1
|
Chauhan A, Roy S, Kundu A. Assessing sediment dynamics and retention services in the vulnerable mountain ecosystem of the Indian Himalayas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:928. [PMID: 39266934 DOI: 10.1007/s10661-024-13073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Sediment loss and export pose significant global environmental issues, profoundly affecting water quality, soil fertility, and ecosystem stability, particularly in vulnerable mountain ecosystems like the Indian Himalayas. The present study used remote sensing data and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) sediment delivery ratio (SDR) model to analyze spatial-temporal variations in soil loss (SL), sediment export (SE), and sediment retention (SR) capabilities in the South Shimla watershed, Himachal Pradesh, India, from 1993 to 2023. The findings showed significant changes in land use and land cover (LULC): evergreen forest and scrub land decreased sharply by 11.53% and 36.43%, respectively, while agricultural areas and built-up areas increased notably by 71.16% and 215.76%, respectively. Despite a decline of 19.18% in SL and 24.43% in SE, sediment loss and export varied across the study area, highlighting the heterogeneous nature of sediment dynamics. The overall retention capacity increased by 2.59%, with scrub forests playing a critical role in SR, while built-up areas showed the lowest retention. Northern and central sub-watersheds (SWs) experienced a significant decrease in retention capacity (from - 1.92 to - 11.6%), whereas those in the southern and eastern regions saw an increase in SR (from 3.69 to 28.24%). These results underscore the complex interactions between LULC changes, sediment dynamics, and retention services, highlighting the importance of preserving natural ecosystems and informing policy for landscape-based conservation and development planning in the vulnerable Himalayan region.
Collapse
Affiliation(s)
- Atul Chauhan
- Department of Architecture and Planning, Indian Institute of Engineering Science and Technology, Shibpur (IIEST), Howrah, West Bengal, 711103, India
| | - Souvanic Roy
- Department of Architecture and Planning, Indian Institute of Engineering Science and Technology, Shibpur (IIEST), Howrah, West Bengal, 711103, India.
| | - Abhinandita Kundu
- Department of Architecture and Planning, Indian Institute of Engineering Science and Technology, Shibpur (IIEST), Howrah, West Bengal, 711103, India
| |
Collapse
|
2
|
Hou W, Liu J, Walz U. Optimization of green infrastructure networks in the perspectives of enhancing structural connectivity and multifunctionality in an urban megaregion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119084. [PMID: 37827078 DOI: 10.1016/j.jenvman.2023.119084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/25/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Affiliation(s)
- Wei Hou
- Chinese Academy of Surveying and Mapping, Lianhuachi West Road 28, 100036, Beijing, China.
| | - Junli Liu
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, China.
| | - Ulrich Walz
- Dresden University of Applied Sciences, Pillnitzer Platz 2, D-01326, Dresden, Germany.
| |
Collapse
|
3
|
Tavakoli M, Mohammadyari F. Modeling the spatial distribution of multiple ecosystem services in Ilam dam watershed, Western Iran: identification of areas for spatial planning. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Cho SJ, Wilcock P, Gran K. Implementing landscape connectivity with topographic filtering model: A simulation of suspended sediment delivery in an agricultural watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155701. [PMID: 35525349 DOI: 10.1016/j.scitotenv.2022.155701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/16/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The widespread availability of high-fidelity topography combined with advances in geospatial analysis offer the opportunity to reimagine approaches to the difficult problem of predicting sediment delivery from watersheds. Here we present a model that uses high-resolution topography to filter sediment sources to quantify sediment delivery to the watershed outlet. It is a reduced-complexity, top-down model that defines transfer functions-topographic filters-between spatially distributed sediment sources and spatially integrated sediment delivery. The goal of the model is to forecast changes in watershed suspended sediment delivery in response to spatially distributed changes in sediment source magnitude or delivery, whether a result of watershed drivers or intentional management actions. Such an application requires the context of a watershed model that accounts for all sediment sources, enforces sediment mass balance throughout the spatial domain, and accommodates sediment storage and delivery over time. The model is developed for a HUC-8 watershed with a flat upland dominated by corn-soybean agriculture and deeply incised valleys near the watershed outlet with large sediment contributions from near-channel sources. Topofilter computes delivery and storage of field-derived sediment according to its spatial and structural connectivity to the stream channel network; subsequently, delivery of both field- and near-channel-derived sediment along with floodplain storage are computed in the stream channel network to the watershed outlet. The model outputs provide a spatially rich representation of sediment delivery and storage on field and along the stream that is consistent with available independent information on sediment accumulations and fluxes. Rather than a single best-calibrated solution, Topofilter uses the Generalized Likelihood Uncertainty Estimate (GLUE) approach to develop many possible solutions with sediment delivery rates expressed as probability distributions across the watershed. The ensemble of simulation outputs provides a useful basis for estimating uncertainty in sediment delivery and the effectiveness of different landscape management allocation across a watershed.
Collapse
Affiliation(s)
- Se Jong Cho
- U.S. Geological Survey, Water Resources Mission Area, Earth System Processes Division, Reston, VA, USA; National Center for Earth-surface Dynamics, University of Minnesota, Minneapolis, MN, USA.
| | - Peter Wilcock
- Watershed Sciences, Utah State University, Logan, UT, USA; National Center for Earth-surface Dynamics, University of Minnesota, Minneapolis, MN, USA
| | - Karen Gran
- National Center for Earth-surface Dynamics, University of Minnesota, Minneapolis, MN, USA; Earth and Environmental Sciences, University of Minnesota Duluth, Duluth, MN, USA
| |
Collapse
|
5
|
Chen X, Yu L, Du Z, Xu Y, Zhao J, Zhao H, Zhang G, Peng D, Gong P. Distribution of ecological restoration projects associated with land use and land cover change in China and their ecological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153938. [PMID: 35183635 DOI: 10.1016/j.scitotenv.2022.153938] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/05/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
China is prone to broad land degradation and thus has been implementing ecological restoration projects (ERPs) since the reform and opening up. The extent of ERPs, as well as the varied planting efforts including tree gain projects (TGPs), grass gain projects (GGPs), and shrub gain projects (SGPs), have remained largely unknown. In addition, the mixed success of ERPs on preventing soil erosion and improving biodiversity is not well known. Based on a land use and land cover (LULC) product and a trajectory-based change detection approach, we successfully generated the first national map of ERPs associated with land use and land cover change (LUCC) and its three associated subcategories. Then, we applied the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to evaluate the dynamics of sediment retention and habitat quality. In addition, we explored the heterogeneous patterns for the ecological impacts of ERPs. Our results suggested that during the past 40 years, a total ERP area of 9.54 × 106 hm2 was observed nationwide, mainly in the northwestern provinces of China. Of the three ERP subcategories, TGPs accounted for the largest area (48.55%), followed by GGPs (47.50%) and SGPs (3.96%). The national average sediment retention experienced a significant increase, whereas the national average habitat quality experienced a significant decline. ERP-driven increases in habitat quality were offset partly by the LUCCs induced by economic development policies in some regions, especially in northeast China. The simultaneous effect of construction land expansion and ERP implementation on sediment retention made the synchronization between ERP implementation and sediment retention improvement insignificant. We also suggested the optimal direction for ERP implementation.
Collapse
Affiliation(s)
- Xin Chen
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Le Yu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China; Ministry of Education Ecological Field Station for East Asian Migratory Birds, Beijing 100084, China.
| | - Zhenrong Du
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Yidi Xu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Jiyao Zhao
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Haile Zhao
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guoliang Zhang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dailiang Peng
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Peng Gong
- Ministry of Education Ecological Field Station for East Asian Migratory Birds, Beijing 100084, China; Department of Geography and Department of Earth Sciences, University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
6
|
Cunha ERD, Santos CAG, Silva RMD, Panachuki E, Oliveira PTSD, Oliveira NDS, Falcão KDS. Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151811. [PMID: 34808178 DOI: 10.1016/j.scitotenv.2021.151811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the Cerrado biome in Brazil (Brazilian savannah) has faced severe environmental problems due to abrupt changes in land use/cover (LUC), causing increased soil loss, sediment yield and water turbidity. Thus, this study aimed to evaluate the impacts of soil loss and sediment delivery ratio (SDR) over the last 30 years to simulate future scenarios of soil losses from 2050 to 2100 and to investigate an episode of sediment delivery that occurred in the Rio da Prata Basin (RPB) in 2018. In this study, the following were used: an estimation of soil losses for 1986, 1999, 2007 and 2016 using the Revised Universal Soil Loss Equation (RUSLE), an estimation of SDR, sediment export and sediment deposition using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, an association of RUSLE factor C to LUC data for 2050 and 2100 based on the CA-Markov hybrid model, and an estimation of future soil erosion scenarios for 2050 and 2100. The results show that over the last 30 years (1986-2016), there has been a reduction in the areas of highly intense and severe degrees. Future soil erosion scenarios (2050-2100) showed a 13.84% increase in areas of soil loss >10 Mg ha-1 year-1. The results highlighted the importance of assessing the impacts of LUC changes on soil erosion and the export of sediments to agricultural watersheds in the RPB, one of the best ecotourism destinations in Brazil. In addition, the increase in soil loss in the region intensified sediment yield events and increased water turbidity. Furthermore, riparian vegetation, although preserved, was not able to protect the watercourse, showing that it is essential to adopt the best management practices in the agricultural production areas of the basin, especially where ramps are extensive or the slope is greater than 2%, to reduce the runoff velocity and control the movement of sediments on the surface towards the drainage canals. The results of this study are useful for drawing up a soil and water conservation plan for the sustainable production of agriculture and maintenance of ecosystem services in the region.
Collapse
Affiliation(s)
- Elias Rodrigues da Cunha
- Department of Geosciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil; Department of Geography, Federal University of Mato Grosso do Sul, Aquidauana, Mato Grosso do Sul, Brazil
| | | | | | - Elói Panachuki
- Department of Agronomy, State University of Mato Grosso do Sul, Agronomy Department, Aquidauana, MS 79200-000, Brazil
| | - Paulo Tarso Sanches de Oliveira
- Graduate Program in Environmental Technologies, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Naelmo de Souza Oliveira
- Department of Agronomy, State University of Mato Grosso do Sul, Agronomy Department, Aquidauana, MS 79200-000, Brazil
| | - Karina Dos Santos Falcão
- Department of Agronomy, State University of Mato Grosso do Sul, Agronomy Department, Aquidauana, MS 79200-000, Brazil
| |
Collapse
|
7
|
Tran DX, Pearson D, Palmer A, Lowry J, Gray D, Dominati EJ. Quantifying spatial non-stationarity in the relationship between landscape structure and the provision of ecosystem services: An example in the New Zealand hill country. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152126. [PMID: 34863745 DOI: 10.1016/j.scitotenv.2021.152126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Knowing how landscape structure affects the provision of ecosystem services (ES) is an important first step toward better landscape planning. Because landscape structure is often heterogenous across space, modelling the relationship between landscape structure and the provision of ES must account for spatial non-stationarity. This paper examines the relationship between landscape structure and the provision of ES using a hill country and steep-land case farm in New Zealand. Indicators derived from land cover and topographical data such as Largest Patch Index (LPI), Contrast Class Edge (CCE), Edge Density (ED), and Terrain slope (SLOPE) were used to examine the landscape's structure and pattern. Measures of pasture productivity, soil erosion control, and water supply were derived with InVEST tools and spatial analysis in a GIS. Multiscale Geographically Weighted Regression (MGWR) was used to evaluate the relationship between indicators of landscape structure and the provisioning of ES. Other regression models, including Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR), were carried out to evaluate the performance of MGWR. Results showed that landscape patterns significantly affect the supply of all mapped ES, and this varies across the landscape, dependent on the pattern of topographical features and land cover pattern and structure. MWGR outperformed other OLS and GWR in terms of explanatory power of the ES determinants and had a better ability to deal with the presence of spatial autocorrelation. Spatially and quantitatively detailed variations of the relationship between landscape structure and the provision of ES provide a scientific basis to inform the design of sustainable multifunctional landscapes. Information derived from this analysis can be used for spatial planning of farmed landscapes to promote multiple ES which meet multiple sustainable development objectives.
Collapse
Affiliation(s)
- Duy X Tran
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand.
| | - Diane Pearson
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand.
| | - Alan Palmer
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand.
| | - John Lowry
- School of People, Environment and Planning, College of Humanities & Social Sciences, Massey University, Palmerston North, New Zealand.
| | - David Gray
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
8
|
Crane JL, Bijak AL, Maier MA, Nord MA. Development of current ambient background threshold values for sediment quality parameters in U.S. lakes on a regional and statewide basis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148630. [PMID: 34328994 DOI: 10.1016/j.scitotenv.2021.148630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
For the first time, background threshold values have been developed for a large suite of sediment quality parameters from 969 lakes spanning the conterminous United States (U.S.). These values provide a statistical basis for estimating current ambient background, which refers to chemical and physical (e.g., grain size) concentrations derived from natural and/or widespread diffuse anthropogenic sources (e.g., nonpoint sources like atmospheric deposition and land runoff). Surficial sediment quality data, collected based on the randomized, probability-based sampling design of the 2017 National Lakes Assessment (NLA) study, were utilized for this effort. These data included 16 metal(loid)s, 25 polycyclic aromatic hydrocarbons (PAHs), 53 polychlorinated biphenyl (PCB) congeners, 27 legacy organochlorine pesticides and metabolites, total organic carbon (TOC), and grain size parameters. The data were analyzed based on different geographic areas, including: 10 U.S. Environmental Protection Agency (EPA) Regions, two major ecoregions bisecting the State of Minnesota (i.e., Temperate Plains and Upper Midwest), and for Minnesota. Hypothesis testing of 47 sediment quality parameters was performed on three geographic areas bisecting Minnesota, and there were many statistically significant (p < 0.05) differences between geographic pairs that included Minnesota. Background threshold values were calculated for parameters with >20% detects using 95% one-sided upper tolerance limit (UTL) with 95% coverage (UTL95-95) values. The UTL95-95 represents the value below which 95% of the population values are expected to fall with 95% confidence. These values were compared to matching sediment quality guidelines for the protection of benthic organisms, both with and without potential outliers removed. Applications and limitations of the UTL95-95 values are discussed. Jurisdictions within the continental U.S. could use these same publicly available sediment quality data to calculate UTL95-95 values for specific geographic areas, and other countries could design similar probabilistic field studies to determine current ambient background of sediment quality parameters in lake sediments.
Collapse
Affiliation(s)
- Judy L Crane
- Minnesota Pollution Control Agency, 520 Lafayette Road North, St. Paul, MN 55155-4194, USA.
| | - Alexandra L Bijak
- ORISE Research Participant, Office of Water, Office of Wetlands, Oceans and Watersheds, U.S. Environmental Protection Agency, 1301 Constitution Avenue Northwest, Washington, DC 20460, USA.
| | - Michelle A Maier
- U.S. Environmental Protection Agency, 1301 Constitution Avenue Northwest, Washington, DC 20460, USA.
| | - Mari A Nord
- Region 5, U.S. Environmental Protection Agency, 77 West Jackson Boulevard, Chicago, IL 60604, USA.
| |
Collapse
|
9
|
Considering the Environmental Impacts of Bioenergy Technologies to Support German Energy Transition. ENERGIES 2021. [DOI: 10.3390/en14061534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clean energy for all, as listed in the United Nation’s SDG7, is a key component for sustainable environmental development. Therefore, it is imperative to uncover the environmental implications of alternative energy technologies. SustainableGAS project simulates different process chains for the substitution of natural gas with renewable energies in the German gas market. The project follows an interdisciplinary approach, taking into account techno-social and environmental variabilities. However, this research highlights the project results from the environmental perspective. So far, a detailed assessment of the environmental costs of alternative gas technologies with a focus on the process of energy transition has remained rare. Although such data constitute key inputs for decision-making, this study helps to bridge a substantial knowledge gap. Competing land-use systems are examined to secure central ecosystem services. To fulfill this obligation, an Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) serves as the modelling tool. InVEST assesses ecosystem services (ES) that are or may be affected by alternative bioenergy technologies. Spatially explicit model results include the water provisioning from the Water Yield Model (WYM), soil erosion and sedimentation described by the Sediment Delivery Ratio (SDR), and nutrient fluxes (N) in response to changing land use are obtained through the Nutrient Delivery Ratio (NDR). The detailed model results are finally extrapolated, which provides a comprehensive image of the environmental impacts associated with bioenergy expansion in Germany from our combination of unique Renewable Gas Plants (RGPs). The final result shows that nutrient load will reduce in southern Germany by the year 2050 compared to the reference state, and biomass use reduced by 46% crops.
Collapse
|
10
|
Quantifying the Landscape’s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services. LAND 2020. [DOI: 10.3390/land10010021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increasing pressure from land cover change exacerbates the negative effect on ecosystems and ecosystem services (ES). One approach to inform holistic and sustainable management is to quantify the ES provided by the landscape. Using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, this study quantified the sediment retention capacity and water yield potential of different land cover in the Santee River Basin Network in South Carolina, USA. Results showed that vegetated areas provided the highest sediment retention capacity and lowest water yield potential. Also, the simulations demonstrated that keeping the offseason crop areas vegetated by planting cover crops improves the monthly ES provision of the landscape. Retaining the soil within the land area prevents possible contamination and siltation of rivers and streams. On the other hand, low water yield potential translates to low occurrence of surface runoff, which indicates better soil erosion control, regulated soil nutrient absorption and gradual infiltration. The results of this study can be used for landscape sustainability management to assess the possible tradeoffs between ecological conservation and economic development. Furthermore, the generated map of ES can be used to pinpoint the areas where ES are best provided within the landscape.
Collapse
|