Asimina Koukoura
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Georgia Gatidou
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | | | | |
Collapse
|
4
|
Stefanatou A, Lagkadas M, Petousi I, Schiza S, Stasinakis AS, Fyllas N, Fountoulakis MS. Vertical flow constructed wetlands as green facades and gardens for on-site greywater treatment in buildings: Two-year mesocosm study on removal performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167362. [PMID: 37769734 DOI: 10.1016/j.scitotenv.2023.167362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
This study focuses on the performance and clogging of vertical flow constructed wetlands (VFCWs) planted with climbing ornamentals and ornamental plants for greywater treatment, after two years of operation at mesocosm level. Different substrate (sand, vermiculite) and vegetation (Trachelospermum jasminoides, Lonicera japonica, Callistemon laevis) types were evaluated to determine the optimal removal of pollutants. Results revealed that, during the second year of operation, removal efficiencies of turbidity and COD were significantly higher (1st year: 54-94 %; 71-89 %, 2nd year: 82-98 %; 86-95 %, respectively) for both studied planted substrates, compared to the first year. Moreover, it was found that sand systems from each studied plant as well as from the unplanted systems, were more effective compared to vermiculite for most of the studied parameters (turbidity, TSS, COD, anionic surfactants, pathogens). Sand systems were also quite effective in removing total coliforms (5 log reduction) and Escherichia coli (4 log reduction). At the end of the two-year experiment, all planted systems with sand had significantly higher hydraulic conductivity than the unplanted ones. With reference to evapotranspiration, even though planted systems had significantly higher losses, C. laevis systems demonstrated less water losses than the other vegetated systems. According to the findings, the studied plants managed to continue growing without facing added stress. Therefore, the application of climbing and ornamental plants in VFCWs for greywater treatment in buildings seems a promising option for developing green infrastructures in urban areas and enhancing the removal efficiency of such systems.
Collapse
Affiliation(s)
- Aimilia Stefanatou
- Department of Environment, University of the Aegean, 81100 Mytilene, Greece.
| | - Michail Lagkadas
- Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Ioanna Petousi
- Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Spyridoula Schiza
- Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | | | - Nikolaos Fyllas
- Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | | |
Collapse
|
5
|
Gholami M, O'Sullivan AD, Mackey HR. Nutrient treatment of greywater in green wall systems: A critical review of removal mechanisms, performance efficiencies and system design parameters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118917. [PMID: 37688961 DOI: 10.1016/j.jenvman.2023.118917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
Greywater has lower pathogen and nutrient levels than other mixed wastewaters, making it easier to treat and to reuse in nature-based wastewater treatment systems. Green walls (GWs) are one type of nature-based solutions (NBS) that are evolving in design to support on-site and low-cost greywater treatment. Greywater treatment in GWs involves interacting and complex physical, chemical, and biological processes. Design and operational considerations of such green technologies must facilitate these pivotal processes to achieve effective greywater treatment. This critical review comprehensively analyses the scientific literature on nutrient removal from greywater in GWs. It discusses nutrient removal efficiency in different GW types. Total nitrogen removal ranges from 7 to 91% in indirect green facades (IGF), 48-93% for modular living walls (MLW), and 8-26% for continuous living walls (CLW). Total phosphorus removal ranges from 7 to 67% for IGF and 2-53% for MLW. The review also discusses the specific nutrient removal mechanisms orchestrated by vegetation, substrates, and biofilms to understand their role in nitrogen and phosphorus removal within GWs. The effects of key GW design parameters on nutrient removal, including substrate characteristics, vegetation species, biodegradation, temperature, and operating parameters such as irrigation cycle and hydraulic loading rate, are assessed. Results show that greater substrate depth enhances nutrient removal efficiency in GWs by facilitating efficient filtration, straining, adsorption, and various biological processes at varying depths. Particle size and pore size are critical substrate characteristics in GWs. They can significantly impact the effectiveness of physicochemical and biological removal processes by providing sufficient pollutant contact time, active surface area, and by influencing saturation and redox conditions. Hydraulic loading rate (HLR) also impacts the contact time and redox conditions. An HLR between 50 and 60 mm/d during the vegetation growing season provides optimal nutrient removal. Furthermore, nutrient removal was higher when watering cycles were customized to specific vegetation types and their drought tolerances.
Collapse
Affiliation(s)
- Moeen Gholami
- Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Aisling D O'Sullivan
- Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand; Centre for Ecological Technical Solutions (CELTS.org.nz), University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| | - Hamish R Mackey
- Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
6
|
Petousi I, Thomaidi V, Kalogerakis N, Fountoulakis MS. Removal of pathogens from greywater using green roofs combined with chlorination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22560-22569. [PMID: 36289124 PMCID: PMC9938822 DOI: 10.1007/s11356-022-23755-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Greywater is an important alternative water resource which could be treated and reused in buildings, reducing the freshwater demand in drought affected areas. For the successful implementation of this solution, it is important to ensure the microbial safety of treated greywater. This study examined the microbiological quality of treated greywater produced by an emergent nature-based technology (green roofs) and a chlorination process. Specifically, the effect of substrate, substrate depth, and vegetation on the removal of total coliforms, Escherichia coli, and enterococci in experimental green roofs treating greywater was examined for a period of about 12 months. In addition, the ability of chlorination to inactivate the abovementioned pathogen indicators was evaluated and their potential regrowth was examined. Results shown that green roofs filled with 10 cm of perlite reduce total coliform concentration by about 0.4 log units while green roofs filled with 20 cm of vermiculite reduce total coliform concentration by about 1.2 log units. In addition, the use of vegetation in green roofs improves the removal of pathogenic bacteria by about 0.5 log units in comparison with unvegetated systems. In all cases, the effluents of green roofs failed to satisfy the criteria for indoor reuse of treated greywater for non-potable uses such as toilet flushing without a disinfection process. The addition of 3 mg/L of chlorine in the effluent provided safe greywater microbiological quality for storage periods of less than 24 h, while longer periods resulted in the significant regrowth of pathogens. In contrast, a chlorination dose of 7 mg/L completely secured inactivation of pathogen indicators for periods of up to 3 days.
Collapse
Affiliation(s)
- Ioanna Petousi
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - Vasiliki Thomaidi
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - Nikolaos Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Crete, Greece
| | | |
Collapse
|
7
|
Sotiropoulou M, Stefanatou A, Schiza S, Petousi I, Stasinakis AS, Fountoulakis MS. Removal of microfiber in vertical flow constructed wetlands treating greywater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159723. [PMID: 36309266 DOI: 10.1016/j.scitotenv.2022.159723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Nature-based solutions such as constructed wetlands (CW) are considered as a sustainable, green technology for greywater treatment. However, their efficiency to remove microplastics is not well-known even though greywater is considered as a significant source of microfiber pollution. In this study, the removal of fiber microplastics from greywater using a vertical flow constructed wetland (VFCW) was investigated. For the purposes of this study, an experimental wetland was constructed, planted with the flowering plant Zantedeschia aethiopica and filled with a substrate made of sand/gravel of several sizes. The system's performance was monitored for five months during which it received real laundry wastewater. Promising results were obtained showing the significant removal of microfibers from the influent (> 95 %). Moreover, the ability of the system to remove microfibers from laundry wastewater was not significantly affected from the hydraulic loading rate (HLR) applied. The average microfibers concentration decreased from 71 ± 25 microparticles/L in the influent to 1 ± 1 microparticles/L in the effluent of VFCW when an HLR of 63.7 mm/d was applied. High removal efficiencies were also observed for COD and turbidity (93 % and 94 %, respectively). Thus, the results indicate a significant improvement in the overall quality of laundry wastewater due to the use of the VFCW.
Collapse
Affiliation(s)
- M Sotiropoulou
- Department of Environment, University of the Aegean, Mytilene, Greece.
| | - A Stefanatou
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - S Schiza
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - I Petousi
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - A S Stasinakis
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - M S Fountoulakis
- Department of Environment, University of the Aegean, Mytilene, Greece
| |
Collapse
|
8
|
Monsalves N, Leiva AM, Gómez G, Vidal G. Organic Compounds and Antibiotic-Resistant Bacteria Behavior in Greywater Treated by a Constructed Wetland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2305. [PMID: 36767672 PMCID: PMC9916033 DOI: 10.3390/ijerph20032305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Laundry greywater is considered as an alternative source of non-potable water, as it is discharged in approximately 70% of homes. Because this water contains compounds such as biodegradable and recalcitrant organic matter, surfactants, and microbiological compounds, it must be treated prior to reuse. Therefore, the objective of this study was to assess the behavior of organic matter and antibiotic-resistant bacteria (ARB) in greywater treated by a constructed wetland (CW). The results show that the organic matter removal efficiencies were 67.19%, 50.15%, and 63.57% for biological oxygen demand (BOD5), chemical oxygen demand (COD) and total organic carbon (TOC), respectively; these efficiencies were not significant (p > 0.05). In addition, the CW allows the distribution of TOC and ionic compounds in the fractions below 1000 Da to increase by 5.03% and 13.05%, respectively. Meanwhile, the treatment of microbiological compounds generated non-significant removals (p > 0.05), along with increases in bacteria resistant to the antibiotics ciprofloxacin (CIP) and ceftriaxone (CTX) of 36.34%, and 40.79%, respectively. In addition, a strong association between ARB to CIP, CTX, cationic and non-ionic surfactants was determined, indicating the role of surfactants in ARB selection. It is suggested that disinfection systems should be employed prior to the reuse of the treated water.
Collapse
Affiliation(s)
- Naomi Monsalves
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción 4030000, Chile
| | - Ana María Leiva
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción 4030000, Chile
| | - Gloria Gómez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción 4030000, Chile
| | - Gladys Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción 4030000, Chile
| |
Collapse
|
9
|
Tsaligopoulos A, Kyvelou SS, Chiotinis M, Karapostoli A, Klontza EE, Lekkas DF, Matsinos YG. The Sound of a Circular City: Towards a Circularity-Driven Quietness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12290. [PMID: 36231592 PMCID: PMC9566453 DOI: 10.3390/ijerph191912290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The circular economy paradigm can be beneficial for urban sustainability by eliminating waste and pollution, by circulating products and materials and by regenerating nature. Furthermore, under an urban circular development scheme, environmental noise can be designed out. The current noise control policies and actions, undertaken at a source-medium-receiver level, present a linearity with minimum sustainability co-benefits. A circular approach in noise control strategies and in soundscape design could offer numerous ecologically related co-benefits. The global literature documenting the advantages of the implementation of circular economy in cities has highlighted noise mitigation as a given benefit. Research involving circular economy actions such as urban green infrastructure, green walls, sustainable mobility systems and electro-mobility has acknowledged reduced noise levels as a major circularity outcome. In this research paper, we highlight the necessity of a circularity and bioeconomy approach in noise control. To this end, a preliminary experimental noise modeling study was conducted to showcase the acoustic benefits of green walls and electric vehicles in a medium-sized urban area of a Mediterranean island. The results indicate a noise level reduction at 4 dB(A) when simulating the introduction of urban circular development actions.
Collapse
Affiliation(s)
- Aggelos Tsaligopoulos
- Acoustic Ecology Laboratory, Department of the Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Stella Sofia Kyvelou
- Department of Economic and Regional Development, School of Science of Economics and Public Administration, Panteion University of Social and Political Sciences, 17671 Athens, Greece
| | - Michalis Chiotinis
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 9, 15780 Zographou, Greece
| | - Aimilia Karapostoli
- School of Architectural Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria E. Klontza
- Waste Management Laboratory, Department of the Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Demetris F. Lekkas
- Waste Management Laboratory, Department of the Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Yiannis G. Matsinos
- Acoustic Ecology Laboratory, Department of the Environment, University of the Aegean, 81100 Mytilene, Greece
| |
Collapse
|
10
|
Lakho FH, Qureshi A, Novelli LDD, Depuydt V, Depreeuw T, Van Hulle SWH, Rousseau DPL. Performance of a green wall (Total Value Wall™) at high greywater loading rates and Life Cycle Impact Assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153470. [PMID: 35093344 DOI: 10.1016/j.scitotenv.2022.153470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Nature-based greywater (GW) treatment and reuse in urban areas has become an up-and-coming option. A 14.4 m2 green wall system called Total Value Wall (TVW) was installed at a terraced house in Gent (Belgium) for treating GW and reusing the effluent for toilet flushing. In a previous study, the TVW was loaded at 7 L.m-2.d-1 and efficiently removed TSS (67%), COD (43%), BOD5 (83%) and total coliforms (log 2), but a number of issues were reported related to nutrient leaching from the substrate, and the excessive retention time in the storage tanks. In this study results are reported from a follow-up study during which an adapted TVW was subjected to both higher hydraulic and pollutant loading rates in order to investigate the treatment capability of TVW. The design of the system, i.e. substrate contained in geotextile bags, did not sustain the higher hydraulic loading rates as excessive leakage occurred. Despite this, the higher pollutant loading rates still resulted in an acceptable effluent quality with 15 mg.L-1 TSS (90%), 85 mg.L-1 COD (82%), and 15 mg.L-1 BOD5 (95%). Ammonium, E. coli and total coliforms were removed with removal rates of 98%, 63% (0.4 log units), and 36% (0.2 log units), respectively. Finally, a life cycle assessment (LCA) was performed for the TVW with and without treating GW to analyze the environmental burden. The LCA impacts showed that replacing tap water and chemical fertilizer by GW, and the reuse of effluent, have a positive impact. However, the energy use for pumping has a major impact and should be minimized by using an efficient pump and distribution system to reduce the overall footprint.
Collapse
Affiliation(s)
- Fida Hussain Lakho
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens Latemlaan 2B, B-8500 Kortrijk, Belgium.
| | - Asif Qureshi
- Université du Québec en Abitibi-Témiscamingue (UQAT), 445 Boulevard de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - Laura De Donno Novelli
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens Latemlaan 2B, B-8500 Kortrijk, Belgium
| | - Veerle Depuydt
- Flanders Knowledge Center Water (Vlakwa), Leiestraat 22, B-8500 Kortrijk, Belgium
| | - Teun Depreeuw
- Muurtuin, Vandenpeereboomstraat 16, 2140 Borgerhout, Belgium
| | - Stijn W H Van Hulle
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens Latemlaan 2B, B-8500 Kortrijk, Belgium
| | - Diederik P L Rousseau
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens Latemlaan 2B, B-8500 Kortrijk, Belgium
| |
Collapse
|
11
|
Thomaidi V, Petousi I, Kotsia D, Kalogerakis N, Fountoulakis MS. Use of green roofs for greywater treatment: Role of substrate, depth, plants, and recirculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151004. [PMID: 34666091 DOI: 10.1016/j.scitotenv.2021.151004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
This work focuses on the use of green roof as a modified shallow vertical flow constructed wetland for greywater treatment in buildings. Different design parameters such as substrate (perlite or vermiculite), substrate depth (15 cm or 25 cm), and plant species (Geranium zonale, Polygala myrtifolia or Atriplex halimus) were tested to determine optimum selection. In addition, the application of a 40% recirculation rate was applied during last month of the experiment to quantify the efficiency of pollutants removal. The experiment was conducted for a period of 12 months under typical Mediterranean climatic conditions in Lesvos island, Greece. Results showed that green roofs planted with Atriplex halimus and filled with 20 cm of vermiculite had the best COD (91%), BOD (91%), TSS (93%) and turbidity (93%) average removal efficiencies. In contrast, significant lower removals were observed when the substrate depth was decreased to 10 cm (60-75%). Green roof vegetation had significant impact on TN removal as the average TN concentration decreased from 6.5 ± 1.8 mg/L in the effluent of unplanted systems to 4.9 ± 2.7 mg/L in the effluent of green roofs planted with Atriplex halimus. The recirculation of a portion of the effluent in the influent had as a result a significant improvement of turbidity, organic matter and (especially) nitrogen removal. For example, BOD removal in green roofs planted with Atriplex halimus and filled with 20 cm of perlite increased from 76% to 92%, while TN removal in green roofs planted with the same plants and filled with 20 cm of vermiculite increased from 56% to 87%. Overall, the operation of green roofs as modified vertical unsaturated constructed wetlands seems a sustainable nature-based solution for greywater treatment and reuse in urban areas.
Collapse
Affiliation(s)
- V Thomaidi
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - I Petousi
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - D Kotsia
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - N Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Greece
| | - M S Fountoulakis
- Department of Environment, University of the Aegean, Mytilene, Greece.
| |
Collapse
|
12
|
Modelling Treated Laundry Greywater Reuse for Irrigation Using an Affordable Treatment Method and Seed Germination Test. SUSTAINABILITY 2022. [DOI: 10.3390/su14031314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A potential solution in areas facing water shortages is greywater (GW) reuse. GW is produced in bathrooms, laundry rooms, and kitchens of households. With proper treatment, it can be an alternative source for the agriculture sector, which consumes approximately 70% of the world’s water. This paper represents the characterization of synthetic laundry GW fraction (LGW), its treatment and modelling of treated LGW reuse for irrigation using a seed germination test. LGW’s constant quality (pH = 8.0 ± 0.3, turbidity = 174 ± 73 NTU, BOD5 = 300 ± 60 mgL−1, TOC = 162 ± 40 mgL−1) is suitable for testing the treatment method’s efficiency. Coagulation–flocculation, applying iron(III) chloride and sand filtration as a simple treatment combination, generates good-quality irrigation water (pH = 7.27 ± 0.23, turbidity = 0.6 ± 0.4 NTU, BOD5 = 17 ± 8 mgL−1, TOC = 16 ± 6 mgL−1). Seed germination tests with different waters, and elemental analysis of water, roots, and stems of the plants were done to verify the plants’ quality. The sodium adsorption ratio (SAR) for the raw LGW (SAR = 4.06) was above the threshold (<3) for safe irrigation, thus it is not recommended for this purpose. Based on the elemental analysis results and SAR value of treated LGW (SAR = 2.84), it can potentially be used for irrigation purposes.
Collapse
|
13
|
Cadmium Uptake and Growth Responses of Seven Urban Flowering Plants: Hyperaccumulator or Bioindicator? SUSTAINABILITY 2022. [DOI: 10.3390/su14020619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The application of flowering plants is the basis of urban forest construction. A newly-found flowering hyperaccumulator is crucial for remediating urban contaminated soil sustainably by cadmium (Cd). This study evaluated growth responses, Cd uptake and bioaccumulation characteristics of seven urban flowering plants. Based on growth responses of these plants, Calendula officinalis L. showed high tolerance to at least 100 mg kg−1 Cd, in terms of significant increase in biomass and with no obvious changes in height. After 60 d exposure to 100 mg kg−1 Cd, the accumulated Cd in shoots of the plant reached 279.51 ± 13.67 μg g−1 DW, which is above the critical value defined for a hyperaccumulator (100 μg g−1 DW for Cd). Meanwhile, the plant could accumulate Cd to as much as 926.68 ± 29.11 μg g−1 DW in root and 1206.19 ± 23.06 μg g−1 DW in plant, and had higher Cd uptake and bioaccumulation values. According to these traits, it is shown that Calendula officinalis L. can become a potential Cd-hyperaccumulator for phytoremediation. By contrast, Dianthus caryophyllus L. is very sensitive to Cd stress in terms of significantly decreased biomass, height and Cd uptake, indicating the plant is considered as a Cd-bioindicator.
Collapse
|
14
|
Boano F, Costamagna E, Caruso A, Fiore S, Chiappero M, Galvão A, Pisoeiro J, Rizzo A, Masi F. Evaluation of the influence of filter medium composition on treatment performances in an open-air green wall fed with greywater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113646. [PMID: 34509128 DOI: 10.1016/j.jenvman.2021.113646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
According to the European Research and Innovation Policy Agenda, nature-based solutions (NBSs) are key technologies to improve the sustainability of urban areas. Among NBSs, green walls have been recently studied for several applications, among the others the treatment of lowly polluted wastewater flows as greywater (GW, e.g. domestic wastewater excluding toilet flushes). This work is aimed at the evaluation of the influence of four additives (compost, biochar, granular activated carbon, polyacrylate) mixed with a base filter medium made of coconut fibre and perlite, on the performances of a green wall fed in batch mode with synthetic GW. The green wall was operated with a high hydraulic loading rate of GW (740.8 L/m2/day) in open-air winter conditions (3.5-15 °C measured for GW) between January and April. The performances of the green wall have been assessed though the monitoring every 1-2 weeks of physicochemical and biological parameters (pH, electric conductivity, total suspended solids, dissolved oxygen, BOD5 and COD, nitrogen and phosporus compounds, chlorides and sulphates, anionic surfactants and E. coli). Removal performances were excellent for BOD5 (>95%) and E.coli (>98%) for all additives; compared to the base medium, biochar was the best performing additive over the highest number of parameters, achieving removals equal to 51% for COD, 47% for TKN and nitric nitrogen and 71% for anionic surfactants. Compost also achieved high removal performances, but the frequent clogging events occurred during the monitoring period do not make its use recommendable. Granular activated carbon and the combination of biochar and polyacrylate performed better than the base medium, but only about the removal of nitric nitrogen. These results demonstrated that, in the considered experimental boundaries, biochar could improve the overall treatment performances of a green wall fed by GW and operated in challenging conditions.
Collapse
Affiliation(s)
- Fulvio Boano
- DIATI (Department of Environment, Land and Infrastructure Engineering), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy; CleanWaterCenter@PoliTo, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Elisa Costamagna
- DIATI (Department of Environment, Land and Infrastructure Engineering), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Alice Caruso
- DIATI (Department of Environment, Land and Infrastructure Engineering), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Silvia Fiore
- DIATI (Department of Environment, Land and Infrastructure Engineering), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy; CleanWaterCenter@PoliTo, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Marco Chiappero
- DIATI (Department of Environment, Land and Infrastructure Engineering), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Ana Galvão
- CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Joana Pisoeiro
- CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | | | - Fabio Masi
- IRIDRA Srl, Via La Marmora 51, 50121, Florence, Italy
| |
Collapse
|
15
|
Lakho FH, Vergote J, Ihsan-Ul-Haq Khan H, Depuydt V, Depreeuw T, Van Hulle SWH, Rousseau DPL. Total value wall: Full scale demonstration of a green wall for grey water treatment and recycling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113489. [PMID: 34426216 DOI: 10.1016/j.jenvman.2021.113489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Greywater treatment and reuse for non-potable purposes in urban areas has become a widely researched topic to reduce the burden on fresh water resources. This study reports on the use of a green wall for treating grey water and reusing the effluent for toilet flushing, called Total Value Wall (TVW). Initially, the effectiveness of (mixtures of) different substrates, i.e. lava, lightweight expanded clay aggregates, organic soil and biochar was investigated by means of column tests. All substrates were first examined for hydraulic characteristics and later on the columns were fed with synthetic grey wastewater and followed up in terms of removal efficiency of COD and detergents. The mixture consisting of lava (50%), organic soil (25%) and biochar (25%) proved to be optimal both in terms of percolation rates and removal efficiencies, and was thus selected for the full-scale system. The full-scale TVW of 14.4 m2 was installed at a terraced house in Ghent (Belgium), and was loaded with grey water at 100 L per day. Influent and effluent quality were routinely monitored by grab sampling, water savings were monitored by means of flow meters, and electricity consumption was also accounted for. The TVW was further equipped with sensors that measure temperature, Particulate Matter (PM10) and CO2 in the air. The full-scale system obtained effluent concentrations of 13 mg.L-1 TSS, 91 mg.L-1 COD and 5 mg.L-1 BOD5. Ammonium and total coliforms were removed with removal rates of 97% and 99% (2 log units) respectively. However, an increase in effluent concentration of nitrate and phosphate was observed due to leaching from the selected substrate. Available data from the temperature sensors have clearly demonstrated the additional benefit of the TVW as an insulating layer, keeping the heat outside on warmer days, and keeping the heat inside on colder days. Overall, this study demonstrated that the TVW is a sustainable system for greywater treatment and reuse.
Collapse
Affiliation(s)
- Fida Hussain Lakho
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens Latemlaan 2B, B-8500, Kortrijk, Belgium.
| | - Jarne Vergote
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens Latemlaan 2B, B-8500, Kortrijk, Belgium
| | - Hafiz Ihsan-Ul-Haq Khan
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens Latemlaan 2B, B-8500, Kortrijk, Belgium
| | - Veerle Depuydt
- Flanders Knowledge Center Water (Vlakwa), Leiestraat 22, B-8500, Kortrijk, Belgium
| | - Teun Depreeuw
- Muurtuin, Vandenpeereboomstraat 16, 2140, Borgerhout, Belgium
| | - Stijn W H Van Hulle
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens Latemlaan 2B, B-8500, Kortrijk, Belgium
| | - Diederik P L Rousseau
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens Latemlaan 2B, B-8500, Kortrijk, Belgium
| |
Collapse
|
16
|
Estelrich M, Vosse J, Comas J, Atanasova N, Costa JC, Gattringer H, Buttiglieri G. Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112968. [PMID: 34102468 DOI: 10.1016/j.jenvman.2021.112968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/04/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
To counteract increasing water scarcity in the Mediterranean region, this study provides data on the efficiency of a decentralized, nature-based solution for hotel greywater (GW) treatment and reuse. A pilot plant of a constructed wetland called Vertical Ecosystem (vertECO), installed in a large hotel with GW separation, was operated continuously for 12 months. vertECO achieved a removal efficiency higher than 84.0% for COD and TSS and higher than 95.4% for turbidity and BOD5. The monitored physicochemical parameters in the effluent meet the requirements for many reuse purposes restricted in the water reuse legislation. Based on the pilot operation, an economic model was set to estimate its economic feasibility (CAPEX, OPEX and payback period of investment) at several treated volumes. The payback was calculated, at the water and energy prices of Spain and other countries, with a planned operation period of 20 years. The higher the water price, the lower was the payback period. Treated GW volumes of 10.5 and 20 m3/day correspond to payback periods for Spain of 10.1 years and 9.0 years, respectively. Finally, co-benefits of vertECO have been considered alongside economic terms, and compared with another intensive technology (i.e., membrane bioreactor).
Collapse
Affiliation(s)
- Miquel Estelrich
- Alchemia-nova GmbH, Institute for Innovative Phytochemistry & Closed Loop Processes, Baumgartenstraße 93, A-1140 Vienna, Austria; Green Building Management SL. C/Carme 45, Local 4, Girona, Spain.
| | - Josephine Vosse
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Joaquim Comas
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Institute of the Environment (LEQUiA), University of Girona, Campus Montilivi, 17071 Girona, Catalonia, Spain
| | - Nataša Atanasova
- University of Ljubljana, Faculty of Civil and Geodetic Engineering, 1000, Ljubljana, Slovenia
| | | | - Heinz Gattringer
- Alchemia-nova GmbH, Institute for Innovative Phytochemistry & Closed Loop Processes, Baumgartenstraße 93, A-1140 Vienna, Austria
| | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| |
Collapse
|