1
|
de Farias BO, Saggioro EM, Montenegro KS, Magaldi M, Santos HSO, Gonçalves-Brito AS, Pimenta RL, Ferreira RG, Spisso BF, Pereira MU, Bianco K, Clementino MM. Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60880-60894. [PMID: 39395082 DOI: 10.1007/s11356-024-35287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Pino-Hurtado MS, Fernández-Fernández R, Campaña-Burguet A, González-Azcona C, Lozano C, Zarazaga M, Torres C. A Surveillance Study of Culturable and Antimicrobial-Resistant Bacteria in Two Urban WWTPs in Northern Spain. Antibiotics (Basel) 2024; 13:955. [PMID: 39452221 PMCID: PMC11504709 DOI: 10.3390/antibiotics13100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Wastewater treatment plants (WWTPs) are hotspots for the spread of antimicrobial resistance into the environment. This study aimed to estimate the proportion of clinically relevant antimicrobial-resistant bacteria in two Spanish urban WWTPs, located in the region of La Rioja (Spain); Methods: Ninety-four samples (48 water/46 sludge) were collected and streaked on ten different selective media, in order to recover the culturable bacterial diversity with relevant resistance phenotypes: Extended-Spectrum β-Lactamase-producing Escherichia coli/Klebsiella pneumoniae (ESBL-Ec/Kp), Carbapenem-resistant Enterobacteriaceae (CR-E), Methicillin-resistant Staphylococcus aureus (MRSA), and Vancomycin-resistant Enterococcus faecium/faecalis (VR-E. faecium/faecalis). Isolates were identified by MALDI-TOF and were tested for antimicrobial susceptibility using the disk diffusion method. The confirmation of ESBL production was performed by the double-disk test; Results: A total of 914 isolates were recovered (31 genera and 90 species). Isolates with clinically relevant resistance phenotypes such as ESBL-Ec/Kp and CR-E were recovered in the effluent (0.4 × 100-4.8 × 101 CFU/mL) and organic amendment samples (1.0-101-6.0 × 102 CFU/mL), which are discharged to surface waters/agricultural fields. We reported the presence of VR-E. faecium in non-treated sludge and in the digested sludge samples (1.3 × 101-1 × 103 CFU/mL). MRSA was also recovered, but only in low abundance in the effluent (0.2 × 101 CFU/mL); Conclusions: This study highlights the need for improved wastewater technologies and stricter regulations on the use of amendment sludge in agriculture. In addition, regular monitoring and surveillance of WWTPs are critical for early detection and the mitigation of risks associated with the spread of antimicrobial resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (M.S.P.-H.); (A.C.-B.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (M.S.P.-H.); (A.C.-B.)
| |
Collapse
|
3
|
Canan-Rochenbach G, Barreiros MAB, Lima AOS, Bauda P, Sanches-Simões E, Pimentel-Almeida W, Ariente-Neto R, Somensi CA, Almeida TCM, Corrêa R, Radetski CM. Characterization of bacterial resistance in treated hospital wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:120-128. [PMID: 35802062 DOI: 10.1080/09593330.2022.2100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
This article seeks to characterize the bacterial profile of pediatric hospital wastewater samples collected at the outlet of a wastewater treatment plant, and to estimate their relative susceptibility to antimicrobial agents. A total of 64 strains were isolated in the wastewater samples, of which 49 were identified as belonging to different families: Enterobacteriaceae (e.g. Escherichia coli, Klebsiella sp., Citrobacter sp.) comprised 57.2% of the identified bacteria, non-Enterobacteriaceae (e.g. Aeromonas sp., Pseudomonas sp.) comprised 30.6%, and Streptococcaceae (e.g. Enterococcus sp.) comprised 12.2%. The tests of the susceptibility of the bacteria to the antimicrobial agents used in the hospital showed that 100% of the bacterial species found discharged in the hospital wastewater treatment system were resistant to one or more of the antimicrobial agents according to the criteria of the U.S. Clinical Laboratory Standards Institute/National Committee for Clinical Laboratory Standards. The antimicrobial agent tests showed that meropenem, norfloxacin, ciprofloxacin, levofloxacin, and cefepime were the most effective antimicrobials against bacteria of the Enterobacteriaceae family. For bacteria of the non-Enterobacteriaceae family, norfloxacin, ciprofloxacin, levofloxacin, and cefepime presented the most effective antimicrobial action, whereas for bacteria of the Streptococcaceae family, ampicillin, vancomycin, and gentamicin were the most effective antimicrobials. Hospital wastewater treatment plants could be considered as places of selection pressure for bacterial resistance because of the presence of antibiotic-resistant bacteria coming from sewers or created at the treatment plant.
Collapse
Affiliation(s)
- Gisele Canan-Rochenbach
- Universidade do Vale do Itajaí, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
| | | | - André O S Lima
- Universidade do Vale do Itajaí, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
| | | | - Eric Sanches-Simões
- Universidade do Vale do Itajaí, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
| | - Wendell Pimentel-Almeida
- Universidade do Vale do Itajaí, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
| | - Rafael Ariente-Neto
- Universidade Federal do Paraná (UFPR), Campus Jandaia do Sul, R. Dr. João Maxímiano, Jandaia do Sul, Brazil
| | - Cleder A Somensi
- Instituto Federal Catarinense (IFC), Campus Araquari, Curso de Mestrado Profissional em Tecnologia e Ambiente, Araquari, Brazil
| | - Tito C M Almeida
- Universidade Federal de Santa Catarina, Departamento de Oceanografia, Florianópolis, Brazil
| | - Rogério Corrêa
- Universidade do Vale do Itajaí, Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, Brazil
| | - Claudemir M Radetski
- Universidade do Vale do Itajaí, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
| |
Collapse
|
4
|
Smalla K, Kabisch J, Fiedler G, Hammerl JA, Tenhagen BA. [Health risks from crop irrigation with treated wastewater containing antibiotic residues, resistance genes, and resistant microorganisms]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023:10.1007/s00103-023-03710-7. [PMID: 37233812 DOI: 10.1007/s00103-023-03710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
This review describes the effects and potential health risks of resistant microorganisms, resistance genes, and residues of drugs and biocides that occur when re-using wastewater for crop irrigation. It focusses on specific aspects of these contaminants and their interactions, but does not provide a general risk assessment of the microbial load when using reclaimed water.Antimicrobial residues, antimicrobial resistant microorganisms, and resistance genes are frequently detected in treated wastewater. They have effects on the soil and plant-associated microbiota (total associated microorganisms) and can be taken up by plants. An interaction of residues with microorganisms is mainly expected before using the water for irrigation. However, it may also occur as a combined effect on the plant microbiome and all the abundant resistance genes (resistome). Special concerns are raised as plants are frequently consumed raw, that is, without processing that might reduce the bacterial load. Washing fruits and vegetables only has minor effects on the plant microbiome. On the other hand, cutting and other processes may support growth of microorganisms. Therefore, after such process steps, cooling of the foods is required.Further progress has to be made in the treatment of wastewater that will be used for crop irrigation with respect to removing micropollutants and microorganisms to minimize the risk of an increased exposure of consumers to transferable resistance genes and resistant bacteria.
Collapse
Affiliation(s)
- Kornelia Smalla
- Institut für Epidemiologie und Pathogendiagnostik, Julius Kühn-Institut (JKI), Braunschweig, Deutschland
| | - Jan Kabisch
- Institut für Mikrobiologie und Biotechnologie, Max Rubner-Institut (MRI), Kiel, Deutschland
| | - Gregor Fiedler
- Institut für Mikrobiologie und Biotechnologie, Max Rubner-Institut (MRI), Kiel, Deutschland
| | - Jens Andre Hammerl
- Abteilung Biologische Sicherheit, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | - Bernd-Alois Tenhagen
- Abteilung Biologische Sicherheit, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland.
| |
Collapse
|
5
|
Tuvo B, Scarpaci M, Bracaloni S, Esposito E, Costa AL, Ioppolo M, Casini B. Microplastics and Antibiotic Resistance: The Magnitude of the Problem and the Emerging Role of Hospital Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105868. [PMID: 37239594 DOI: 10.3390/ijerph20105868] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The role of microplastics (MPs) in the spread of antibiotic resistance genes (ARGs) is increasingly attracting global research attention due to their unique ecological and environmental effects. The ubiquitous use of plastics and their release into the environment by anthropic/industrial activities are the main sources for MP contamination, especially of water bodies. Because of their physical and chemical characteristics, MPs represent an ideal substrate for microbial colonization and formation of biofilm, where horizontal gene transfer is facilitated. In addition, the widespread and often injudicious use of antibiotics in various human activities leads to their release into the environment, mainly through wastewater. For these reasons, wastewater treatment plants, in particular hospital plants, are considered hotspots for the selection of ARGs and their diffusion in the environment. As a result, the interaction of MPs with drug-resistant bacteria and ARGs make them vectors for the transport and spread of ARGs and harmful microorganisms. Microplastic-associated antimicrobial resistance is an emerging threat to the environment and consequently for human health. More studies are required to better understand the interaction of these pollutants with the environment as well as to identify effective management systems to reduce the related risk.
Collapse
Affiliation(s)
- Benedetta Tuvo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Michela Scarpaci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Sara Bracaloni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Enrica Esposito
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Anna Laura Costa
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Martina Ioppolo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Beatrice Casini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
6
|
Neidhöfer C, Sib E, Neuenhoff M, Schwengers O, Dummin T, Buechler C, Klein N, Balks J, Axtmann K, Schwab K, Holderried TAW, Feldmann G, Brossart P, Engelhart S, Mutters NT, Bierbaum G, Parčina M. Hospital sanitary facilities on wards with high antibiotic exposure play an important role in maintaining a reservoir of resistant pathogens, even over many years. Antimicrob Resist Infect Control 2023; 12:33. [PMID: 37061726 PMCID: PMC10105422 DOI: 10.1186/s13756-023-01236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Hospitals with their high antimicrobial selection pressure represent the presumably most important reservoir of multidrug-resistant human pathogens. Antibiotics administered in the course of treatment are excreted and discharged into the wastewater system. Not only in patients, but also in the sewers, antimicrobial substances exert selection pressure on existing bacteria and promote the emergence and dissemination of multidrug-resistant clones. In previous studies, two main clusters were identified in all sections of the hospital wastewater network that was investigated, one K. pneumoniae ST147 cluster encoding NDM- and OXA-48 carbapenemases and one VIM-encoding P. aeruginosa ST823 cluster. In the current study, we investigated if NDM- and OXA-48-encoding K. pneumoniae and VIM-encoding P. aeruginosa isolates recovered between 2014 and 2021 from oncological patients belonged to those same clusters. METHODS The 32 isolates were re-cultured, whole-genome sequenced, phenotypically tested for their antimicrobial susceptibility, and analyzed for clonality and resistance genes in silico. RESULTS Among these strains, 25 belonged to the two clusters that had been predominant in the wastewater, while two others belonged to a sequence-type less prominently detected in the drains of the patient rooms. CONCLUSION Patients constantly exposed to antibiotics can, in interaction with their persistently antibiotic-exposed sanitary facilities, form a niche that might be supportive for the emergence, the development, the dissemination, and the maintenance of certain nosocomial pathogen populations in the hospital, due to antibiotic-induced selection pressure. Technical and infection control solutions might help preventing transmission of microorganisms from the wastewater system to the patient and vice versa, particularly concerning the shower and toilet drainage. However, a major driving force might also be antibiotic induced selection pressure and parallel antimicrobial stewardship efforts could be essential.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Esther Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Marcel Neuenhoff
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Schwengers
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Dummin
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Christian Buechler
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Niklas Klein
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Julian Balks
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Katharina Axtmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Katjana Schwab
- Department of Oncology, Hematology, and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Tobias A W Holderried
- Department of Oncology, Hematology, and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Georg Feldmann
- Department of Oncology, Hematology, and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Nico T Mutters
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| |
Collapse
|
7
|
Foyle L, Burnett M, Creaser A, Hens R, Keough J, Madin L, Price R, Smith H, Stone S, Kinobe RT. Prevalence and distribution of antimicrobial resistance in effluent wastewater from animal slaughter facilities: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120848. [PMID: 36563990 DOI: 10.1016/j.envpol.2022.120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The extensive use of antibiotics in food animal production and disposal of untreated wastewater from food animal slaughter facilities may create a shift in microbiomes of different ecosystems by generating reservoirs of antimicrobial resistance along the human-animal-environmental interface. This epidemiological problem has been studied, but its magnitude and impact on a global scale is poorly characterised. A systematic review was done to determine global prevalence and distribution patterns of antimicrobial resistance in effluent wastewater from animal slaughter facilities. Extracted data were stratified into rational groups for secondary analyses and presented as percentages. Culture and sensitivity testing was the predominant method; Escherichia spp., Enterococcus spp., and Staphylococcus aureus were the most targeted isolates. Variable incidences of resistance were detected against all major antimicrobial classes including reserved drugs such as ceftazidime, piperacillin, gentamicin, ciprofloxacin, and chloramphenicol; the median frequency and range in resistant Gram-negative isolates were: 11 (0-100), 62 (0-100), 8 (0-100), 14 (0-93) and 12 (0-62) respectively. Ciprofloxacin was the most tested drug with the highest incidences of resistance in livestock slaughterhouses in Iran (93%), Nigeria (50%) and China (20%), and poultry slaughterhouses in Germany (21-81%) and Spain (56%). Spatial global distribution patterns for antimicrobial resistance were associated with previously reported magnitude of antibiotic use in livestock or poultry farming and, the implicit existence of jurisdictional policies to regulate antibiotic use. These data indicate that anthropogenic activities in farming systems are a major contributor to the cause and dissemination of antimicrobial resistance into the environment via slaughterhouse effluents.
Collapse
Affiliation(s)
- Leo Foyle
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Solander Drive, Townsville, Queensland, 4811, Australia
| | - Matthew Burnett
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Abbey Creaser
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Rachel Hens
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Julia Keough
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Lauren Madin
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Ruby Price
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Hayley Smith
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Samuel Stone
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Robert T Kinobe
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia; Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Solander Drive, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
8
|
Xiang X, Chen D, Li N, Xu Q, Li H, He J, Lu J. PVDF/PLA electrospun fiber membrane impregnated with metal nanoparticles for emulsion separation, surface antimicrobial, and antifouling activities. SCIENCE CHINA. TECHNOLOGICAL SCIENCES 2023; 66:1461-1470. [PMID: 37153371 PMCID: PMC10127986 DOI: 10.1007/s11431-022-2325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/30/2023] [Indexed: 05/09/2023]
Abstract
Although many superwetting materials have been designed for the treatment of oil-containing wastewater, separation strategies for oil-in-water systems containing bacteria have rarely been reported. Herein, poly(vinylidene difluoride)- and poly(lactic acid)-blended fibrous membranes loaded with silver and copper oxide nanoparticles were successfully prepared by a two-step method of electrostatic spinning and liquid-phase synthesis. The product membrane showed excellent super-oleophilic properties in air and hydrophobicity under oil. It could separate water-in-oil emulsion systems containing surfactants with an efficiency above 90%. More importantly, the nanoparticle-loaded fibers were characterized by material degradability and slowly released ions. The fibers exhibited excellent antibacterial activities against both gram-positive and -negative bacteria. This work provides a feasible strategy for water-in-oil emulsion separation and bacterial treatment of wastewater.
Collapse
Affiliation(s)
- Xin Xiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - DongYun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - NaJun Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - QingFeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - JingHui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - JianMei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| |
Collapse
|
9
|
Schuster D, Axtmann K, Holstein N, Felder C, Voigt A, Färber H, Ciorba P, Szekat C, Schallenberg A, Böckmann M, Zarfl C, Neidhöfer C, Smalla K, Exner M, Bierbaum G. Antibiotic concentrations in raw hospital wastewater surpass minimal selective and minimum inhibitory concentrations of resistant Acinetobacter baylyi strains. Environ Microbiol 2022; 24:5721-5733. [PMID: 36094736 DOI: 10.1111/1462-2920.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023]
Abstract
Antibiotics are essential for modern medicine, they are employed frequently in hospitals and, therefore, present in hospital wastewater. Even in concentrations, that are lower than the minimum inhibitory concentrations (MICs) of susceptible bacteria, antibiotics may exert an influence and select resistant bacteria, if they exceed the MSCs (minimal selective concentrations) of resistant strains. Here, we compare the MSCs of fluorescently labelled Acinetobacter baylyi strains harboring spontaneous resistance mutations or a resistance plasmid with antibiotic concentrations determined in hospital wastewater. Low MSCs in the μg/L range were measured for the quinolone ciprofloxacin (17 μg/L) and for the carbapenem meropenem (30 μg/L). A 24 h continuous analysis of hospital wastewater showed daily fluctuations of the concentrations of these antibiotics with distinctive peaks at 7-8 p.m. and 5-6 a.m. The meropenem concentrations were always above the MSC and MIC values of A. baylyi. In addition, the ciprofloxacin concentrations were in the range of the lowest MSC for about half the time. These results explain the abundance of strains with meropenem and ciprofloxacin resistance in hospital wastewater and drains.
Collapse
Affiliation(s)
- Dominik Schuster
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Katharina Axtmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Niklas Holstein
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Carsten Felder
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Alex Voigt
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Harald Färber
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Patrick Ciorba
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christiane Szekat
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna Schallenberg
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Matthias Böckmann
- Environmental Systems Analysis, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Christiane Zarfl
- Environmental Systems Analysis, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Hembach N, Bierbaum G, Schreiber C, Schwartz T. Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: A molecular biology comparison. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120128. [PMID: 36089145 DOI: 10.1016/j.envpol.2022.120128] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Manure contains vast amounts of biological contaminants of veterinary origin. Only few studies analyse clinically critical resistance genes against reserve antibiotics in manure. In general, resistances against these high priority antibiotics involve a high potential health risk. Therefore, their spread in the soil as well as the aquatic environment has to be prevented. Manures of 29 different swine livestock were analysed. Abundances of facultative pathogenic bacteria including representatives of the clinically critical ESKAPE-pathogens (P. aeruginosa, K. pneumoniae, A. baumannii, E. faecium) and E. coli were investigated via qPCR. Antibiotic resistance genes against commonly used veterinary antibiotics (ermB, tetM, sul1) as well as various resistance genes against important (mecA, vanA) and reserve antibiotics (blaNDM, blaKPC3, mcr-1), which are identified by the WHO, were also obtained by qPCR analysis. The manures of all swine livestock contained facultative pathogenic bacteria and commonly known resistance genes against antibiotics used in veterinary therapies, but more important also a significant amount of clinically critical resistance genes against reserve antibiotics for human medicine. To illustrate the impact the occurrence of these clinically critical resistance genes, comparative measurements were taken of the total wastewater of a large tertiary care hospital (n = 8). Both manure as well as raw hospital wastewaters were contaminated with significant abundances of gene markers for facultative pathogens and with critical resistance genes of reserve antibiotics associated with genetic mobile elements for horizontal gene transfer. Hence, both compartments bear an exceptional potential risk for the dissemination of facultative pathogens and critical antibiotic resistance genes.
Collapse
Affiliation(s)
- Norman Hembach
- Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christiane Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Thomas Schwartz
- Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
11
|
Klatt M, Beyer F, Einfeldt J. Hospital wastewater treatment and the role of membrane filtration - removal of micropollutants and pathogens: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2213-2232. [PMID: 36378176 DOI: 10.2166/wst.2022.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dissemination of multiresistant bacteria and high concentrations of micropollutants by hospitals and other medical facilities can be significantly reduced by a wide variety of on-site treatment approaches. Membrane filtration technologies, ranging from microfiltration to reverse osmosis, have been adapted in many studies and offer multiple purposes in advanced wastewater treatment configurations. While the direct rejection of pharmaceutical compounds and pathogens can only be achieved with nanofiltration and reverse osmosis processes, porous membranes are known for their pathogen removal capabilities and can be used in combination with other advanced treatment approaches, such as oxidation and adsorption processes. This review was conducted to systematically assess studies with membrane filtration technologies that are used as either stand-alone or hybrid systems for the treatment of hospital wastewater. In this review, four different databases were screened with a pre-set of search strings to thoroughly investigate the application of membrane filtration technology in hospital wastewater treatment. Hybrid systems that combine multiple treatment technologies seem to be the most promising way of consistently removing micropollutants and pathogens from hospital wastewater, but additional economic assessments are needed for an extensive evaluation.
Collapse
Affiliation(s)
- Marten Klatt
- Department of Environmental Engineering, Hamburg University of Applied Sciences, Hamburg, Germany E-mail: ; ; Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Hamburg, Germany
| | - Falk Beyer
- Department of Process Engineering, Hamburg University of Applied Sciences, Hamburg, Germany
| | - Jörn Einfeldt
- Department of Environmental Engineering, Hamburg University of Applied Sciences, Hamburg, Germany E-mail: ;
| |
Collapse
|
12
|
Alexander J, Hembach N, Schwartz T. Identification of critical control points for antibiotic resistance discharge in sewers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153186. [PMID: 35051461 DOI: 10.1016/j.scitotenv.2022.153186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Disrupting the spread of clinically relevant antibiotic resistance genes (ARGs) is one of the key components for the success of the One Health strategy. While waste water treatment plants (WWTPs) represent a final control point for daily discharges of antibiotic resistance genes (ARGs) to the aquatic environment, a decentralized upstream monitoring of wastewater feeds of selected urban drainage areas for blaCTX-M32, blaCTX-M15, blaOXA48, blaCMY-2, mecA, blaNDM-1, blaKPC3, vanA, and mcr-1 representing clinically relevant ARGs has been performed. Besides hospitals, also retirement homes were found to be responsible for high levels of ARG discharges compared to housing area sewer systems. The monitoring combines qPCR-based quantifications, flow volume-based analyses, and multiple antibiotic resistance analyses of isolates. As result of the study, local actions at identified critical control points could help to prevent contaminations of larger volumes of wastewaters. This strategy will support a more cost-effective treatment compared to central actions at WWTPs, only. A polluter-pays principle should be applied by this monitoring strategy.
Collapse
Affiliation(s)
- Johannes Alexander
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Norman Hembach
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Schwartz
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
13
|
Parida VK, Sikarwar D, Majumder A, Gupta AK. An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114609. [PMID: 35101807 PMCID: PMC8789570 DOI: 10.1016/j.jenvman.2022.114609] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 05/23/2023]
Abstract
Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, β-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Divyanshu Sikarwar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
14
|
Zhong X, Zhang X, Zhou T, Lv G, Zhao Q. Exploring kinetics, removal mechanism and possible transformation products of tigecycline by Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152988. [PMID: 35026238 DOI: 10.1016/j.scitotenv.2022.152988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of antibiotics in wastewater leads to broad antibiotic resistance, threating human health. Microalgae have been receiving attention due to their ability to remove antibiotics from wastewater. Tigecycline (TGC) is a broad-spectrum glycylcycline antibiotic. It has not been investigated for removal by microalgae. The removal kinetics of TGC by Chlorella pyrenoidosa were evaluated under different initial dry cell densities, TGC concentrations, temperatures and light intensity conditions. Approximately 90% of TGC could be removed when the TGC concentration was 10 mg∙L-1 and the initial dry cell density was more than 0.2 g∙L-1. A low value of TGC per g dry cell weight ratio led to a high removal efficiency of TGC. The initial dry cell density of microalgae was also critical for the removal of TGC. A high initial dry cell density is better than a low initial dry cell density to remove TGC when the ratio of the TGC concentration to dry cell weight are the same at the beginning of the cultivation. The removal mechanisms were investigated. Photolysis was a slow process that did not lead to removal at the beginning. Adsorption, hydrolysis, photolysis and biodegradation by microalgae were the main contributors to the removal of TGC. TGC was easily hydrolyzed under high -temperature conditions. Three transformation products of TGC by microalgae were identified. The stability of TGC was evaluated in water and salt solutions of citric acid, K2HPO4·3H2O and ferric ammonium citrate. TGC was stable in ultrapure water and citric acid solution. TGC was hydrolyzed in K2HPO4·3H2O and ferric ammonium citrate solutions.
Collapse
Affiliation(s)
- Xueqing Zhong
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Xiangxiang Zhang
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Tianyi Zhou
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Guangping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Quanyu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
15
|
Carlsen L, Büttner H, Christner M, Franke G, Indenbirken D, Knobling B, Lütgehetmann M, Knobloch J. High burden and diversity of carbapenemase-producing Enterobacterales observed in wastewater of a tertiary care hospital in Germany. Int J Hyg Environ Health 2022; 242:113968. [PMID: 35390565 DOI: 10.1016/j.ijheh.2022.113968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
Hospitals are one of the main reservoirs of multi-resistant Enterobacterales (MRE). As MRE are resistant to the most frequently used antibiotics, therapy for patients with MRE infections is challenging. It has been previously described that MRE from hospital wastewater can pass into municipal wastewater and even surface water. In this study, we investigated the diversity and epidemiology of MRE in the wastewater of a large tertiary care hospital. Wastewater samples were collected for a four-day period and tested for the presence of Enterobacterales resistant to 3rd gen. cephalosporins. Representative isolates were further characterized by whole genome sequencing. In 120 β-glucuronidase-producing isolates, 68 Escherichia coli and, interestingly, also 52 Citrobacter freundii were identified. In 120 β-glucosidase-producing isolates 45 Serratia marcescens, 34 Klebsiella oxytoca, 32 Enterobacter cloacae and 9 Klebsiella pneumoniae were observed. For all species various MLST sequence types and different clusters of resistance genes were determined, showing a great diversity within the different Enterobacterales, further corroborated by clonal analysis performed by cgMLST. The most prominent clone was wastewater associated E. coli ST635, which accounted for 47.1% of all E. coli isolates. Interestingly, 45.6% of E. coli, 88.5% of C. freundii, 95.6% of S. marcescens, 91.2% of K. oxytoca, 96.9% of E. cloacae and 88.9% of K. pneumoniae isolates carried a carbapenemase gene, indicating a high burden with carbapenemase-producing Enterobacterales. Comparison with clinical isolates from the same hospital displayed few clonal matches. One wastewater isolate of K. pneumoniae was identified to be closely related compared to a clone that had been introduced into the hospital during an outbreak four years earlier. One E. coli isolate was identified as identical to an isolate from a patient, with inpatient stay during the sampling period. The data obtained in this study highlight the problem of antibiotic resistance of Enterobacterales in hospital wastewater. In particular, the clustered occurrence of carbapenemase genes is of great concern and underscores the problem of increasingly scarce antibiotic options against these bacteria.
Collapse
Affiliation(s)
- Laura Carlsen
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Henning Büttner
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Martin Christner
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Gefion Franke
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Daniela Indenbirken
- Virus Genomics, Heinrich-Pette-Institute, Leibniz Institute for Experimental Biology, Martinistraße 52, 20251, Hamburg, Germany
| | - Birte Knobling
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Johannes Knobloch
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
16
|
Zhu L, Shuai XY, Lin ZJ, Sun YJ, Zhou ZC, Meng LX, Zhu YG, Chen H. Landscape of genes in hospital wastewater breaking through the defense line of last-resort antibiotics. WATER RESEARCH 2022; 209:117907. [PMID: 34864622 DOI: 10.1016/j.watres.2021.117907] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Hospital wastewater contains abundant antibiotics, antibiotic resistance genes (ARGs), and pathogens. Last-resort antibiotic resistance genes (LARGs) include the New Delhi metallo-β-lactamase gene blaNDM, mobile colistin resistance gene mcr and tigecycline resistance gene tet(X) which confers resistance to carbapenems, colistin and tigecycline. The presence and significance of LARGs in hospital wastewater treatment systems (HWTS) have not yet been systematically explored. Here, LARG variants were shown to be prevalent both influents and effluents of HWTS. A total of 989 Enterobacteriaceae isolates that confer resistance to last-resort antibiotics were collected from effluents and multiple genetic contexts of LARGs were analyzed. LARGs-carrying plasmids were confirmed to show high multidrug phenotypes and transferability. We also discovered the co-occurrence of plasmids harboring blaNDM-1 and mcr-1 in single Escherichia coli, as well as E. coli HM016 containing two unique mcr-1-carrying plasmids. This result might accelerate co-dissemination of LARGs under environmental selection pressure. Different core genetic arrangements in these strains suggest several evolutionary pathways in HWTS. The resistance functions of LARGs were confirmed in vitro and in vivo by mass spectrometry. This study provides novel insights into the diversity, genetic context and function of critical ARGs in HWTS. The results raise the concern that LARGs may further spread into the environment, thus, more stringent discharge standards and regulations for hospital wastewater are urgently needed.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Xin-Yi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Ze-Jun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Yu-Jie Sun
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Zhen-Chao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Ling-Xuan Meng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR. China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR. China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China.
| |
Collapse
|
17
|
Kehl K, Schallenberg A, Szekat C, Albert C, Sib E, Exner M, Zacharias N, Schreiber C, Parčina M, Bierbaum G. Dissemination of carbapenem resistant bacteria from hospital wastewater into the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151339. [PMID: 34740643 DOI: 10.1016/j.scitotenv.2021.151339] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Infections with antibiotic resistant pathogens threaten lives and cause substantial costs. For effective interventions, knowledge of the transmission paths of resistant bacteria to humans is essential. In this study, carbapenem resistant bacteria were isolated from the wastewater of a maximum care hospital during a period of two years, starting in the patient rooms and following the sewer system to the effluent of the wastewater treatment plant (WWTP). The bacteria belonged to six different species and 44 different sequence types (STs). The most frequent STs, ST147 K. pneumoniae (blaNDM/blaOXA-48) and ST235 P. aeruginosa (blaVIM) strains, were present at nearly all sampling sites from the hospital to the WWTP effluent. After core genome multi-locus sequence typing (cgMLST), all ST147 K. pneumoniae strains presented a single epidemiological cluster. In contrast, ST235 P. aeruginosa formed five cgMLST clusters and the largest cluster contained the strain from the WWTP effluent, indicating without doubt, a direct dissemination of both high-risk clones into the environment. Thus, there are - at least two - possible transmission pathways to humans, (i) within the hospital by contact with the drains of the sanitary installations and (ii) by recreational or irrigation use of surface waters that have received WWTP effluent. In conclusion, remediation measures must be installed at both ends of the wastewater system, targeting the drains of the hospital as well as at the effluent of the WWTP.
Collapse
Affiliation(s)
- Katja Kehl
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Anja Schallenberg
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Christiane Szekat
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Cathrin Albert
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Esther Sib
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Christiane Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Marjio Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany.
| |
Collapse
|
18
|
Zhang S, Abbas M, Rehman MU, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Gao Q, Tian B, Cheng A. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149280. [PMID: 34364270 DOI: 10.1016/j.scitotenv.2021.149280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Colistin drug resistance is an emerging public health threat worldwide. The adaptability, existence and spread of colistin drug resistance in multiple reservoirs and ecological environmental settings is significantly increasing the rate of occurrence of multidrug resistant (MDR) bacteria such as Escherichia coli (E. coli). Here, we summarized the reports regarding molecular and biological characterization of mobile colistin resistance gene (mcr)-positive E. coli (MCRPEC), originating from diverse reservoirs, including but not limited to humans, environment, waste water treatment plants, wild, pets, and food producing animals. The MCRPEC revealed the abundance of clinically important resistance genes, which are responsible for MDR profile. A number of plasmid replicon types such as IncI2, IncX4, IncP, IncX, and IncFII with a predominance of IncI2 were facilitating the spread of colistin resistance. This study concludes the distribution of multiple sequence types of E. coli carrying mcr gene variants, which are possible threat to "One Health" perspective. In addition, we have briefly explained the newly known mechanisms of colistin resistance i.e. plasmid-encoded resistance determinant as well as presented the chromosomally-encoded resistance mechanisms. The transposition of ISApl1 into the chromosome and existence of intact Tn6330 are important for transmission and stability for mcr gene. Further, genetic environment of co-localized mcr gene with carbapenem-resistance or extended-spectrum β-lactamases genes has also been elaborated, which is limiting human beings to choose last resort antibiotics. Finally, environmental health and safety control measures along with spread mechanisms of mcr genes are discussed to avoid further propagation and environmental hazards of colistin resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Muhammad Abbas
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Livestock and Dairy Development Department Lahore, Punjab 54000, Pakistan
| | - Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Disease Investigation Laboratory, Livestock & Dairy Development Department, Zhob 85200, Balochistan, Pakistan
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
19
|
Magureanu M, Bilea F, Bradu C, Hong D. A review on non-thermal plasma treatment of water contaminated with antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125481. [PMID: 33992019 DOI: 10.1016/j.jhazmat.2021.125481] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Large amounts of antibiotics are produced and consumed worldwide, while wastewater treatment is still rather inefficient, leading to considerable water contamination. Concentrations of antibiotics in the environment are often sufficiently high to exert a selective pressure on bacteria of clinical importance that increases the prevalence of resistance. Since the drastic reduction in the use of antibiotics is not envisaged, efforts to reduce their input into the environment by improving treatment of contaminated wastewater is essential to limit uncontrollable spread of antibiotic resistance. This paper reviews recent progress on the use of non-thermal plasma for the degradation of antibiotics in water. The target compounds removal, the energy efficiency and the mineralization are analyzed as a function of discharge configuration and the most important experimental parameters. Various ways to improve the plasma process efficiency are addressed. Based on the identified reaction intermediates, degradation pathways are proposed for various classes of antibiotics and the degradation mechanisms of these chemicals under plasma conditions are discussed.
Collapse
Affiliation(s)
- M Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and, Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, Magurele, 077125 Bucharest, Romania.
| | - F Bilea
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and, Nuclear Fusion, Atomistilor Str. 409, P.O. Box MG-36, Magurele, 077125 Bucharest, Romania; University of Bucharest, Faculty of Chemistry, Department of Analytical Chemistry, Panduri Avenue 90, 050663 Bucharest, Romania
| | - C Bradu
- University of Bucharest, Faculty of Biology, Department of Systems Ecology and Sustainability, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - D Hong
- GREMI, UMR 7344, Université d'Orléans, CNRS, Orléans, France
| |
Collapse
|
20
|
Schmiege D, Zacharias N, Sib E, Falkenberg T, Moebus S, Evers M, Kistemann T. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase-producing Escherichia coli in urban community wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147269. [PMID: 33932656 DOI: 10.1016/j.scitotenv.2021.147269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
Antibiotic resistance (ABR) and the spread of multidrug-resistant and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli via wastewater to environmental compartments are of rapidly growing global health concern. Health care facilities, industries and slaughterhouses discharge high loads of ABR bacteria with their wastewater. However, the general community is often the biggest indirect discharger. Yet, research focusing explicitly on this important diffuse source is rather scarce raising questions about variations in the occurrence of ESBL-producing E. coli in wastewater from different communities and over time. Between April 2019 and March 2020, wastewater from three socio-spatially different districts in the Ruhr Metropolis, Germany, and the receiving wastewater treatment plant was sampled monthly and analysed for the occurrence of ESBL-producing E. coli via culture-based methods. Isolates were validated with matrix assisted laser desorption ionization time of flight mass spectrometry and antibiotic resistance profiles were analysed via microdilution. Results were interpreted using the European Committee on Antimicrobial Susceptibility Testing criteria. The German Commission for Hospital Hygiene and Infection Prevention criteria were used for multidrug-resistance categorization. Phenotypic ESBL-producing E. coli could be isolated from every wastewater sample demonstrating that the general community is an important indirect discharger. The socio-spatially disadvantaged area displayed higher absolute loads of ESBL-producing E. coli compared to the other two areas, as well as higher adjusted loads for domestic discharge and inhabitants, particularly during winter, indicating a higher ABR burden. Thirty-two isolates (28.6%) were characterized as multidrug-resistant Gram-negative bacteria (3MRGN). Resistance profiles varied only for those antibiotics, which can be administered in outpatient care. Resistance levels tended to be around 10% lower in the socio-spatially advantaged area. This study shows that spatial and seasonal influences regarding the occurrence of ESBL-producing E. coli in wastewater from socio-spatially different communities are identifiable.
Collapse
Affiliation(s)
- Dennis Schmiege
- Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany; Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Center for Development Research, University of Bonn, Genscherallee 3, 53113 Bonn, Germany; Institute for Urban Public Health, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany.
| | - Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Esther Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Timo Falkenberg
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Center for Development Research, University of Bonn, Genscherallee 3, 53113 Bonn, Germany.
| | - Susanne Moebus
- Institute for Urban Public Health, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany.
| | - Mariele Evers
- Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany.
| | - Thomas Kistemann
- Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany; Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Center for Development Research, University of Bonn, Genscherallee 3, 53113 Bonn, Germany.
| |
Collapse
|
21
|
Tortella GR, Pieretti JC, Rubilar O, Fernández-Baldo M, Benavides-Mendoza A, Diez MC, Seabra AB. Silver, copper and copper oxide nanoparticles in the fight against human viruses: progress and perspectives. Crit Rev Biotechnol 2021; 42:431-449. [PMID: 34233551 DOI: 10.1080/07388551.2021.1939260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The rapid development of nanomedicine has created a high demand for silver, copper and copper oxide nanoparticles. Due to their high reactivity and potent antimicrobial activity, silver and copper-based nanomaterials have been playing an important role in the search for new alternatives for the treatment of several issues of concern, such as pathologies caused by bacteria and viruses. Viral diseases are a significant and constant threat to public health. The most recent example is the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this context, the object of the present review is to highlight recent progress in the biomedical uses of these metal nanoparticles for the treatment and prevention of human viral infections. We discuss the antiviral activity of AgNPs and Cu-based NPs, including their actions against SARS-CoV-2. We also discuss the toxicity, biodistribution and excretion of AgNPs and CuNPs, along with their uses in medical devices or on inert surfaces to avoid viral dissemination by fomites. The challenges and limitations of the biomedical use of these nanoparticles are presented.
Collapse
Affiliation(s)
- G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - J C Pieretti
- Center for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - O Rubilar
- Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile
| | - M Fernández-Baldo
- National Scientific and Technical Research Council
- Conicet · INQUISAL Instituto de Química San Luis, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico
| | - M C Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile.,Center for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André, Brazil
| |
Collapse
|
22
|
Schreiber C, Zacharias N, Essert SM, Wasser F, Müller H, Sib E, Precht T, Parcina M, Bierbaum G, Schmithausen RM, Kistemann T, Exner M. Clinically relevant antibiotic-resistant bacteria in aquatic environments - An optimized culture-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142265. [PMID: 33182186 DOI: 10.1016/j.scitotenv.2020.142265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
The emergence of antibiotic-resistant clinically relevant facultative pathogenic bacteria in the environment has become one of the most important global health challenges. Antibiotic-resistant bacteria (ARB) have been found in surface waters and wastewater treatment plants. Drinking water guidelines and the EU bathing water directive 2006/7/EC include the surveillance of defined microbiological parameters on species level, while the monitoring of ARB is missing in all existing guidelines. However, standardized methods for the detection of ARB exist for clinical investigations of human materials only. They are based on cultivation on selective agar plates. These methods cannot be used directly for environmental samples, because of the high amount and diversity of bacterial background flora which interferes with the detection of human-relevant ARB. The aim of this study was to introduce a proposal for future normative standard operation procedures, with international relevance, for the culture-based detection of clinically-relevant antibiotic resistant bacteria in aquatic environmental samples like wastewater and surface water: gram-negative bacteria resistant against 3rd generation cephalosporins (ESBL) and against carbapenems (CARBA), gram-positive vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). The final adaptation of standardized cultivation methods included increasing the standard incubation temperature from 36 °C to 42 °C, which effectively inhibits the environmental background flora on agar plates while the desired target species survive. This enables the detection of target species in suitable sample volumes. Putative target colonies which belong to the remaining background flora had to be excluded by morphological and physiological differentiation. Therefore, a time and cost optimized testing scheme with good performance was developed, which allows an effective exclusion of non-target isolates in samples. Depending on the target species and sample type, sensitivity of up to 100% is achieved, and specificity ranges from 91.1% to 99.7%, while the positive predictive value, negative predicted value and accuracy rate are always >90%.
Collapse
Affiliation(s)
- Christiane Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Sarah M Essert
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Felix Wasser
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heike Müller
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tabea Precht
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Marijo Parcina
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ricarda M Schmithausen
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Thomas Kistemann
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|