1
|
Pan C, Zhang Q, Zhang W, Bao J, Dai G, Liu S, Lan J. Wet scrubbing coupled with advanced oxidation process for removal of chlorobenzene: A study of performance and mechanisms. ENVIRONMENTAL RESEARCH 2025; 268:120779. [PMID: 39778620 DOI: 10.1016/j.envres.2025.120779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Porous graphitized carbon (PGC)-supported CoFe2O4 bimetallic catalysts (CoFe2O4/PGC) were prepared by a hydrothermal method using Fe(NO3)3·9H2O and Co(NO3)2·6H2O as precursors and were used to activate peroxymonosulfate (PMS) for the degradation of chlorobenzene (CB). Under the conditions of CoFe2O4/PGC catalysts and PMS concentrations of 0.1 g/L and 5 mM, respectively, in a wide range of pH (5.0-9.0) both efficient removal (>68%) of 25 ppmv CB could be achieved. Electron spin resonance (ESR) and quenching experiments show that SO4•- and HO• were the main reactive radicals in the CoFe2O4/PGC-PMS system. In addition, the steady-state concentrations of SO4•- and HO• were estimated using the use of hydroxybenzoic acid (HBA) and benzoic acid (BA) as probes for 97.8 μM and 327.5 μM. Electrochemical characterization method demonstrated that the CoFe2O4/PGC catalysts showed better electron transfer capacity and better activation of PMS compared with CoFe2O4 and PGC. The XRD and metal ion dissolution experiments (less than 0.33 ppm) illustrated that the catalysts possessed better stability before and after reaction. Moreover, the CB removal efficiency at 500 min remained at 77.6% after five runs. And the wet scrubber can remove gaseous CB, dichloroethane, trichloroethylene, dichloromethane over 70%. This study might provide a new idea for PGC-supported heterogeneous catalysts for CVOCs wet oxidation.
Collapse
Affiliation(s)
- Cong Pan
- School of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Qiang Zhang
- School of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Wenya Zhang
- School of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Jing Bao
- School of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Gaopeng Dai
- School of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Suqin Liu
- School of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Bian Y, Zhang Y, Zou PC, Zhou Y, Feng XS, Wang JL. Triazoles in the environment: An update on occurrence, fate, health hazards, and removal techniques. ENVIRONMENTAL RESEARCH 2025; 271:121092. [PMID: 39954929 DOI: 10.1016/j.envres.2025.121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/07/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
The triazole fungicides are widely utilized in agriculture and have the potential to leach into surface water from agricultural fields, resulting in significant environmental contamination. Prolonged exposure to triazole fungicides may pose potential risks to human health. Therefore, it is imperative to develop rapid, cost-effective, and efficient methods for the removal of triazoles in order to mitigate their detrimental impact on both the environment and human health. The present study provides a comprehensive review of the occurrence, distribution, and fate of triazoles in the general environment. Furthermore, an extensive comparison of current removal techniques, encompassing biodegradation, advanced oxidation processes (AOPs) and adsorption in various environmental samples, is thoroughly discussed. AOPs-based methods are currently the most widely utilized removal technology and represent a primary direction for future development. The application of hybrid removal techniques presents promising opportunities for the development of innovative methods for triazole removal. The paper also provides an analysis of the advantages/disadvantages and challenges associated with triazoles removal. In conclusion, this comprehensive review offers an in-depth evaluation of state-of-the-art technologies for triazoles removal.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Pei-Chen Zou
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Jia-Lu Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
3
|
Nie B, Dong H, Yan J, Zhang S, Zhong S. Enhanced oxidative degradation of 2,4-dichlorophenol by iron oxychloride supported on graphitic carbon nitride via peroxymonosulfate activation: Significant role of Fe(II)/Fe(III) conversion cycle. ENVIRONMENTAL RESEARCH 2025; 264:120398. [PMID: 39571710 DOI: 10.1016/j.envres.2024.120398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
The activation of peroxymonosulfate (PMS) by heterogeneous catalysts presents an exciting but challenging strategy for degrading persistent organic pollutants in water. Iron oxychloride (FeOCl) is considered a promising heterogeneous catalyst due to its unique oxygen bridge structure, which could render it more active by facilitating the iron valence transitions between Fe(II) and Fe(III). However, the limited Fe(II)/Fe(III) conversion cycle rate hinders its catalytic activity, leading to unsatisfactory PMS activations in practical applications. Herein, we demonstrated the performance and the mechanistic pathway of enhanced FeOCl (CNFeOCl) catalytic activation using a graphitic carbon nitride (g-C3N4) with a unique electronic structure as a carrier employing 2,4-dichlorophenol (2,4-DCP) as a representative pollutant. The CNFeOCl/PMS system achieved complete degradation of 2,4-DCP (30 mg/L) in a short time (<5 min), whereas the FeOCl/PMS system degraded only 35.98% under the same conditions. The high 2,4-DCP degradation rate of CNFeOCl was due to its improved Fe(II)/Fe(III) ratio (34.34%/40.03%), increased specific surface area (30.32 m2/g), and reduced charge-transfer resistance. Combining a series of characterizations, electron spin resonance (ESR) detection, and quenching experiments, the investigations elucidated the enhanced catalytic activation mechanism of CNFeOCl which includes dominant reactive oxygen species (ROS) generation and some key factors that generally affected the efficiency of oxidative degradation. We believe this study offers new insights into the intrinsic role of g-C3N4 supported FeOCl for PMS activation and provides theoretical support to guide the rational design for developing efficient iron-based catalysts toward heterogeneous catalysis.
Collapse
Affiliation(s)
- Bin Nie
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, PR China; Institute of Water Resources and Environment, Jilin University, Changchun, 130026, PR China
| | - Haojun Dong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, PR China; Institute of Water Resources and Environment, Jilin University, Changchun, 130026, PR China
| | - Jincan Yan
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, PR China; Institute of Water Resources and Environment, Jilin University, Changchun, 130026, PR China
| | - Shengyu Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, PR China; Institute of Water Resources and Environment, Jilin University, Changchun, 130026, PR China
| | - Shuang Zhong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, PR China.
| |
Collapse
|
4
|
Abidli A, Ben Rejeb Z, Zaoui A, Naguib HE, Park CB. Comprehensive insights into the application of graphene-based aerogels for metals removal from aqueous media: Surface chemistry, mechanisms, and key features. Adv Colloid Interface Sci 2024; 335:103338. [PMID: 39577338 DOI: 10.1016/j.cis.2024.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Efficient removal of heavy metals and other toxic metal pollutants from wastewater is essential to protect human health and the surrounding vulnerable ecosystems. Therefore, significant efforts have been invested in developing practical and sustainable tools to address this issue, including high-performance adsorbents. In this respect, within the last few years, graphene-based aerogels/xerogels/cryogels (GBAs) have emerged and drawn significant attention as excellent materials for removing and recovering harmful and valuable metals from different aqueous media. Such an upward trend is mainly due to the features of the aerogel materials combined with the properties of the graphene derivatives within the aerogel's network, including the GBAs' unique three-dimensional (3D) porous structure, high porosity, low density, large specific surface area, exceptional electron mobility, adjustable and rich surface chemistry, remarkable mechanical features, and tremendous stability. This review offers a comprehensive analysis of the fundamental and practical aspects and phenomena related to the application of GBAs for metals removal. Herein, we cover all types of (bottom-up) synthesized GBAs, including true microporous graphene-based aerogels as well as other 3D graphene-based open-cell interconnected mesoporous and macroporous aerogels, foams, and sponges. Indeed, we provide insights into the fundamental understanding of the GBAs' suitability for such an important application by revealing the mechanisms involved in metals removal and the factors inducing and controlling the highly selective behavior of these distinctive adsorbents. Besides conventional adsorptive pathways, we critically analyzed the ability of GBAs to electrochemically capture metal pollutants (i.e., electrosorption) as well as their efficiency in metals detoxification through reductive mechanisms (i.e., adsorption-reduction-readsorption). We also covered the reusability aspect of graphene aerogels (GAs)-based adsorbents, which is strongly linked to the GBAs' outstanding stability and efficient desorption of captured metals. Furthermore, in view of their numerous practical and environmental benefits, the development and application of magnetically recoverable GAs for metals removal is also highlighted. Moreover, we shed light on the potential practical and scalable implementation of GBAs by evaluating their performance in continuous metals removal processes while highlighting the GBAs' versatility demonstrated by their ability to remove multiple contaminants along with metal pollutants from wastewater media. Finally, this review provides readers with an accessible overview and critical discussion of major recent achievements regarding the development and applications of GAs-based adsorbents for metal ions removal. Along with our recommendations and suggestions for potential future work and new research directions and opportunities, this review aims to serve as a valuable resource for researchers in the field of wastewater treatment and inspire further progress towards developing next-generation high-performance GBAs and expanding their application.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science & Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Toronto Smart Materials and Structures (TSMART), Department of Mechanical and Industrial Engineering, Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Hani E Naguib
- Toronto Smart Materials and Structures (TSMART), Department of Mechanical and Industrial Engineering, Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science & Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
5
|
Broterson YB, Núñez-de la Rosa Y, Guillermo Cuadrado Durango L, Rossi Forim M, Hammer P, Aquino JM. CoFe 2O 4 as a source of Co(II) ions for imidacloprid insecticide oxidation using peroxymonosulfate: Influence of process parameters and surface changes. CHEMOSPHERE 2024; 352:141278. [PMID: 38266880 DOI: 10.1016/j.chemosphere.2024.141278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Nanometric cobalt magnetic ferrite (CoFe2O4) synthesized by distinct methods was used for in situ chemical activation of peroxymonosulfate (PMS) under neutral conditions to oxidize imidacloprid (IMD) insecticide. The effect of CoFe2O4 load (0.125-1.0 g L-1) and PMS concentration (250-1000 μM) was investigated as well as the influence of phosphate buffer and Co(II) ions. PMS activation by Co(II) ions, including those leached from CoFe2O4 (>50 μg L-1), exhibited a strong influence on IMD oxidation and, apparently, without substantial contributions from the solid phase. Within the prepared solid materials (i.e., using sol-gel and co-precipitation methods), high oxidation rates (ca. 0.5 min-1) of IMD were attained in ultrapure water. Phosphate buffer had no significant influence on the IMD oxidation rate and level, however, its use and solution pH have shown to be important parameters, since higher PMS consumption was observed in the presence of buffered solutions at pH 7. IMD byproducts resulting from hydroxylation reactions and rupture of the imidazolidine ring were detected by mass spectrometry. At optimum conditions (0.125 g L-1 of CoFe2O4 and 500 μM of PMS), the CoFe2O4 nanoparticles exhibited an increase in the charge transfer resistance and an enhancement in the surface hydroxylation after PMS activation, which led to radical (HO● and SO4●-) and nonradical (1O2) species. The latter specie led to high levels of IMD oxidation, even in a complex water matrix, such as simulated municipal wastewater at the expense of one-order decrease in the IMD oxidation rate.
Collapse
Affiliation(s)
- Yoisel B Broterson
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil
| | - Yeison Núñez-de la Rosa
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil
| | | | - Moacir Rossi Forim
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil
| | - Peter Hammer
- São Paulo State University (UNESP), Institute of Chemistry, Department of Physical Chemistry, 14800-900, Araraquara, SP, Brazil
| | - José M Aquino
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Mo Y, Zhang X. Insights into the mechanism of multiple Cu-doped CoFe 2O 4 nanocatalyst activated peroxymonosulfate for efficient degradation of Rhodamine B. J Environ Sci (China) 2024; 137:382-394. [PMID: 37980024 DOI: 10.1016/j.jes.2022.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 11/20/2023]
Abstract
The multiple metal catalyst as a promising nanomaterial has shown excellent activity in the peroxymonosulfate (PMS) activation for pollutant degradation. However, the role of special sites and in-depth understanding of the PMS activation mechanism are not fully studied. In this study, a Cu-doped CoFe2O4 nanocatalyst (0.5CCF) was synthesized by a sol-gel and calcination method, and used for PMS activation to remove Rhodamine B (RhB). The results showed that the Cu doping obviously enhanced the catalytic performance of CoFe2O4, with 99.70% of RhB removed by 0.5CCF while 74.91% in the CoFe2O4 within 15 min. Based on the X-ray photoelectron spectroscopy and electrochemical analysis, this could be ascribed to the more low valence of Co and Fe species generated on the 0.5CCF and faster electron transfers occurred in the 0.5CCF due to the Cu doping. In addition, Cu doping could provide more reaction sites for the 0.5CCF to activate PMS for RhB removal. The metal species and the surface hydroxyl were the reaction sites of PMS activation, and the surface hydroxyl played an important role in surface-bound reactive species generation. During the PMS activation, the Cu not only activated PMS to produce reactive oxygen species (ROS), but also regenerated Co2+ and Fe2+ to accelerate the PMS activation. The non-radical of 1O2 was the main ROS with a 99.35% of contribution rate, and the SO5•- self-reaction was its major source. This study provides a new insight to enhance the PMS activation performance of multiple metal catalysts by Cu doping in wastewater treatment.
Collapse
Affiliation(s)
- Yuanmin Mo
- School of Environment & Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China
| | - Xiaoping Zhang
- School of Environment & Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China.
| |
Collapse
|
7
|
Li X, Li X, Song C, Yang X, Liu Y, Zhu J. Efficient degradation of tetrabromobisphenol A using peroxymonosulfate oxidation activated by a novel nano-CuFe 2O 4@coconut shell biochar catalyst. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122488. [PMID: 37678734 DOI: 10.1016/j.envpol.2023.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
In this study, a novel bimetallic complexation-curing nucleation-anaerobic calcination method was developed to synthesize a nano-CuFe2O4@coconut shell biochar (CuFe2O4@CSBC) catalyst to activate peroxymonosulfate for degradation of tetrabromobisphenol A (TBBPA). The reaction processes of the TBBPA on CuFe2O4@CSBC have been investigated using in situ characterization and metal leaching. The effects of initial reaction conditions and degradation mechanism were investigated. Greater than 99% degradation of TBBPA at 10 mg L-1 was achieved in 30 min under the condition of pH 11, a total organic carbon removal rate of up to 70.67% was achieved and the degradation efficiency was 90% after 5 cycles of CuFe2O4@CSBC use. The degradation was in a second-order reaction at a constant of 0.797 M-1 min-1 (R2 = 0.993). The degradation was attributed to the main active species (SO4·-≈·OH < 1O2), and the surface active site of CuFe2O4@CSBC was the key role. The degradation process involved three main degradation pathways. Path A: ·OH attacked the C-Br bonds (TBBPA→TriBBPA→DBBPA→MBBPA→BPA); Path B: Hydroxylation and decarboxylation; Path C: Dehydrocoupling of TBBPA. What's more, the practical application of the system was very positive, achieved >77% degradation in sewage and industrial wastewater.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xujing Li
- Beijing Risun Science and Technology Limited, Beijing, 100070, China
| | - Chuang Song
- Tieling Ecological Environment Bureau, Tieling, 112008, China
| | - Xiaojin Yang
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanping Liu
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| |
Collapse
|
8
|
Huang C, Liu H, Sun C, Wang P, Tian Z, Cheng H, Huang S, Yang X, Wang M, Liu Z. Peroxymonosulfate activation by graphene oxide-supported 3D-MoS 2/FeCo 2O 4 sponge for highly efficient organic pollutants degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121391. [PMID: 36871747 DOI: 10.1016/j.envpol.2023.121391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To address conventional powder catalysts' recovery and aggregation issues that greatly restrain their practical application, a recoverable graphene oxide (GO)-supported 3D-MoS2/FeCo2O4 sponge (SFCMG) was developed through a simple impregnation pyrolysis method. SFCMG can efficiently activate peroxymonosulfate (PMS) to produce reactive species for rapid degradation of rhodamine B (RhB), with 95.0% and 100% of RhB being removed within 2 min and 10 min, respectively. The presence of GO enhances the electron transfer performance of the sponge, and the three-dimensional melamine sponge serves as a substrate to provide a highly dispersed carrier for FeCo2O4 and MoS2/GO hybrid sheets. SFCMG exhibits a synergistic catalytic effect of Fe and Co, and facilitates the redox cycles of Fe(III)/Fe(II) and Co(III)/Co(II) by MoS2 co-catalysis, which enhances its catalytic activity. Electron paramagnetic resonance results demonstrate that SO4•-, ·O2- and 1O2 are all involved in SFCMG/PMS system, and 1O2 played a prominent role in RhB degradation. The system has good resistance to anions (Cl-, SO42-, and H2PO4-) and humic acid and excellent performance for many typical contaminants degradation. Additionally, it works efficiently over a wide pH range (3-9) and possesses high stability and reusability with the metal leaching far below the safety standards. The present study extends the practical application of metal co-catalysis and offers a promising Fenton-like catalyst for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Zhongyu Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Su Huang
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xiong Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Mengxin Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
9
|
Yang L, Wei Z, Guo Z, Chen M, Yan J, Qian L, Han L, Li J, Gu M. Significant roles of surface functional groups and Fe/Co redox reactions on peroxymonosulfate activation by hydrochar-supported cobalt ferrite for simultaneous degradation of monochlorobenzene and p-chloroaniline. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130588. [PMID: 37055992 DOI: 10.1016/j.jhazmat.2022.130588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/06/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
CoFe2O4/hydrochar composites (FeCo@HC) were synthesized via a facile one-step hydrothermal method and utilized to activate peroxymonosulfate (PMS) for simultaneous degradation of monochlorobenzene (MCB) and p-chloroaniline (PCA). Additionally, the effects of humic acid, Cl-, HCO3-, H2PO4-, HPO42- and water matrices were investigated and degradation pathways of MCB and PCA were proposed. The removal efficiencies of MCB and PCA were higher in FeCo@HC140-10/PMS system obtained under hydrothermal temperature of 140 °C than FeCo@HC180-10/PMS and FeCo@HC220-10/PMS systems obtained under higher temperatures. Radical species (i.e., SO4•-, •OH) and nonradical pathways (i.e., 1O2, Fe (IV)/Co (IV) and electron transfer through surface FeCo@HC140-10/PMS* complex) co-occurred in the FeCo@HC140-10/PMS system, while radical and nonradical pathways were dominant in degrading MCB and PCA respectively. The surface functional groups (i.e., C-OH and CO) and Fe/Co redox cycles played crucial roles in the PMS activation. MCB degradation was significantly inhibited in the mixed MCB/PCA solution over that in the single MCB solution, whereas PCA degradation was slightly promoted in the mixed MCB/PCA solution. These findings are significant for the provision of a low-cost and environmentally-benign synthesis of bimetal-hydrochar composites and more detailed understanding of the related mechanisms on PMS activation for simultaneous removal of the mixed contaminants in groundwater.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifei Wei
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Lier Chemical Co Ltd, Mianyang 621020, China
| | - Zihan Guo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingyue Gu
- Nanjing Kaiye Environmental Technology Co Ltd, Nanjing 210034, China
| |
Collapse
|
10
|
Zhu J, Wang S, Yang Z, Pan B. Robust polystyrene resin-supported nano-CoFe 2O 4 mediated peroxymonosulfate activation for efficient oxidation of 1-hydroxyethane 1,1-diphosphonic acid. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130281. [PMID: 36334573 DOI: 10.1016/j.jhazmat.2022.130281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanosized spinel cobalt ferrite (CoFe2O4) shows high performance in peroxymonosulfate (PMS) activation for decontamination in water, but is yet challenged by the easily leached Co(II) with high toxicity. Herein, macroporous polystyrene resin is used as the support to improve the stability of CoFe2O4 nanoparticles during PMS activation. CoFe2O4@S201 exerted high catalytic activity toward PMS activation for oxidation of 1-hydroxyethane 1,1-diphosphonic acid (HEDP), with the apparent rate normalized by Co content 38.2 times higher than that of the unsupported CoFe2O4. Meanwhile, one order of magnitude lower Co leaching (< 2.1 μg L-1) was detected during the catalytic oxidation. The Co(II)-PMS complex was the primary oxidant responsible for the oxidation of HEDP. The catalytic durability and stability of CoFe2O4@S201 for degradation of HEDP in actual wastewater were systematically evaluated in both batch and continuous-flow mode. It is found that the organic resin, which is often considered to be intolerant to oxidation, is rather stable during the non-radical process. The total cobalt leaching of the fresh CoFe2O4@S201 cannot be ignored in the 100-h continuous-flow run. In contrast, much lower cobalt leaching and slightly higher oxidation efficiency were observed for the regenerated CoFe2O4@S201, which might be due to the removal of unreactive and unstable Co sites on the surface in the first trial. The findings shed light on the potential of organic supports for improving the stability and activity of nanosized CoFe2O4 and other nano-catalysts toward practical application.
Collapse
Affiliation(s)
- Jinglin Zhu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides. Talanta 2023; 253:123919. [PMID: 36126523 DOI: 10.1016/j.talanta.2022.123919] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Nowadays, proteins separation has attracted great attention in proteomics research. Because the proteins separation is helpful for making an early diagnosis of many diseases. Magnetic nanoparticles are an interesting and useful functional material, and have attracted extensive research interest during the past decades. Because of the excellent properties such as easy surface functionalization, tunable biocompatibility, high saturation magnetization etc, magnetic microspheres have been widely used in isolation of proteins/peptides. Notably, with the rapid development of surface decoration strategies, more and more functional magnetic adsorbents have been designed and fabricated to meet the growing demands of biological separation. In this review, we have collected recent information about magnetic adsorbents applications in selective separation of proteins/peptides. Furthermore, we present a comprehensive prospects and challenges in the field of protein separation relying on magnetic nanoparticles.
Collapse
|
12
|
Wang W, Lai X, Yan S, Zhu L, Yao Y, Ding L. Synergistic Treatment of Dye Wastewater by the Adsorption-Degradation of a Bifunctional Aerogel. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a23010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Gao Z, Zhu J, Zhu Q, Wang C, Cao Y. Spinel ferrites materials for sulfate radical-based advanced oxidation process: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157405. [PMID: 35850354 DOI: 10.1016/j.scitotenv.2022.157405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In the past decade, the sulfate radical-based advanced oxidation processes (SR-AOPs) have been increasingly investigated because of their excellent performance and ubiquity in the degradation of emerging contaminants. Generally, sulfate radicals can be generated by activating peroxodisulfate (PDS) or peroxymonosulfate (PMS). To date, spinel ferrites (SF) materials have been greatly favored by researchers in activating PMS/PDS for their capability and unique superiorities. This article reviewed the recent advances in various pure SF, modified SF, and SF composites for PDS/PMS activation. In addition, synthesis methods, mechanisms, and potential applications of SF-based SR-AOPs were also examined and discussed in detail. Finally, we present future research directions and challenges for the application of SF materials in SR-AOPs.
Collapse
Affiliation(s)
- Zhimin Gao
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianzhong Zhu
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Qiuzi Zhu
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Cunshi Wang
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanyan Cao
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Wang B, He D, Zhu D, Lu Y, Li C, Li X, Dong S, Lyu C. Electron-rich ketone-based covalent organic frameworks supported nickel oxyhydroxide for highly efficient peroxymonosulfate activation and sulfadiazine removal: Performance and multi-path reaction mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Shao JJ, Cai B, Zhang CR, Hu YA, Pan H. One-pot synthesis of a cellulose-supported CoFe 2O 4 catalyst for the efficient degradation of sulfamethoxazole. Int J Biol Macromol 2022; 219:166-174. [PMID: 35932801 DOI: 10.1016/j.ijbiomac.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Cellulose-supported cobalt ferrite (CoFe2O4/RC) was synthesized via a facile one-pot hydrothermal method and demonstrated to be an efficient catalyst to activate peroxymonosulfate (PMS) for the degradation of sulfamethoxazole (SMX). The characterizations of CoFe2O4/RC catalysts revealed that an appropriate particle size of the cellulose support could promote the dispersion of CoFe2O4 nanoparticles and consequently promote the catalytic activity of the resulting CoFe2O4/RC catalysts. The degradation of SMX reached 97.6 % within 20 min at 30 °C with the CoFe2O4/RC/PMS system. The mechanism of SMX degradation over CoFe2O4/RC-activated PMS was studied via EPR, XPS, and quenching tests. The results suggested that 1O2 was the dominant reactive oxygen species and was accompanied by SO4-, OH, and O2- radicals for SMX degradation. The CoFe2O4/RC catalyst exhibited high stability and recyclability and maintained high catalytic activity after five experimental cycles.
Collapse
Affiliation(s)
- Jing-Jing Shao
- Jiangsu CoInnovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, 210037 Nanjing, PR China
| | - Bo Cai
- Jiangsu CoInnovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, 210037 Nanjing, PR China
| | - Cheng-Rui Zhang
- Jiangsu CoInnovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, 210037 Nanjing, PR China
| | - Ying-Ao Hu
- Jiangsu CoInnovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, 210037 Nanjing, PR China
| | - Hui Pan
- Jiangsu CoInnovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road, 210037 Nanjing, PR China.
| |
Collapse
|
16
|
Zhi Z, Wu D, Meng F, Yin Y, Song B, Zhao Y, Song M. Facile synthesis of CoFe 2O 4@BC activated peroxymonosulfate for p-nitrochlorobenzene degradation: Matrix effect and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154275. [PMID: 35248636 DOI: 10.1016/j.scitotenv.2022.154275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
p-Nitrochlorobenzene (p-NCB) is widely used in industry and poses a potential threat to the public health due to its persistence, carcinogenicity and mutagenicity. Herein, magnetic catalyst CoFe2O4@Biochar (CoFe2O4@BC) was synthesized by a facile sol-gel method, efficiently activating peroxymonosulfate (PMS) to degrade p-NCB. The synergistic effect of Fe and Co in well-dispersed CoFe2O4 and the electron transfer promote the production of reactive oxygen species (ROS) (OH, SO4- and O2-), efficiently removing p-NCB enriched by CoFe2O4@BC. Under optimum conditions, the CoFe2O4@BC/PMS system could remove 89% of p-NCB from water, and the degradation efficiency could reach 80% in soil. Toxic chlorinated intermediates appeared during the degradation process and thus efficient dechlorination process can lower the toxicity of the reaction solution, which was also proved by the oxygen uptake inhibition experiment as well as zebrafish toxicity experiments. Furthermore, p-NCB degradation efficiency could be inhibited by Cl-, HCO3-, HPO42- and humic acid (HA) through quenching effect or occupation of CoFe2O4@BC surface active sites while HPO42- could also improve the efficiency by directly activating PMS. The CoFe2O4@BC/PMS system can be efficiently applied in the remediation of p-NCB pollution in water and soil.
Collapse
Affiliation(s)
- Zejian Zhi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fanyue Meng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bing Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yan Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
17
|
Gao L, Deng J, Li T, Qi K, Zhang J, Yi Q. A facial strategy to efficiently improve catalytic performance of CoFe 2O 4 to peroxymonosulfate. J Environ Sci (China) 2022; 116:1-13. [PMID: 35219407 DOI: 10.1016/j.jes.2021.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 06/14/2023]
Abstract
Cobalt iron spinel (CoFe2O4) has been considered as a good heterogeneous catalysis to peroxymonosulfate (PMS) in the degradation of persistent organic pollutants due to its magnetic properties and good chemical stability. However, its catalytic activity needs to be further improved. Here, a facial strategy, "in-situ substitution", was adopted to modify CoFe2O4 to improve its catalytic performance just by suitably increasing the Co/Fe ratio in synthesis process. Compared with CoFe2O4, the newly synthesized Co1.5Fe1.5O4, could not only significantly improve the degradation efficiency of phenol, from 50.69 to 93.6%, but also exhibited more effective mineralization ability and higher PMS utilization. The activation energy advantage for phenol degradation using Co1.5Fe1.5O4 was only 44.2 kJ/mol, much lower than that with CoFe2O4 (127.3 kJ/mol). A series of related representations of CoFe2O4 and Co1.5Fe1.5O4 were compared to explore the possible reasons for the outstanding catalytic activity of Co1.5Fe1.5O4. Results showed that Co1.5Fe1.5O4 as well represented spinel crystal as CoFe2O4 and the excess cobalt just partially replaced the position of iron without changing the original structure. Co1.5Fe1.5O4 had smaller particle size (8.7 nm), larger specific surface area (126.3 m2/g), which was more favorable for exposure of active sites. Apart from the superior physical properties, more importantly, more reactive centers Co (Ⅱ) and surface hydroxyl compounds generated on Co1.5Fe1.5O4, which might be the major reason. Furthermore, Co1.5Fe1.5O4 behaved good paramagnetism, wide range of pH suitability and strong resistance to salt interference, making it a new prospect in environmental application.
Collapse
Affiliation(s)
- Lili Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jieqiong Deng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tong Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kai Qi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiandong Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qun Yi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
18
|
Zhu H, Guo A, Xian L, Wang Y, Long Y, Fan G. Facile fabrication of surface vulcanized Co-Fe spinel oxide nanoparticles toward efficient 4-nitrophenol destruction. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128433. [PMID: 35158244 DOI: 10.1016/j.jhazmat.2022.128433] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Developing efficient modulation strategies to boost the degradation efficiencies of non-noble metal catalysts for toxic phenolic compounds involving peroxymonosulfate (PMS)-based oxidation processes is essential but remains an arduous challenge. This study reports the one-pot construction of in-situ surface vulcanized CoFe2O4 @carbon (Sx-CF@C) to boost the PMS activation for 4-nitrophenol (4-NP) destruction. The direct pyrolysis of an aerogel precursor consisted of cobalt nitrate, ferric nitrate, melamine, and thiourea enables the as-formed Sx-CF@C with hierarchical structure, rich oxygen vacancies, and electron/mass transfer, thereby considerably promoting PMS activation performance of Sx-CF@C toward 4-NP degradation. Specifically, the optimal S0.2-CF@C can achieve a removal efficiency of 99% for 4-NP destruction (20 mg/L) through PMS activation. Meanwhile, the catalyst also has generality to degrade a variety of antibiotic and dye organic pollutants. The radical quenching and electron paramagnetic resonance tests reveal the radical and non-radical activation mechanism in the S0.2-CF@C/PMS system. The degradation pathway for 4-NP destruction over the S0.2-CF@C/PMS system is proposed. This study provides an efficient approach to modulate the PMS activation performance of ferrite spinel materials toward the degradation of acute phenolic compounds.
Collapse
Affiliation(s)
- Hui Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - An Guo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lin Xian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
19
|
Shen Z, Zhou H, Zhou P, Zhang H, Xiong Z, Yu Y, Yao G, Lai B. Degradation of atrazine in water by Bi 2MoO 6 and visible light activated Fe 3+/peroxymonosulfate coupling system. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127781. [PMID: 34801304 DOI: 10.1016/j.jhazmat.2021.127781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of ferric ion (Fe3+) on the degradation of atrazine (ATZ) in Bi2MoO6/peroxymonosulfate (PMS) system under visible light irradiation was investigated. With the addition of Fe3+, ATZ in the visible light/Bi2MoO6/PMS system degraded rapidly after 20 min treatment (removal rate > 99%). The enhancement of ATZ removal can be attributed to the role of Fe3+. As an electron transfer mediator, Fe3+ not only inhibits the recombination of photo-charges and prolongs the life of photogenerated carriers, but also promotes the activation of PMS by accelerating the electron transfer from Bi2MoO6 to PMS. The generation of •OH and SO4•- in the system was determined via electron paramagnetic resonance (EPR) technology and quenching experiments. Furthermore, the characterization of Bi2MoO6 before and after reaction, influence of the reaction parameters (i.e., catalyst and PMS dosages, Fe3+ and ATZ concentration, initial pH), influence of inorganic anions and humic acid, and the recyclability of catalyst in the vis/Bi2MoO6/PMS/Fe3+ system was also investigated. Additionally, the existence of Fe3+ also exhibits a wide selectivity for the degradation of different pollutants and high treatment efficiency. In general, the vis/Bi2MoO6/PMS/Fe3+ system demonstrated the potential as an efficient, economical, and environment-friendly water treatment process.
Collapse
Affiliation(s)
- Ziye Shen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yahan Yu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
20
|
Fernández-Velayos S, Sánchez-Marcos J, Munoz-Bonilla A, Herrasti P, Menéndez N, Mazarío E. Direct 3D printing of zero valent iron@polylactic acid catalyst for tetracycline degradation with magnetically inducing active persulfate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150917. [PMID: 34653463 DOI: 10.1016/j.scitotenv.2021.150917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Catalyst stability has become a challenging issue for advanced oxidation processes (AOPs). Herein, we report an alternative method based on 3D printing technology to obtain zero-valent iron polylactic acid prototypes (ZVI@PLA) in a single step and without post etching treatment. ZVI@PLA was used to activate persulfate (PS) for the removal of Tetracycline (TC) in recirculating mode under two different heating methodologies, thermal bath and contactless heating promoted by magnetic induction (MIH). The effect of both heating methodologies was systematically analysed by comparing the kinetic constant of the degradation processes. It was demonstrated that the non-contact heating of ZVI by MIH reactivates the surface of the catalyst, renewing the surface iron content exposed to the pollutant solution, which makes the ZVI@PLA catalyst reusable up to 10 cycles with no efficiency reduction. In contrast, by using a conventional thermal bath, the kinetic constant gradually decreases over the 10 cycles, because of the superficial iron consumption, being the kinetic constant 5 times lower in the 10th run compared to MIH experiment. X-ray diffraction and Mössbauer spectroscopy confirmed the presence of metallic iron embedded in the ZVI@PLA prototype, whose crystalline structure remained unchanged for 10th cycles of MIH. Moreover, it was proven that with no contact heating technology at low magnetic fields (12.2 mT), the solution temperature does not increase, but only the surface of the catalyst does. Under these superficial heated conditions, kinetic rate is increased up to 0.016 min-1 compared to the value of 0.0086 min-1 obtained for conventional heating at 20 °C. This increase is explained not only by PS activation by iron leaching but also by the contribution of ZVI in the heterogeneous activation of persulfate.
Collapse
Affiliation(s)
- S Fernández-Velayos
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - J Sánchez-Marcos
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - A Munoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - P Herrasti
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - N Menéndez
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - E Mazarío
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
21
|
Yang LX, Yang JCE, Yuan BL, Fu ML. MOFs-derived magnetic hierarchically porous CoFe2O4-Co3O4 nanocomposite for interfacial radicals-induced catalysis to degrade chloramphenicol: Structure, performance and degradation pathway. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Yin W, Shao H, Huo Z, Wang S, Zou Q, Xu G. Degradation of anticorrosive agent benzotriazole by electron beam irradiation: Mechanisms, degradation pathway and toxicological analysis. CHEMOSPHERE 2022; 287:132133. [PMID: 34826893 DOI: 10.1016/j.chemosphere.2021.132133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Benzotriazole (BTA), which is extensively served as household and engineering agent, is one of the emerging and persistent contaminants. Despite the spirit to remove BTA is willing, the traditional wastewater treatments are weak. Therefore, the degradation of BTA via electron beam was systematically explored in this study. It turned out that after 5.0 kGy irradiation, even 87.5 mg L-1 BTA could be completely removed, and the irradiation conformed perfectly to the pseudo first-order kinetics model. The effects of solution pH, inorganic anions (CO32-, HCO3-, NO3-, NO2-, SO42-, SO32-, Cl-), and gas atmosphere were all explored. And results indicated that oxidative hydroxyl radicals played critical role in BTA irradiation. Additionally, presence of H2O2 and K2S2O8 promoted significantly not only degradation extent but also mineralization efficiency of BTA due to they both augmented the generation of oxidative free radicals. Moreover, by combining theoretical calculations with experimental results, it could be inferred that degradation of BTA was mainly carried out by the benzene ring-opening. Further toxicity evaluation proved that as irradiation proceeded, the toxicity alleviated. Taken together, there were various indications that BTA could be effectively eliminated by electron beam irradiation in aquatic environments.
Collapse
Affiliation(s)
- Wentao Yin
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Zhuhao Huo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Siqi Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Qi Zou
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
23
|
Heterogeneous activation of peroxymonosulfate using superparamagnetic β-CD-CoFe2O4 catalyst for the removal of endocrine-disrupting bisphenol A: Performance and degradation mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Wei S, Kamali AR. Waste plastic derived Co3Fe7/CoFe2O4@carbon magnetic nanostructures for efficient dye adsorption. JOURNAL OF ALLOYS AND COMPOUNDS 2021; 886:161201. [DOI: 10.1016/j.jallcom.2021.161201] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Li X, Zhao Z, Li H, Qian J. Degradation of organic contaminants in the CoFe2O4/peroxymonosulfate process: The overlooked role of Co(II)-PMS complex. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
26
|
Geng G, Gao Y, Zhang Z, Gao K, Zhang W, Song J. Renewable and robust biomass waste-derived Co-doped carbon aerogels for PMS activation: Catalytic mechanisms and phytotoxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112381. [PMID: 34091184 DOI: 10.1016/j.ecoenv.2021.112381] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Developing monolithic carbon-based catalyst with low cost, easy separation and high performance to degrade pollutants via PMS activation is crucial. In this work, a series of novel monolithic Me-CA catalysts based on biomass derived carbon aerogel were prepared by hydrothermal method using waste watermelon peel as raw material. Co-CA catalyst showed excellent performance to activate PMS for 2, 4-DCP degradation in different temperature and different water matrices. Different pollutants, such as ciprofloxacin (CIP), bisphenol A (BPA), and 2, 4-dichlorophenoxyacetic acid (2, 4-D) could also be removed in the Co-CA/PMS system. As expected, Co-CA could be easily separated from degraded solution, and show high stability and reusability for PMS activation with a lower cobalt leaching. Based on the results of the quenching tests, electron paramagnetic resonance (EPR) spectra, Chronoamperometric test (i-t curves) and electro-chemical impedance spectroscopy (EIS), the PMS activation mechanism was proposed. The phytotoxicity assessment determined by germination situation of mung bean indicated that PMS activation could eliminate the hazards of 2, 4-D. Therefore, this study provides a low cost, efficient and environmental-friendly monolithic biomass carbon aerogel catalyst for different pollutants degradation, which further advances monolithic catalyst for practical wastewater treatment.
Collapse
Affiliation(s)
- Guomin Geng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yanhui Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhitong Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Kangqi Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Wenyu Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Jianjun Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
27
|
Yan Y, Zhang H, Wang W, Li W, Ren Y, Li X. Synthesis of Fe 0/Fe 3O 4@porous carbon through a facile heat treatment of iron-containing candle soots for peroxymonosulfate activation and efficient degradation of sulfamethoxazole. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124952. [PMID: 33440280 DOI: 10.1016/j.jhazmat.2020.124952] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Developing highly efficient, reusable, non-toxic and low-cost catalysts is of great importance for persulfate-based advanced oxidation processes (AOPs). In this work, ferrocene was mixed into paraffin to prepare a candle, and the iron-containing candle soots were collected and heated at 500 °C~900 °C under N2 atmosphere for 1 h to prepare magnetically recyclable Fe0/Fe3O4@porous carbon (Fe0/Fe3O4@PC) catalysts. The Fe0/Fe3O4@PC-700 obtained after pyrolysis at 700 °C exhibited the best catalytic activity for sulfamethoxazole (SMX) degradation. 10 mg/L SMX could be completely degraded within 10 min by 0.2 g/L of Fe0/Fe3O4@PC-700 and 0.5 mM PMS at pH 5.0. The carbon shell effectively inhibited the Fe leaching of Fe0/Fe3O4@PC-700, and 99.73% of Fe was retained after five consecutive cycles. In the Fe0/Fe3O4@PC-700/PMS system, SMX was degraded through the sulfate radical (SO4·¯), hydroxyl radical (·OH), superoxide radical (O2·¯) dominated radical pathway, and the singlet oxygen (1O2) dominated non-radical pathway. The coexisting inorganic ions and natural organic matters (NOM) in actual water inhibited the degradation of SMX. Finally, four possible degradation pathways were proposed based on the degradation intermediates of SMX. This work provides a facile heat treatment of iron-containing candle soots strategy to prepare the metal@carbon catalysts for PMS-based AOP.
Collapse
Affiliation(s)
- Yating Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, Jiangsu, China
| | - Huayu Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, Jiangsu, China
| | - Wei Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, Jiangsu, China
| | - Wenchao Li
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, Jiangsu, China
| | - Yueping Ren
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, Jiangsu, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, China.
| | - Xiufen Li
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, Jiangsu, China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| |
Collapse
|
28
|
Zhao Q, Chu C, Xiao X, Chen B. Selectively coupled small Pd nanoparticles on sp 2-hybridized domain of graphene-based aerogel with enhanced catalytic activity and stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145396. [PMID: 33736138 DOI: 10.1016/j.scitotenv.2021.145396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The precisely coupling of metal nanoparticles with support domain are crucial to enhance the catalytic activity and stability of supported metal nanoparticle catalysts (MNPs). Here we selectively anchor Pd nanoparticles to the sp2 domain in graphene-based aerogel constructed with base-washed graphene oxide (BGO) by removing oxidative debris (OD). The effects of OD on the size and chemical composition of Pd nanoparticles in aerogels are initially unveiled. The removal of OD nanoparticles prompt selective coupling of Pd nanoparticles to the exposed sp2-hybridized domain on BGO nanosheets, and then prevent it from agglomeration. As a result, the Pd nanoparticle size of self-assembled Pd/BGA is 4.67 times smaller than that of traditional Pd/graphene oxide aerogel (Pd/GA). The optimal catalytic activity of Pd/BGA for the model catalytic reduction of 4-nitrophenol is 15 times higher than that of Pd/GA. Pd/BGA could maintain its superior catalytic activity and achieves 98.72% conversion in the fifth cycle. The superior catalytic performance could be ascribed to the small Pd nanoparticles and high percentage of Pd(0) in Pd/BGA, and the enhanced electronic conductivity of Pd/BGA. These integrated merits of Pd/BGA as heterogeneous catalysts are attributed to selectively anchor Pd nanoparticles on sp2-hybridized domain of graphene-based aerogel, and strongly coupled interaction of MNPs with support. The structure-regulated BGO nanosheets could serve as versatile building blocks for fabricating MNPs/graphene aerogels with superior performance for catalytic transformation of water pollutants.
Collapse
Affiliation(s)
- Qiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
29
|
Song Y, Jiang J, Ma Y, Li T, Dong S. Visible-light activation of peroxymonosulfate by NiCo2O4/Bi24O31Br10 to accelerate tetracycline degradation. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02245d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Possible degradation mechanism with NiCo2O4/Bi24O31Br10 in a PMS/vis system.
Collapse
Affiliation(s)
- Yueyu Song
- Key Laboratory of Groundwater Resources and Environment
- Ministry of Education
- Jilin University
- Changchun
- China
| | - Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment
- Ministry of Education
- Jilin University
- Changchun
- China
| | - Yuhan Ma
- Key Laboratory of Groundwater Resources and Environment
- Ministry of Education
- Jilin University
- Changchun
- China
| | - Tianren Li
- Key Laboratory of Groundwater Resources and Environment
- Ministry of Education
- Jilin University
- Changchun
- China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment
- Ministry of Education
- Jilin University
- Changchun
- China
| |
Collapse
|