1
|
Wang Z, Chase JM, Xu W, Liu J, Wu D, Zhang A, Wang J, Luo Y, Yu M. Higher trophic levels and species with poorer dispersal traits are more susceptible to habitat loss on island fragments. Ecology 2024; 105:e4300. [PMID: 38650396 DOI: 10.1002/ecy.4300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 04/25/2024]
Abstract
Ongoing habitat loss and fragmentation caused by human activities represent one of the greatest causes of biodiversity loss. However, the effects of habitat loss and fragmentation are not felt equally among species. Here, we examined how habitat loss influenced the diversity and abundance of species from different trophic levels, with different traits, by taking advantage of an inadvertent experiment that created habitat islands from a once continuous forest via the creation of the Thousand Island Lake, a large reservoir in China. On 28 of these islands with more than a 9000-fold difference in their area (0.12-1154 ha), we sampled plants, herbivorous insects, and predatory insects using effort-controlled sampling and analyses. This allowed us to discern whether any observed differences in species diversity were due to passive sampling alone or to demographic effects that disproportionately influenced some species relative to others. We found that while most metrics of sampling effort-controlled diversity increased with island area, the strength of the effect was exacerbated for species in higher trophic levels. When we more explicitly examined differences in species composition among islands, we found that the pairwise difference in species composition among islands was dominated by species turnover but that nestedness increased with differences in island area, indicating that some species are more likely to be absent from smaller islands. Furthermore, by examining trends of several dispersal-related traits of species, we found that species with lower dispersal propensity tended to be those that were lost from smaller islands, which was observed for herbivorous and predatory insects. Our results emphasize the importance of incorporating within-patch demographic effects, as well as the taxa and traits of species when understanding the influence of habitat loss on biodiversity.
Collapse
Affiliation(s)
- Zhonghan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wubing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jinliang Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Donghao Wu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Aiying Zhang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences, China Jiliang University, Zhejiang, China
| | - Jirui Wang
- School of Agricultural and Food Science, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Yuanyuan Luo
- College of Life Sciences, China Jiliang University, Zhejiang, China
| | - Mingjian Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Lovell RSL, Collins S, Martin SH, Pigot AL, Phillimore AB. Space-for-time substitutions in climate change ecology and evolution. Biol Rev Camb Philos Soc 2023; 98:2243-2270. [PMID: 37558208 DOI: 10.1111/brv.13004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Collapse
Affiliation(s)
- Rebecca S L Lovell
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Simon H Martin
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albert B Phillimore
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
3
|
Cui X, Dai D, Huang C, Wang B, Li S, You C, Paterson AM, Perry GLW, Buckley HL, Cubino JP, Wyse SV, Alam MA, Zhou S, Xiao L, Cao D, Xu Z, Curran TJ. Climatic conditions affect shoot flammability by influencing flammability-related functional traits in nonfire-prone habitats. THE NEW PHYTOLOGIST 2023; 240:105-113. [PMID: 36960541 DOI: 10.1111/nph.18905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Plant flammability is an important driver of wildfires, and flammability itself is determined by several plant functional traits. While many plant traits are influenced by climatic conditions, the interaction between climatic conditions and plant flammability has rarely been investigated. Here, we explored the relationships among climatic conditions, shoot-level flammability components, and flammability-related functional traits for 186 plant species from fire-prone and nonfire-prone habitats. For species originating from nonfire-prone habitats, those from warmer areas tended to have lower shoot moisture content and larger leaves, and had higher shoot flammability with higher ignitibility, combustibility, and sustainability. Plants in wetter areas tended to have lower shoot flammability with lower combustibility and sustainability due to higher shoot moisture contents. In fire-prone habitats, shoot flammability was not significantly related to any climatic factor. Our study suggests that for species originating in nonfire-prone habitats, climatic conditions have influenced plant flammability by shifting flammability-related functional traits, including leaf size and shoot moisture content. Climate does not predict shoot flammability in species from fire-prone habitats; here, fire regimes may have an important role in shaping plant flammability. Understanding these nuances in the determinants of plant flammability is important in an increasingly fire-prone world.
Collapse
Affiliation(s)
- Xinglei Cui
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, National Forestry and Grassland Administration, Chengdu, 611130, China
| | - Dachuan Dai
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congde Huang
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, National Forestry and Grassland Administration, Chengdu, 611130, China
| | - Bilei Wang
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuting Li
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengming You
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Adrian M Paterson
- Department of Pest-management and Conservation, Lincoln University, Lincoln, 7647, New Zealand
| | - George L W Perry
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Josep Padullés Cubino
- Centre for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, 8193, Spain
| | - Sarah V Wyse
- School of Forestry, University of Canterbury, Christchurch, 7910, New Zealand
| | - Md Azharul Alam
- Department of Pest-management and Conservation, Lincoln University, Lincoln, 7647, New Zealand
| | - Shixing Zhou
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, National Forestry and Grassland Administration, Chengdu, 611130, China
| | - Lin Xiao
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dongyu Cao
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhenfeng Xu
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, National Forestry and Grassland Administration, Chengdu, 611130, China
| | - Timothy J Curran
- Department of Pest-management and Conservation, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
4
|
Litter Deposition and Nutrient Cycling of Invaded Environments by Cryptostegia madagascariensis at Tropical Cambisols from Northeastern Brazil. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Cryptostegia madagascariensis is an invasive plant species that covers 11% of the Brazilian northeastern territory, but its role on the litter trait in tropical ecosystems remains unclear. Here, we analyzed and compared the litter deposition, litter nutrient content, soil organic matter, and the litter decay rate from invaded and non-invaded environments by C. madagascariensis at a tropical Cambisol. The PCA analysis revealed that litter deposition, litter quality, and soil organic matter were correlated with the invaded environment. We grew plant species in greenhouse conditions to obtain a standard litter material to use in our litter bags in field conditions. We found that litter decay rate was higher in the invaded environment than in the non-invaded one. Our results suggest that C. madagascariensis changes litter traits in tropical ecosystems that in turn create negative plant–soil feedback to the native species by creating a physical barrier on soil surface and to promote its own rhizosphere.
Collapse
|
5
|
da Rosa Ferraz Jardim AM, de Morais JEF, de Souza LSB, da Silva TGF. Understanding interactive processes: a review of CO 2 flux, evapotranspiration, and energy partitioning under stressful conditions in dry forest and agricultural environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:677. [PMID: 35974211 DOI: 10.1007/s10661-022-10339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Arid and semiarid environments are characterized by low water availability (e.g., in soil and atmosphere), high air temperature, and irregularity in the spatio-temporal distribution of rainfall. In addition to the economic and environmental consequences, drought also causes physiological damage to crops and compromises their survival in ecosystems. The removal of vegetation is responsible for altering the energy exchange of heat and water in natural ecosystems and agricultural areas. The fluxes of CO2 are also changed, and environments with characteristics of sinks, which can be sources of CO2 after anthropic disturbances. These changes can be measured through methods such as sap flow, eddy covariance, remote sensing, and energy balance. Despite the relevance of each method mentioned above, there are limitations in their applications that must be respected. Thus, this review aims to quantify the processes and changes of energy fluxes, CO2, and their interactions with the surfaces of terrestrial ecosystems in dry environments. Studies report that the use of methods that integrate data from climate monitoring towers and remote sensing products helps to improve the accuracy of the determination of energy fluxes on a global scale, also helping to reduce the dissimilarity of results obtained individually. Through the collection of works in the literature, it is reported that several areas of the Brazilian Caatinga biome, which is a Seasonally Dry Tropical Forest have been suffering from changes in land use and land cover. Similar fluxes of sensible heat in areas with cacti and Caatinga can be observed in studies. On the other hand, one of the variables influenced mainly by air temperature is net radiation. In dry forest areas, woody species can store large amounts of carbon in their biomass above and belowground. The use of cacti can modify the local carbon budget when using tree crops together. Therefore, the study highlights the complexity and severity of land degradation and changes in CO2, water, and energy fluxes in dry environments with areas of forest, grassland, and cacti. Vegetation energy balance is also a critical factor, as these simulations are helpful for use in forecasting weather or climate change. We also highlight the need for more studies that address environmental conservation techniques and cactus in the conservation of degraded areas.
Collapse
Affiliation(s)
- Alexandre Maniçoba da Rosa Ferraz Jardim
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros avenue, s/n, Dois Irmãos, Recife, Pernambuco, 52171-900, Brazil.
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira avenue, s/n, Serra Talhada, Pernambuco, 56909-535, Brazil.
| | - José Edson Florentino de Morais
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira avenue, s/n, Serra Talhada, Pernambuco, 56909-535, Brazil
| | - Luciana Sandra Bastos de Souza
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira avenue, s/n, Serra Talhada, Pernambuco, 56909-535, Brazil
| | - Thieres George Freire da Silva
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira avenue, s/n, Serra Talhada, Pernambuco, 56909-535, Brazil
| |
Collapse
|
6
|
de Oliveira ACP, Nunes A, Oliveira MA, Rodrigues RG, Branquinho C. How Do Taxonomic and Functional Diversity Metrics Change Along an Aridity Gradient in a Tropical Dry Forest? FRONTIERS IN PLANT SCIENCE 2022; 13:923219. [PMID: 35873975 PMCID: PMC9302379 DOI: 10.3389/fpls.2022.923219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Ecological indicators based on biodiversity metrics are valuable and cost-effective tools to quantify, track and understand the effects of climate change on ecosystems. Studying changes in these indicators along climatic gradients in space is a common approach to infer about potential impacts of climate change over time, overcoming the limitations of lack of sufficiently long time-series data. Here, we studied the response of complementary biodiversity metrics in plants: taxonomic diversity (species richness and Simpson index) and functional diversity (diversity and redundancy) in 113 sampling sites along a spatial aridity gradient (from 0.27 to 0.69 of aridity index-AI) of 700 km in a Tropical dry forest. We found different responses of taxonomic and functional diversity metrics to aridity. Species diversity showed a hump-shaped curve peaking at intermediate levels of aridity between 0.38 and 0.52 AI as an ecotone, probably because it is where most species, from both drier and more mesic environments, still find conditions to co-exist. Functional diversity showed a positive linear relation with increasing aridity, suggesting higher aridity favors drought-adapted species with diverse functional traits. In contrast, redundancy showed a negative linear relation with increasing aridity, indicating that drier sites have few species sharing the same functional traits and resource acquisition strategies. Thus, despite the increase in functional diversity toward drier sites, these communities are less resilient since they are composed of a small number of plant species with unique functions, increasing the chances that the loss of one of such "key species" could lead to the loss of key ecosystem functions. These findings show that the integration of complementary taxonomic and functional diversity metrics, beyond the individual response of each one, is essential for reliably tracking the impacts of climate change on ecosystems. This work also provides support to the use of these biodiversity metrics as ecological indicators of the potential impact of climate change on drylands over time.
Collapse
Affiliation(s)
- Ana Cláudia Pereira de Oliveira
- cE3c – Centre for Ecology, Evolution and Environmental Changes – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Alice Nunes
- cE3c – Centre for Ecology, Evolution and Environmental Changes – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Alexandra Oliveira
- cE3c – Centre for Ecology, Evolution and Environmental Changes – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Renato Garcia Rodrigues
- Núcleo de Ecologia e Monitoramento Ambiental, Universidade Federal do Vale do São Francisco, Petrolina, Brazil
| | - Cristina Branquinho
- cE3c – Centre for Ecology, Evolution and Environmental Changes – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Toro-Tobón G, Alvarez-Flórez F, Mariño-Blanco HD, Melgarejo LM. Foliar Functional Traits of Resource Island-Forming Nurse Tree Species from a Semi-Arid Ecosystem of La Guajira, Colombia. PLANTS 2022; 11:plants11131723. [PMID: 35807675 PMCID: PMC9269082 DOI: 10.3390/plants11131723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Semi-arid environments characterized by low rainfall are subject to soil desertification processes. These environments have heterogeneous landscapes with patches of vegetation known as resource islands that are generated by nurse species that delay the desertification process because they increase the availability of water and nutrients in the soil. The study aimed to characterize some foliar physiological, biochemical, and anatomical traits of three nurse tree species that form resource islands in the semi-arid environment of La Guajira, Colombia, i.e., Haematoxylum brasiletto, Pithecellobium dulce, and Pereskia guamacho. The results showed that H. brasiletto and P. dulce have sclerophyllous strategies, are thin (0.2 and 0.23 mm, respectively), and have a high leaf dry matter content (364.8 and 437.47 mg/g). Moreover, both species have a high photochemical performance, reaching Fv/Fm values of 0.84 and 0.82 and PIABS values of 5.84 and 4.42, respectively. These results agree with the OJIP curves and JIP parameters. Both species had a compact leaf with a similar dorsiventral mesophyll. On the other hand, P. guamacho has a typical succulent, equifacial leaf with a 97.78% relative water content and 0.81 mm thickness. This species had the lowest Fv/Fm (0.73) and PIABS (1.16) values and OJIP curve but had the highest energy dissipation value (DIo/RC).
Collapse
|
8
|
Jiang L, Hu D, Wang H, Lv G. Discriminating ecological processes affecting different dimensions of α- and β-diversity in desert plant communities. Ecol Evol 2022; 12:e8710. [PMID: 35342610 PMCID: PMC8933320 DOI: 10.1002/ece3.8710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α- and β-diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α-diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α-diversity was mainly influenced by dispersal limitation. Species and phylogenetic β-diversity were mainly consisted of turnover component. The functional β-diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β-diversity and their turnover component of species and phylogenetic β-diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α-diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α- and β-diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α- and β-diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly.
Collapse
Affiliation(s)
- Lamei Jiang
- College of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| | - Dong Hu
- College of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| | - Hengfang Wang
- College of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| | - Guanghui Lv
- College of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| |
Collapse
|
9
|
Highly Species-Specific Foliar Metabolomes of Diverse Woody Species and Relationships with the Leaf Economics Spectrum. Cells 2021; 10:cells10030644. [PMID: 33805842 PMCID: PMC7999030 DOI: 10.3390/cells10030644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Plants show an extraordinary diversity in chemical composition and are characterized by different functional traits. However, relationships between the foliar primary and specialized metabolism in terms of metabolite numbers and composition as well as links with the leaf economics spectrum have rarely been explored. We investigated these relationships in leaves of 20 woody species from the Mediterranean region grown as saplings in a common garden, using a comparative ecometabolomics approach that included (semi-)polar primary and specialized metabolites. Our analyses revealed significant positive correlations between both the numbers and relative composition of primary and specialized metabolites. The leaf metabolomes were highly species-specific but in addition showed some phylogenetic imprints. Moreover, metabolomes of deciduous species were distinct from those of evergreens. Significant relationships were found between the primary metabolome and nitrogen content and carbon/nitrogen ratio, important traits of the leaf economics spectrum, ranging from acquisitive (mostly deciduous) to conservative (evergreen) leaves. A comprehensive understanding of various leaf traits and their coordination in different plant species may facilitate our understanding of plant functioning in ecosystems. Chemodiversity is thereby an important component of biodiversity.
Collapse
|