1
|
Guo T, O'Connor PJ, Tang W, Ma B, Zhou M, Zhang M. Four birds with one stone: applying nitrification inhibitor on the basis of percarbamide restores yield, decreases fungicide residue, enhances soil multifunctionality and stimulates bacterial community. PEST MANAGEMENT SCIENCE 2024. [PMID: 39467018 DOI: 10.1002/ps.8509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/18/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Fungicide residues were frequently detected in vegetables and soils, which severely affected crop yields and qualities. Reasonable nitrogen management might promote yields and decrease fungicide carbendazim residues in plant-soil systems. Current study explores comprehensive relationships among carbendazim residues, crop yields, soil multifunctionalities and endophytic and soil bacterial communities after applying nitrification inhibitors (3,4-dimethylpyrazole phosphate and dicyandiamide) and percarbamide to different soils. RESULTS Combined nitrification inhibitor and percarbamide additions produced multi-effects on restoring yields, declining fungicide residues, promoting soil multifunctionalities and stimulating bacterial communities. Relative to the control, percarbamide application promoted carbendazim dissipations in upland soils but decreased bacterial community diversities and stabilities in different soils. Compared to exclusive percarbamide, extra dicyandiamide applications decreased carbendazim residues by 25.8% in upland soils and 70.2% in paddy soils, declined carbendazim residues in carrots via improving soil pH, ammonium nitrogen (NH4 +-N) and Proteobacteria ratios. Relative to percarbamide application alone, extra dicyandiamide addition promoted the dry carrot yields by 133.2% in upland soils and 33.5% in paddy soils via promoting soil NH4 +-N, Acidobacteriota and Actinobacteriota ratios and bacterial community diversities and stabilities. Upland soil multifunctionality improvements diminished soil carbendazim residues via promoting soil pH and NH4 +-N, and paddy soil multifunctionalities and endophytic bacterial community structures generated negative influences on carrot carbendazim residues. CONCLUSION Our study suggested that nitrification inhibitor on the basis of percarbamide generated multi-effects on the different crop-soil systems: restoring carrot yields, reducing carbendazim contents, promoting soil multifunctionalities and stimulating bacterial community diversities and stabilities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tao Guo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Patrick J O'Connor
- Centre for Global Food and Resources, University of Adelaide, Adelaide, Australia
| | - Wenhui Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Bin Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Minzhe Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Australia
| |
Collapse
|
2
|
Zhang P, Wang Y, Lin H, Liang J, Wang J, Bai Y, Qu J, Wang A. Bacterial evolution in Biofiltration of drinking water treatment plant: Different response of phage and plasmid to varied water sources. WATER RESEARCH 2024; 259:121887. [PMID: 38870889 DOI: 10.1016/j.watres.2024.121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Biofiltration in drinking water treatment (BDWT) are popular as it holds promise as an alternative to chemical treatments, yet our understanding of the key drivers and trends underlying bacterial evolution within this process remains limited. While plasmids and phages are recognized as the main vectors of horizontal gene transfer (HGT), their roles in shaping bacterial evolution in BDWT remain largely unknown. Here we leverage global metagenomic data to unravel the primary forces driving bacterial evolution in BDWT. Our results revealed that the primary vector of HGT varies depending on the type of source water (groundwater and surface water). Both plasmids and phages accelerated bacterial evolution in BDWT by enhancing genetic diversity within species, but they drove contrasting evolutionary trends in functional redundancy in different source water types. Specifically, trends towards and away from functional redundancy (indicated as gene-protein ratio) were observed in surface-water and groundwater biofilters, respectively. Virulent phages drove bacterial evolution through synergistic interactions with bacterial species capable of natural transformation and with certain natural compounds that disrupt bacterial cytoplasmic membranes. Genes relating to water purification (such as Mn(II)-oxidizing genes), microbial risks (antibiotic resistance genes), and chemical risk (polycyclic aromatic hydrocarbons) were enriched via HGT in BDWT, highlighting the necessity for heighted focus on these useful and risky objects. Overall, these discoveries enhance our understanding of bacterial evolution in BDWT and have implications for the optimization of water treatment strategies.
Collapse
Affiliation(s)
- Peijun Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yuhan Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Huan Lin
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jinsong Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Penrith South DC, NSW 2751, Australia; School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Blakney AJC, Morvan S, Lucotte M, Moingt M, Charbonneau A, Bipfubusa M, Gonzalez E, Pitre FE. Site properties, environmental factors, and crop identify influence soil bacterial communities more than municipal biosolid application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171854. [PMID: 38522550 DOI: 10.1016/j.scitotenv.2024.171854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Reducing the environmental impact of Canadian field crop agriculture, including the reliance on conventional synthesised fertilisers, are key societal targets for establishing long-term sustainable practices. Municipal biosolids (MSB) are an abundant, residual organic material, rich in phosphate, nitrogen and other oligo-nutrients, that could be used in conjunction with conventional fertilisers to decrease their use. Though MBS have previously been shown to be an effective fertiliser substitute for different crops, including corn and soybean, there remain key knowledge gaps concerning the impact of MBS on the resident soil bacterial communities in agro-ecosystems. We hypothesised that the MBS fertiliser amendment would not significantly impact the structure or function of the soil bacterial communities, nor contribute to the spread of human pathogenic bacteria, in corn or soybean agricultural systems. In field experiments, fertiliser regimes for both crops were amended with MBS, and compared to corn and soybean plots with standard fertiliser treatments. We repeated this across four different agricultural sites in Quebec, over 2021 and 2022. We sampled MBS-treated, and untreated soils, and identified the composition of the soil bacterial communities via 16S rRNA metabarcoding. We found no indication that the MBS fertiliser amendment altered the structure of the soil bacterial communities, but rather that the soil type and crop identities were the most significant factors in structuring the bacterial communities. Moreover, there was no evidence that the MBS-treated soils were enriched in potential human bacterial pathogens over the two years of our study. Our analysis indicates that not only can MBS function as substitutes for conventional, synthesised fertilisers, but that they also do not disrupt the structure of the resident soil bacterial communities in the short term. Finally, we suggest that the use of MBS in agro-ecosystems poses no greater concern to the public than existing soil bacterial communities. This highlights the significant role MBS could potentially have in reducing the use of conventional industrial fertilisers and improving agricultural production, without risking environmental contamination.
Collapse
Affiliation(s)
- Andrew J C Blakney
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada.
| | - Simon Morvan
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada
| | - Marc Lucotte
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada.
| | - Matthieu Moingt
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada
| | - Ariane Charbonneau
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada
| | - Marie Bipfubusa
- Centre de Recherche sur les Grains, Inc. (CÉROM), Saint-Mathieu-de-Beloeil, QC J3G 0E2, Canada
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
| | - Frédéric E Pitre
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
4
|
Ding Y, Gao X, Shu D, Siddique KHM, Song X, Wu P, Li C, Zhao X. Enhancing soil health and nutrient cycling through soil amendments: Improving the synergy of bacteria and fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171332. [PMID: 38447716 DOI: 10.1016/j.scitotenv.2024.171332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
The synergy between bacteria and fungi is a key determinant of soil health and have a positive effect on plant development under drought conditions, with the potentially enhancing the sustainability of amending soil with natural materials. However, identifying how soil amendments influence plant growth is often difficult due to the complexity of microorganisms and their links with different soil amendment types and environmental factors. To address this, we conducted a field experiment to examine the impact of soil amendments (biochar, Bacillus mucilaginosus, Bacillus subtilis and super absorbent polymer) on plant growth. We also assessed variations in microbial community, links between fungi and bacteria, and soil available nutrients, while exploring how the synergistic effects between fungus and bacteria influenced the response of soil amendments to plant growth. This study revealed that soil amendments reduced soil bacterial diversity but increased the proportion of the family Enterobacteriaceae, Nitrosomonadaceae, and also increased soil fungal diversity and the proportion of the sum of the family Lasiosphaeriaceae, Chaetomiaceae, Pleosporaceae. Changes in soil microbial communities lead to increase the complexity of microbial co-occurrence networks. Furthermore, this heightened network complexity enhanced the synergy of soil bacteria and fungi, supporting bacterial functions related to soil nutrient cycling, such as metabolic functions and genetic, environmental, and cellular processes. Hence, the BC and BS had 3.0-fold and 0.5-fold greater root length densities than CK and apple tree shoot growth were increased by 62.14 %,50.53 % relative to CK, respectively. In sum, our results suggest that the synergistic effect of bacteria and fungi impacted apple tree growth indirectly by modulating soil nutrient cycling. These findings offer a new strategy for enhancing the quality of arable land in arid and semi-arid regions.
Collapse
Affiliation(s)
- Yanhong Ding
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shannxi 712100, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shannxi 712100, China
| | - Xiaodong Gao
- Institute of Soil and Water Conservation, Northwest A&F University, No, 26, Xinong Road, Yangling, Shannxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shannxi 712100, China
| | - Duntao Shu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Xiaolin Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pute Wu
- Institute of Soil and Water Conservation, Northwest A&F University, No, 26, Xinong Road, Yangling, Shannxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shannxi 712100, China
| | - Changjian Li
- Institute of Soil and Water Conservation, Northwest A&F University, No, 26, Xinong Road, Yangling, Shannxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shannxi 712100, China.
| | - Xining Zhao
- Institute of Soil and Water Conservation, Northwest A&F University, No, 26, Xinong Road, Yangling, Shannxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shannxi 712100, China.
| |
Collapse
|
5
|
Pan F, Yu X, Chen M, Liang Y. Vegetation recovery reshapes the composition and enhances the network connectivity of phoD-harboring microorganisms to promote P availability in a karst ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170561. [PMID: 38309358 DOI: 10.1016/j.scitotenv.2024.170561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Soil phoD-harboring microorganisms can facilitate phosphorus (P) transformation and increase the available P (AP) in P-limited soils; however, the mechanism by which these microorganisms enhance AP throughout the vegetation recovery process of karst ecosystems is poorly understood. Accordingly, this study investigates the effect of vegetation recovery on soil AP and the community composition and network connectivity of phoD-harboring microorganisms to elucidate the mechanism by which phoD-harboring microorganisms enhance soil AP in the four vegetation recovery stages (i.e., grassland, shrubland, shrub-arbor forest, and arbor forest) in a karst ecosystem. Results show that soil total P, AP, and microbial biomass P concentrations, as well as alkaline phosphatase activities, litter and soil nutrients, and plant diversity indices (Shannon-Wiener and Pielou) increase with advancing vegetation recovery. Moreover, the diversity indices (Shannon-Wiener and Simpson) and network complexity of the phoD-harboring microorganisms also increase with advancing vegetation recovery, leading to distinct communities among the four recovery stages. Rhizobiales, Pseudomonadales, and Burkholderiales comprise the dominant phoD-harboring microorganism orders. The relative abundances of Pseudomonadales and Burkholderiales increase with advancing vegetation recovery; Rhizobiales is the highest in shrubland and the lowest in grassland. The structural equation model results show that advanced vegetation recovery is associated with increased plant diversity, litter nutrients, and soil nutrients. The network connectivity is enhanced with advancing vegetation recovery accompanied by increasing soil phosphatase activity and P availability. These results suggest that regulating the phoD-harboring microorganism composition and network connectivity is essential to alleviate plant P limitation in karst ecosystems.
Collapse
Affiliation(s)
- Fujing Pan
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Xuan Yu
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Min Chen
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Yueming Liang
- Karst Dynamics Laboratory, Ministry of natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China.
| |
Collapse
|
6
|
Ren K, Yang X, Li J, Jin H, Gu K, Chen Y, Liu M, Luo Y, Jiang Y. Alleviating the adverse effects of Cd-Pb contamination through the application of silicon fertilizer: Enhancing soil microbial diversity and mitigating heavy metal contamination. CHEMOSPHERE 2024; 352:141414. [PMID: 38336042 DOI: 10.1016/j.chemosphere.2024.141414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The use of silicon fertilizer (SF) as a means of remediating cadmium (Cd) and lead (Pb) pollution has proven to be beneficial. However, the mechanism via which SF enhances soil quality and crop productivity under Cd- and Pb-contaminated soil (S) remains unclear. This study investigated the impacts of chemical fertilizer, mineral SF (MSF), and organic SF (OSF) on microbial community structure, activity of nutrient acquisition enzymes, and growth of tobacco in the presence of S condition. SF significantly reduced the contents of Cd and Pb in soil under S condition by 6.92-42.43% and increased plant height and leaf area by 15.27-81.77%. Moreover, the use of SF was observed to increase the efficiency of soil carbon and phosphorus cycling under S condition by 6.88-23.08%. Concurrently, SF was found to play a crucial role in facilitating the establishment of a complex, efficient, and interdependent molecular ecological network among soil microorganisms. In this context, Actinobacteriota, Bacteroidota, Ascomycota, and Basidiomycota were observed to be integral components of this network. SF was found to have a substantial positive impact on the metabolic functions and organismal systems of soil microorganisms. Moreover, the combined utilization of the Mantel test and partial least squares path model provided empirical evidence supporting the assertion that the administration of SF had a positive impact on both soil nutrient acquisition enzyme activity and tobacco growth, which was attributed to the enhancement of soil microbial diversity resulting from the application of SF. Furthermore, compared with MSF, OSF has advantages in reducing soil Pb and Cd content, promoting tobacco agronomic traits, increasing the number of key microbial communities, and maintaining the structural stability of microbial networks. The aforementioned findings, therefore, suggest that the OSF played a pivotal role in alleviating the adverse impacts of S, thereby demonstrating its efficacy in this particular process.
Collapse
Affiliation(s)
- Ke Ren
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China; College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Xiongwei Yang
- College of Landscape Architecture, Southwest Forestry University, Kunming, 650224, China
| | - Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Hongyan Jin
- College of Landscape Architecture, Southwest Forestry University, Kunming, 650224, China
| | - Kaiyuan Gu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China; College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Ming Liu
- College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Yigui Luo
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650031, China.
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| |
Collapse
|
7
|
Deng Y, Kong W, Zhang X, Zhu Y, Xie T, Chen M, Zhu L, Sun J, Zhang Z, Chen C, Zhu C, Yin H, Huang S, Gu Y. Rhizosphere microbial community enrichment processes in healthy and diseased plants: implications of soil properties on biomarkers. Front Microbiol 2024; 15:1333076. [PMID: 38505554 PMCID: PMC10949921 DOI: 10.3389/fmicb.2024.1333076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Plant health states may influence the distribution of rhizosphere microorganisms, which regulate plant growth and development. In this study, the response of rhizosphere bacteria and fungi of healthy and diseased plants compared to bulk microbes was analyzed using high-throughput sequencing. Plant adaptation strategies of plants under potato virus Y (PVY) infection have been studied from a microbial perspective. The diversity and community structure of bacteria and fungi varied between bulk and rhizosphere soils, but not between healthy and diseased rhizosphere soils. A LEfSe analysis revealed the significant differences between different treatments on bacterial and fungal community compositions and identified Roseiflexaceae, Sphingomonas, and Sphingobium as the bacterial biomarkers of bulk (BCK), healthy rhizosphere (BHS), and diseased rhizosphere (BIS) soils, respectively; Rhodotorula and Ascomycota_unidentified_1_1 were identified as the fungal biomarkers of bulk (FCK) and healthy rhizosphere (FHS) soils. Bacterial networks were found to be more complex and compact than fungal networks and revealed the roles of biomarkers as network keystone taxa. PVY infection further increased the connectedness among microbial taxa to improve rhizosphere microbial community stability and resistance to environmental stress. Additionally, water content (WC) played an apparent influence on bacterial community structure and diversity, and pH showed significant effects on fungal community diversity. WC and pH greatly affected the biomarkers of bacterial rhizosphere communities, whereas the biomarkers of bulk bacterial communities were significantly affected by soil nutrients, especially for Sphingobium. Overall, the rhizosphere microbial community enrichment processes were different between healthy and diseased plants by changing the community compositions and identifying different biomarkers. These findings provide insight into the assemblage of rhizosphere microbial communities and soil physicochemical properties, which contributes to a deeper understanding of the establishment of an artificial core root microbiota to facilitate plant growth and bolstering resistance mechanisms. This knowledge contributes to a deeper understanding of the establishment of an artificial core root microbiota, thereby facilitating plant growth and bolstering resistance mechanisms.
Collapse
Affiliation(s)
- Yong Deng
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Wuyuan Kong
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Xiaoming Zhang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Yi Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Tian Xie
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Ming Chen
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Li Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Jingzhao Sun
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Zhihua Zhang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Chaoyong Chen
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Chongwen Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Songqing Huang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
8
|
Kang H, Chai A, Lin Z, Shi Y, Xie X, Li L, Fan T, Xiang S, Xie J, Li B. Deciphering Differences in Microbial Community Diversity between Clubroot-Diseased and Healthy Soils. Microorganisms 2024; 12:251. [PMID: 38399655 PMCID: PMC10893227 DOI: 10.3390/microorganisms12020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Clubroot (Plasmodiophora brassicae) is an important soilborne disease that causes severe damage to cruciferous crops in China. This study aims to compare the differences in chemical properties and microbiomes between healthy and clubroot-diseased soils. To reveal the difference, we measured soil chemical properties and microbial communities by sequencing 18S and 16S rRNA amplicons. The available potassium in the diseased soils was higher than in the healthy soils. The fungal diversity in the healthy soils was significantly higher than in the diseased soils. Ascomycota and Proteobacteria were the most dominant fungal phylum and bacteria phylum in all soil samples, respectively. Plant-beneficial microorganisms, such as Chaetomium and Sphingomonas, were more abundant in the healthy soils than in the diseased soils. Co-occurrence network analysis found that the healthy soil networks were more complex and stable than the diseased soils. The link number, network density, and clustering coefficient of the healthy soil networks were higher than those of the diseased soil networks. Our results indicate that the microbial community diversity and network structure of the clubroot-diseased soils were different from those of the healthy soils. This study is of great significance in exploring the biological control strategies of clubroot disease.
Collapse
Affiliation(s)
- Huajun Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Ali Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Zihan Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Xuewen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| |
Collapse
|
9
|
Naik AT, Kamensky KM, Hellum AM, Moisander PH. Disturbance frequency directs microbial community succession in marine biofilms exposed to shear. mSphere 2023; 8:e0024823. [PMID: 37931135 PMCID: PMC10790581 DOI: 10.1128/msphere.00248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Disturbances are major drivers of community succession in many microbial systems; however, relatively little is known about marine biofilm community succession, especially under antifouling disturbance. Antifouling technologies exert strong local disturbances on marine biofilms, and resulting biomass losses can be accompanied by shifts in biofilm community composition and succession. We address this gap in knowledge by bridging microbial ecology with antifouling technology development. We show that disturbance by shear can strongly alter marine biofilm community succession, acting as a selective filter influenced by frequency of exposure. Examining marine biofilm succession patterns with and without shear revealed stable associations between key prokaryotic and eukaryotic taxa, highlighting the importance of cross-domain assessment in future marine biofilm research. Describing how compounded top-down and bottom-up disturbances shape the succession of marine biofilms is valuable for understanding the assembly and stability of these complex microbial communities and predicting species invasiveness.
Collapse
Affiliation(s)
- Abhishek T. Naik
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| | | | - Aren M. Hellum
- Naval Undersea Warfare Center, Newport, Rhode Island, USA
| | - Pia H. Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| |
Collapse
|
10
|
Xiao Z, Lei H, Lian Y, Zhang Z, Pan H, Yin C, Dong Y. Impact of Aerated Drip Irrigation and Nitrogen Application on Soil Properties, Soil Bacterial Communities and Agronomic Traits of Cucumber in a Greenhouse System. PLANTS (BASEL, SWITZERLAND) 2023; 12:3834. [PMID: 38005731 PMCID: PMC10675765 DOI: 10.3390/plants12223834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Root hypoxia stress and soil nutrient turnover have been related to reduced crop productivity. Aerated drip irrigation (ADI) can effectively enhance crop productivity and yield. However, the response of the soil bacterial community to different irrigation water dissolved oxygen (DO) concentrations remains elusive due to the extreme sensitivity of microorganisms to environmental variations. We investigated the effects of aerated irrigation with different concentrations of DO on soil properties and agronomic performance of cucumber, as well as the contribution of the bacterial community. We performed experiments on cucumber cultivation in Shouguang, China, including different irrigation methods (ADI: O2-10 and O3-20 mg L-1, non-aerated groundwater: O1-5 mg L-1) and nitrogen (N) application rates: 240 and 360 kg N ha-1. ADI (particularly O2) significantly improved soil properties, root growth, cucumber yields, and irrigation water use efficiency (IWUE), and appropriate DO concentrations reduced N fertilizer application and increased crop yields. Furthermore, these changes were associated with bacterial community diversity, aerobic bacteria abundance, and consolidated bacterial population stability within the network module. Environmental factors such as soil respiration rate (Rs), DO, and NO3--N have significant effects on bacterial communities. The FAPROTAX results demonstrated enhanced nitrification (Nitrospira) and aerobic nitrite oxidation by soil bacteria under ADI, promoting the accumulation of effective soil N and improved soil fertility and crop yield. Appropriate DO concentration is conducive to the involvement of soil bacterial communities in regulating soil properties and cucumber growth performance, which are vital for the sustainable development of facility agriculture.
Collapse
Affiliation(s)
- Zheyuan Xiao
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Hongjun Lei
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Yingji Lian
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Zhenhua Zhang
- School of Hydraulic Engineering, Ludong University, Yantai 264025, China;
| | - Hongwei Pan
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Chen Yin
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Yecheng Dong
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| |
Collapse
|
11
|
Wang F, Xie L, Gao W, Wu D, Chen X, Wei Z. The role of microbiota during chicken manure and pig manure co-composting. BIORESOURCE TECHNOLOGY 2023:129360. [PMID: 37336450 DOI: 10.1016/j.biortech.2023.129360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Co-composting is an excellent and effective technology for treating livestock manure in which microorganisms play a crucial function. Therefore, this study aimed at investigating the changes of microbial interactions during co-composting. Six different addition ratios of chicken and pig manure were used in composting experiment. The results showed that the co-composting system using 60% chicken manure and 40% pig manure significantly altered the microbial diversity and community structure. In addition, the complexity and tightness of its microbial community network structure reached the maximum, as did the strength of its cooperative and competitive microbial interactions. The higher microbial abundance and microbial interaction have the potential to promote the decomposition and transformation of compost components. Therefore, this study preliminarily revealed the changes of microbial community in co-composting, which provided a theoretical basis for optimizing microbial community interaction in composting systems by mixing different ratios of materials in practice.
Collapse
Affiliation(s)
- Feng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Xie
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Wenfang Gao
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Di Wu
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
12
|
Peng M, He H, Wang X, Wang Z, Zhuang L. Comparison of network connectivity and environmental driving factors of root-associated fungal communities of desert ephemeral plants in two habitat soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117375. [PMID: 36716547 DOI: 10.1016/j.jenvman.2023.117375] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Root-associated microorganisms regulate plant growth and development, and their distribution is likely influenced by habitat conditions. In this study, the responses of rhizosphere and root-endophytic fungi of dominant ephemeral plants to aeolian soil (AS) and grey desert soil (DS) in the Gurbantünggüt Desert were analyzed using high-throughput sequencing. This was done to understand the adaptation strategies of this vegetation in typical habitat soils from a microbial perspective. We found that the diversity of root-associated fungi of ephemeral plants differed in the two habitat soils. The diversity of rhizosphere fungi was relatively low in AS compared to DS, whereas the diversity of root-endophytic fungi was higher in AS. The community structure of root-associated fungi and relative abundances of some dominant taxa differed between the two soils. A co-occurrence network showed that the degree of coupling and interaction between root-associated fungal taxa were closer in AS than in DS and that most of the fungal taxa were cooperative in the two habitat soils. Additionally, the network properties of the root-endophytic fungi were apparent different between the two soils. Environmental factors, including electrical conductivity, soil organic carbon, carbon/nitrogen, and carbon/phosphorus ratios, were found to be key factors affecting rhizosphere fungi in DS, whereas soil available phosphorus was the main factor in AS. Several factors affect the root-endophytic fungal community and are more influential in DS than in AS. Overall, the root-associated fungal communities of ephemeral plants had different adaptation strategies to the two soils: increasing the diversity of rhizosphere fungi and their relationship with environmental factors in DS, and increasing the diversity and network relationships of root-endophytic fungi in AS. These findings provide insight into the assemblage of ephemeral plant root-associated microbial communities and the underlying environmental factors, which allows for a deeper understanding of how to construct an artificial core root microbiota to promote plant growth and resistance.
Collapse
Affiliation(s)
- Mengwen Peng
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Hao He
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Xiushuang Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Zhongke Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Li Zhuang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China.
| |
Collapse
|
13
|
Zhao F, Saleem M, Xie Z, Wei X, He T, He G. Sensitive or tolerant functional microorganisms under cadmium stress: suggesting potential specific interaction network characteristics in the rhizosphere system of karst potato. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55932-55947. [PMID: 36913018 DOI: 10.1007/s11356-023-26115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The heavy metal cadmium (Cd) pollution in Chinese karst soils threatens food security, and microorganisms play an important role in regulating the migration and transformation of Cd in the soil-plant system. Nevertheless, the interaction characteristics between key microbial communities and environmental factors in response to Cd stress in specific crop environmental systems need to be explored. In this study, the soil (ferralsols)-microbe-crop (potato) system was taken as the object to explore the potato rhizosphere microbiome, using toxicology and molecular biology approaches, to explore the potato rhizosphere soil properties, microbial stress characteristics, and important microbial taxa under Cd stress. We hypothesized that different members of fungal and bacterial microbiome would regulate the resilience of potato rhizosphere and plants to Cd stress in the soil environment. Meanwhile, individual taxa will have different roles in the contaminated rhizosphere ecosystem. We found that soil pH was the main environmental factor affecting fungal community structure; urea-decomposing and nitrate-reducing functional bacteria as well as endosymbiotic and saprophytic functional fungi gradually decreased. In particular, Basidiomycota may play a key role in preventing the migration of Cd from the soil to plants (potato). These findings provide important candidates for screening the cascade of Cd inhibition (detoxification/regulation) from soil to microorganisms to plants. Our work provides an important foundation and research insights for the application of microbial remediation technology in the karst cadmium-contaminated farmland.
Collapse
Affiliation(s)
- Fulin Zhao
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Zhao Xie
- Soil and Fertilizer Station of Guizhou Province, Guiyang, People's Republic of China
| | - Xiaoliao Wei
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China
- Institute of New Rural Development of Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
14
|
Dinesh R, Sreena CP, Sheeja TE, Charles S, Srinivasan V, Sajith V, Subila KP, Haritha P. Metagenomics indicates abundance of biofilm related genes and horizontal transfer of multidrug resistant genes among bacterial communities in nano zinc oxide polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160032. [PMID: 36370776 DOI: 10.1016/j.scitotenv.2022.160032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The unsafe and reckless disposal of metal oxide nanoparticles like ZnO (nZnO) into the soil could seriously impact bacterial behavioural responses and functions. Under such stress, biofilm formation is considered to be a robust mechanism for bacterial survival in soil. We examined the response of bacterial metagenomes in soils exposed to varying levels of Zn (50, 200, 500 and 1000 mg kg-1) as nano Zn oxide (nZnO) in terms of biofilm genesis and regulation and their co-occurrences with multidrug resistance genes (MDRGs) and mobile genetic elements (MGEs). The size-specific effects of nZnO were verified using its bulk counterpart (bZnO). Both nZnO and bZnO facilitated profusion of biofilm related genes (BGs) especially at higher Zn levels (500 and 1000 mg kg-1 Zn), though maximum abundance was registered at a comparatively lower level under nZnO. In general, nZnO favoured an enhancement of genes involved in exopolysaccharide biosynthesis and attachment, while bZnO favoured genes related to capsule formation, chemotaxis and biofilm dispersion. Co-occurrence network analysis revealed significant positive correlations between abundances of BGs, MDRGs and MGEs, indicating an enhanced probability for horizontal gene transfer of MDRGs in nZnO polluted soils.
Collapse
Affiliation(s)
- R Dinesh
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - C P Sreena
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - T E Sheeja
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India.
| | - Sona Charles
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - V Srinivasan
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - V Sajith
- National Institute of Technology, NIT Campus PO, Kozhikode, Kerala 673012, India
| | - K P Subila
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - P Haritha
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| |
Collapse
|
15
|
Wang T, Cheng K, Huo X, Meng P, Cai Z, Wang Z, Zhou J. Bioorganic fertilizer promotes pakchoi growth and shapes the soil microbial structure. FRONTIERS IN PLANT SCIENCE 2022; 13:1040437. [PMID: 36426155 PMCID: PMC9679507 DOI: 10.3389/fpls.2022.1040437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
As a functional probiotic, Bacillus subtilis can promote crop growth and improve nutrient utilization by various mechanisms, so it has been made into bioorganic fertilizer as a replacement for chemical fertilizer. However, the effects of B. subtilis bioorganic fertilizer application on the yield and quality of commercial crops of Brassica chinensis L., the soil physicochemical properties and the microflora have not been clarified. In this study, pot experiments were conducted using Brassica chinensis L. plants with four fertilization treatments: control without fertilization (CK), chemical fertilizer (CF), organic fertilizer (OF), and bioorganic fertilizer containing B. subtilis (BF). After 30 days of pot experiment, the results showed that BF efficiently improved plant height and biomass (1.20- and 1.93-fold, respectively); as well as significantly increasing soil available potassium and pH value. Using high-throughput sequencing, we examined the bacterial and fungal communities in the soil, and found that their diversity was remarkablely reduced in the BF treatment compared to CK group. A principal coordinate analysis also showed a clear separation of bacterial and fungal communities in the BF and CK groups. After application of B. subtilis bioorganic fertilizer, some beneficial bacteria (such as Bacillus and Ammoniphilus) and fungi (Trichoderma and Mortierella) were enriched. A network analysis indicated that bacteria were the dominant soil microbes and the presence of B. subtilis stimulated the colonization of beneficial microbial communities. In addition, predictive functional profiling demonstrated that the application of bioorganic fertilizer enhanced the function of mineral element metabolism and absorption and increased the relative abundance of saprotrophs. Overall, the application of bioorganic fertilizer effectively changed the soil microflora, improved the soil available potassium and pH value, and boosted the yield of Brassica chinensis L. This work has valuable implications for promoting the safe planting of facility vegetables and the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Institute of Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xingjuan Huo
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen, China
| | - Pinpin Meng
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen, China
| | - Zhonghua Cai
- Institute of Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zongkang Wang
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen, China
| | - Jin Zhou
- Institute of Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
16
|
Eberly JO, Bourgault M, Dafo JM, Yeoman CJ, Wyffels SA, Lamb PF, Boss DL. Soil bacterial community response to cover crop introduction in a wheat-based dryland cropping system. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.948220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The incorporation of cover crops into cropping systems is important for enhancing soil health in agricultural systems. Soil microbes contribute to soil health by supplying key nutrients and providing protection against plant pests, diseases, and abiotic stress. While research has demonstrated the connection between cover crops and the soil microbiology, less is known regarding the impact of cover crops on the soil microbial community in semi-arid regions of the Northern Great Plains. Our objectives were to evaluate changes in the soil bacterial community composition and community networks in wheat grown after multi-species cover crops. Cover crops were compared to continuous cropping and crop/fallow systems and the effects of cover crop termination methods were also evaluated. Cover crops consisted of a cool season multispecies mix, mid-season multispecies mix, and a warm season multispecies mix, which were grown in rotation with winter wheat. A continuous cropping (wheat/barley) and wheat/fallow system were also included along with cover crop termination by grazing, herbicide application, and haying. Cover crop treatments and termination methods had no significant impact on microbial community alpha diversity. Cover crop termination methods also had no significant impact on microbial community beta diversity. Families belonging to the phyla Actinobacteria, Bacterioidota, and Proteobacteria were more abundant in the cool season cover crop treatment compared to the warm season cover crop treatment. Co-occurrence network analysis indicated that incorporation of cool season cover crops or mid-season mixes in a wheat-based cropping system led to greater complexity and connectivity within these microbial networks compared to the other treatments which suggests these communities may be more resilient to environmental disturbances.
Collapse
|
17
|
Zhu X, Ji L, Cheng M, Wei H, Wang Z, Ning K. Sustainability of the rice-crayfish co-culture aquaculture model: microbiome profiles based on multi-kingdom analyses. ENVIRONMENTAL MICROBIOME 2022; 17:27. [PMID: 35599327 PMCID: PMC9124410 DOI: 10.1186/s40793-022-00422-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/13/2022] [Indexed: 05/31/2023]
Abstract
While the rice-crayfish culture (RCFP) model, an important aquaculture model in Asia, is generally considered a sustainable model, its sustainability in terms of microbial community profiles has not been evaluated. In this study, multi-kingdom analyses of microbiome profiles (i.e., bacteria, archaea, viruses, and eukaryotes) were performed using environmental (i.e., water and sediment) and animal gut (i.e., crayfish and crab gut) microbial samples from the RCFP and other aquaculture models, including the crab-crayfish co-culture, crayfish culture, and crab culture models, to evaluate the sustainability of the RCFP systematically. Results showed that RCFP samples are enriched with a distinct set of microbes, including Shewanella, Ferroplasma, Leishmania, and Siphoviridae, when compared with other aquaculture models. Additionally, most microbes in the RCFP samples, especially microbes from different kingdoms, were densely and positively connected, which indicates their robustness against environmental stress. Whereas microbes in different aquaculture models demonstrated moderate levels of horizontal gene transfer (HGT) across kingdoms, the RCFP showed relatively lower frequencies of HGT events, especially those involving antibiotic resistance genes. Finally, environmental factors, including pH, oxidation-reduction potential, temperature, and total nitrogen, contributed profoundly to shaping the microbial communities in these aquaculture models. Interestingly, compared with other models, the microbial communities of the RCFP model were less influenced by these environmental factors, which suggests that microbes in the latter have stronger ability to resist environmental stress. The findings collectively reflect the unique multi-kingdom microbial patterns of the RCFP model and suggest that this model is a sustainable model from the perspective of microbiome profiles.
Collapse
Affiliation(s)
- Xue Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lei Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Huimin Wei
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
18
|
Xiao D, He X, Zhang W, Hu P, Sun M, Wang K. Comparison of bacterial and fungal diversity and network connectivity in karst and non-karst forests in southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153179. [PMID: 35051465 DOI: 10.1016/j.scitotenv.2022.153179] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Microbial communities contribute to sustaining the function of terrestrial ecosystems and are influenced by soil type and climate gradients. The effects of karst and non-karst soils on bacterial and fungal profiles for seven climate gradients were assessed to better understand bacterial and fungal diversity and community composition in response to soil type with changes in soil physicochemical properties under different temperatures and precipitations. Bacterial and fungal abundance, diversity, and community composition differed between karst and non-karst forests. Bacterial and fungal richness, Shannon index, and bacterial abundance in karst forests were higher than non-karst forests, but the fungal abundance was lower. Mean annual temperature was negatively correlated with bacterial diversity in the karst forest and fungal abundance in karst and non-karst forests. The community composition of bacteria and fungi differed among these two soil types. The karst forest had greater connectivity among bacterial and fungal communities than non-karst forests. The bacterial members of Acidobacteria, Proteobacteria, Actinobacteria, and fungal groups of Ascomycota and Basidiomycota were mainly connected with other taxa in the network, implying that taxa were associated with highly functional potential. The relative abundance of Actinobacteria and Ascomycota was higher in karst than in non-karst forests. Proteobacteria and Basidiomycota showed the opposite results. A random forest and multiple regression tree analyses revealed that soil properties, specifically pH, calcium, and total nitrogen, were the main factors influencing the variation in bacterial and fungal profiles between karst and non-karst forests. This study provides novel evidence that the abundant microbial taxa were kinless hubs in co-occurrence patterns. Controlling complex networks of species interactions may contribute to improving soil nutrient processes rather than microbial diversity, enhancing our understanding of developing sustainable recovery strategies in fragile ecosystems.
Collapse
Affiliation(s)
- Dan Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Xunyang He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Wei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China.
| | - Peilei Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Mingming Sun
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China.
| |
Collapse
|
19
|
Xu R, Zhang M, Lin H, Gao P, Yang Z, Wang D, Sun X, Li B, Wang Q, Sun W. Response of soil protozoa to acid mine drainage in a contaminated terrace. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126790. [PMID: 34358973 DOI: 10.1016/j.jhazmat.2021.126790] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 05/28/2023]
Abstract
Acid mine drainage (AMD) system represents one of the most unfavorable habitats for microorganisms due to its low pH and high concentrations of metals. Compared to bacteria and fungi, our understanding regarding the response of soil protozoa to such extremely acidic environments remains limited. This study characterized the structures of protozoan communities inhabiting a terrace heavily contaminated by AMD. The sharp environmental gradient of this terrace was generated by annual flooding from an AMD lake located below, which provided a natural setting to unravel the environment-protozoa interactions. Previously unrecognized protozoa, such as Apicomplexa and Euglenozoa, dominated the extremely acidic soils, rather than the commonly recognized members (e.g., Ciliophora and Cercozoa). pH was the most important factor regulating the abundance of protozoan taxa. Metagenomic analysis of protozoan metabolic potential showed that many functional genes encoding for the alleviation of acid stress and various metabolic pathways were enriched, which may facilitate the survival and adaptation of protozoa to acidic environments. In addition, numerous co-occurrences between protozoa and bacterial or fungal taxa were observed, suggesting shared environmental preferences or potential bio-interactions among them. Future studies are required to confirm the ecological roles of these previously unrecognized protozoa as being important soil microorganisms.
Collapse
Affiliation(s)
- Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Miaomiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; School of Environment, Henan Normal University, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, PR China.
| |
Collapse
|
20
|
Hu Y, Jiang X, Shao K, Tang X, Qin B, Gao G. Convergency and Stability Responses of Bacterial Communities to Salinization in Arid and Semiarid Areas: Implications for Global Climate Change in Lake Ecosystems. Front Microbiol 2022; 12:741645. [PMID: 35058891 PMCID: PMC8764409 DOI: 10.3389/fmicb.2021.741645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Climate change has given rise to salinization and nutrient enrichment in lake ecosystems of arid and semiarid areas, which have posed the bacterial communities not only into an ecotone in lake ecosystems but also into an assemblage of its own unique biomes. However, responses of bacterial communities to climate-related salinization and nutrient enrichment remain unclear. In September 2019, this study scrutinized the turnover of bacterial communities along gradients of increasing salinity and nutrient by a space-for-time substitution in Xinjiang Uyghur Autonomous Region, China. We find that salinization rather than nutrient enrichment primarily alters bacterial communities. The homogenous selection of salinization leads to convergent response of bacterial communities, which is revealed by the combination of a decreasing β-nearest taxon index (βNTI) and a pronounced negative correlation between niche breadth and salinity. Furthermore, interspecific interactions within bacterial communities significantly differed among distinct salinity levels. Specifically, mutualistic interactions showed an increase along the salinization. In contrast, topological parameters show hump-shaped curves (average degree and density) and sunken curves (modularity, density, and average path distance), the extremums of which all appear in the high-brackish environment, hinting that bacterial communities are comparatively stable at freshwater and brine environments but are unstable in moderately high-brackish lake.
Collapse
Affiliation(s)
| | | | | | | | | | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
21
|
Rathankumar AK, Vaithyanathan VK, Saikia K, Anand SS, Vaidyanathan VK, Cabana H. Effect of alkaline treatment on the removal of contaminants of emerging concern from municipal biosolids: Modelling and optimization of process parameters using RSM and ANN coupled GA. CHEMOSPHERE 2022; 286:131847. [PMID: 34392201 DOI: 10.1016/j.chemosphere.2021.131847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The current study aimed in enhancing the efficiency of alkaline treatment for CECs remediation in biosolids through the application of RSM and ANN. Due to the seasonal variation of CECs in biosolids, a complete CECs profile over a period of three years were performed. Out of 64 targeted CECs, 13 PhACs (70.1 μg/kg) and 10 pesticides (57.2 μg/kg) were detected in biosolids. In order to enhance the remediation efficiency of CECs by alkaline treatment, process parameters - pH (9.0-13.0), time (3.0-12.0 h) and biosolids age (1-28 days) were optimized by statistical modelling. Using Box-Behnken design, experiments were designed and the resultant data was employed as input for model building using RSM and ANN. The developed mathematical model for alkaline treatment of biosolids using ANN predicted CECs removal with 3.2-fold lower MSE and exhibited high regression coefficient (R2 > 0.99) than the conventional RSM model. Further, the multiparameter model was optimized for achieving maximum of 95.7 % CECs removal using ANN-GA. On analyzing the acute toxicity of alkaline treated residual biosolids under the optimized conditions, a reduction in LC50 by an average of 2.1-fold than initial biosolids was observed. This study not only established the application of statistical modelling in the development of an efficient remediation strategy for biosolids, which can be further applied for large-scale remediation process, but also proved the reliability and efficiency of ANN-GA.
Collapse
Affiliation(s)
- Abiram Karanam Rathankumar
- Integrated Bioprocess Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India; Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Vasanth Kumar Vaithyanathan
- Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Kongkona Saikia
- Integrated Bioprocess Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India; Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Srinidhi Sonai Anand
- Integrated Bioprocess Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocess Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India; Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| | - Hubert Cabana
- Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
22
|
Impacts of UV-C irradiation on marine biofilm community succession. Appl Environ Microbiol 2021; 88:e0229821. [PMID: 34936837 DOI: 10.1128/aem.02298-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine biofilms are diverse microbial communities and important ecological habitats forming on surfaces submerged in the ocean. Biofilm communities resist environmental disturbance, making them a nuisance to some human activities ('biofouling'). Anti-fouling solutions rarely address the underlying stability or compositional responses of these biofilms. Using bulk measurements and molecular analyses, we examined temporal and UV-C antifouling-based shifts in marine biofilms in the coastal Western North Atlantic Ocean during early fall. Over a 24-d period, bacterial communities shifted from early dominance of Gammaproteobacteria to increased proportions of Alphaproteobacteria, Bacteroidia and Acidimicrobiia. In a network analysis based on temporal covariance, Rhodobacteraceae (Alphaproteobacteria) nodes were abundant and densely connected with generally positive correlations. In the eukaryotic community, persistent algal, protistan, and invertebrate groups were observed, although consistent temporal succession was not detected. Biofilm UV-C treatment at 13 and 20 days resulted in losses of chlorophyll a and transparent exopolymer particles, indicating biomass disruption. Bacterial community shifts suggested that UV-C treatment decreased biofilm maturation rate and was associated with proportional shifts among diverse bacterial taxa. UV-C treatment was also associated with increased proportions of protists potentially involved in detritivory and parasitism. Older biofilm communities had increased resistance to UV-C, suggesting that early biofilms are more susceptible to UV-C based antifouling. The results suggest that UV-C irradiation is potentially an effective antifouling method in marine environments in terms of biomass removal and in slowing maturation. However, as they mature, biofilm communities may accumulate microbial members that are tolerant or resilient under UV-treatment. Importance Marine biofilms regulate processes from organic matter and pollutant turnover to eukaryotic settlement and growth. Biofilm growth and eukaryotic settlement interfering with human activities via growth on ship hulls, aquaculture operations, or other marine infrastructure are called 'biofouling'. There is a need to develop sustainable anti-fouling techniques by minimizing impacts to surrounding biota. We use the biofouling-antifouling framework to test hypotheses about marine biofilm succession and stability in response to disturbance, using a novel UV-C LED device. We demonstrate strong bacterial biofilm successional patterns and detect taxa potentially contributing to stability under UV-C stress. Despite UV-C-associated biomass losses and varying UV susceptibility of microbial taxa, we detected high compositional resistance among biofilm bacterial communities, suggesting decoupling of disruption in biomass and community composition following UV-C irradiation. We also report microbial covariance patterns over 24 days of biofilm growth, pointing to areas for study of microbial interactions and targeted antifouling.
Collapse
|
23
|
Kang Y, An X, Ma Y, Zeng S, Jiang S, Wu W, Xie C, Wang Z, Dong C, Xu Y, Shen Q. Organic amendments alleviate early defoliation and increase fruit yield by altering assembly patterns and of microbial communities and enzymatic activities in sandy pear (Pyrus pyrifolia). AMB Express 2021; 11:164. [PMID: 34878599 PMCID: PMC8655061 DOI: 10.1186/s13568-021-01322-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Severe early defoliation has become an important factor restricting the development of the pear industry in southern China. However, the assembly patterns of microbial communities and their functional activities in response to the application of bioorganic fertilizer (BIO) or humic acid (HA) in southern China’s pear orchards remain poorly understood, particularly the impact on the early defoliation of the trees. We conducted a 3-year field experiment (2017–2019) in an 18-year-old ‘Cuiguan’ pear orchard. Four fertilization schemes were tested: local custom fertilization as control (CK), CK plus HA (CK-HA), BIO, and BIO plus HA (BIO-HA). Results showed that BIO and BIO-HA application decreased the early defoliation rate by 50–60%, and increased pear yield by 40% compared with the CK and CK-HA treatments. The BIO and BIO-HA application significantly improved soil pH, available nutrient content, total enzyme activity and ecosystem multifunctionality, and also changed the structure of soil bacterial and fungal communities. The genus Acidothermus was positively correlated with the early defoliation rate, while the genus Rhodanobacter was negatively correlated. Additionally, random forest models revealed that the early defoliation rate could be best explained by soil pH, ammonium content, available phosphorus, and total enzyme activity. In conclusion, application of BIO or BIO mixed with HA could have assembled distinct microbial communities and increased total enzyme activity, leading to significant improvement of soil physicochemical traits. The increased availability of soil nutrient thus changed leaf nutrient concentrations and alleviated the early defoliation rate of pear trees in acid red soil in southern China.
Collapse
|
24
|
Ishimoto CK, Aono AH, Nagai JS, Sousa H, Miranda ARL, Melo VMM, Mendes LW, Araujo FF, de Melo WJ, Kuroshu RM, Esposito E, Araujo ASF. Microbial co-occurrence network and its key microorganisms in soil with permanent application of composted tannery sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147945. [PMID: 34051496 DOI: 10.1016/j.scitotenv.2021.147945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Soil microbial communities act on important environmental processes, being sensitive to the application of wastes, mainly those potential contaminants, such as tannery sludge. Due to the microbiome complexity, graph-theoretical approaches have been applied to represent model microbial communities interactions and identify important taxa, mainly in contaminated soils. Herein, we performed network and statistical analyses into microbial 16S rRNA gene sequencing data from soil samples with the application of different levels of composted tannery sludge (CTS) to assess the most connected nodes and the nodes that act as bridges to identify key microbes within each community. The network analysis revealed hubs belonging to Proteobacteria in soil with lower CTS rates, while active degraders of recalcitrant and pollutant chemical hubs belonging to Proteobacteria and Actinobacteria were found in soils under the highest CTS rates. The majority of classified connectors belonged to Actinobacteria, but similarly to hubs taxa, they shifted from metabolic functional profile to taxa with abilities to degrade toxic compounds, revealing a soil perturbation with the CTS application on community organization, which also impacted the community modularity. Members of Actinobacteria and Acidobacteria were identified as both hub and connector suggesting their role as keystone groups. Thus, these results offered us interesting insights about crucial taxa, their response to environmental alterations, and possible implications for the ecosystem.
Collapse
Affiliation(s)
| | - Alexandre Hild Aono
- Institute of Science and Technology, Universidade Federal de São Paulo, Brazil
| | - James Shiniti Nagai
- Institute of Science and Technology, Universidade Federal de São Paulo, Brazil
| | - Hério Sousa
- Institute of Science and Technology, Universidade Federal de São Paulo, Brazil
| | | | - Vania Maria Maciel Melo
- Laboratório de Ecologia Microbiana e Biotecnologia, Federal University of Ceara, Fortaleza, CE, (Brazil)
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, (Brazil)
| | | | - Wanderley José de Melo
- Universidade Estadual Paulista, Campus de Jaboticabal, Jaboticabal, SP, Brazil; Universidade Brasil, Descalvado, SP, Brazil
| | | | - Elisa Esposito
- Institute of Science and Technology, Universidade Federal de São Paulo, Brazil
| | | |
Collapse
|
25
|
Li X, Chen J, Zhang Q, Li X, Zhou X, Tao Y. Microbial community responses to multiple soil disinfestation change drivers. Appl Microbiol Biotechnol 2021; 105:6993-7007. [PMID: 34453565 DOI: 10.1007/s00253-021-11528-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/28/2022]
Abstract
Soil continuous cropping obstacles lead to yield and economic losses in agriculture. Reductive soil disinfestation (RSD) is an effective technology for alleviating it. However, the key factors influencing microbial community composition and how do they promote functional transformation of core microbes under RSD practice remain poorly understood. Hence, a short-term field experiment was performed integrating real-time polymerase chain reaction, average well color development (AWCD), and MiSeq pyrosequencing to investigate relationships between environmental factors and microorganisms in five different disinfestation treatments, i.e., untreated monoculture soil (CK), soil with high temperature heating (HT), soil with dazomet (DZ), RSD with sugarcane bagasse (SB), or with bean dregs (BD). The results showed that compared to non-RSD treatments, both RSD treatments significantly increased soil microbial abundance and soil available K and organic matter (OM). Further analysis found that available K and OM were the key factors inducing microbial community change. Additionally, relative to non-RSD treatments, the relative abundances of phyla Proteobacteria, Acidobacteria, Rokubacteria, and Ascomycota were higher, whereas those of Actinobacteria, Gemmatimonadetes, and Basidiomycota were lower in RSD treatments. Changes in microbial diversity and abundance led to variation of soil microbial community functions. AWCD and community function prediction showed that, in contrast with non-RSD treatments, soil metabolism activity significantly increased, bacterial community functions including terpenoids and polyketides metabolism, signal transduction and cell motility increased, and the number of saprotroph fungi increased under RSD treatments. Overall, RSD incorporated with sugarcane bagasse or bean dregs efficiently improved soil fertility, and considerably increased soil microbial activity and function, which may benefit future sustainable agriculture production. Key points • Reductive soil disinfestation can alleviate continuous cropping obstacles by improving soil fertility. • Organic matter and available potassium as the key factors affected microbial community reconstruction and function. • Reductive soil disinfestation can improve soil metabolic activity and functional diversity by altering microorganism community.
Collapse
Affiliation(s)
- Xin Li
- Hunan Vegetable Research Institute, Changsha, 410125, Hunan, China
| | - Jie Chen
- Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Qingzhuang Zhang
- Hunan Vegetable Research Institute, Changsha, 410125, Hunan, China
| | - Xuefeng Li
- Hunan Vegetable Research Institute, Changsha, 410125, Hunan, China
| | - Xiangyu Zhou
- Hunan Vegetable Research Institute, Changsha, 410125, Hunan, China
| | - Yu Tao
- Hunan Vegetable Research Institute, Changsha, 410125, Hunan, China.
| |
Collapse
|
26
|
Zhang Z, Wan J, Liu L, Ye M, Jiang X. Metagenomics reveals functional profiling of microbial communities in OCP contaminated sites with rapeseed oil and tartaric acid biostimulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112515. [PMID: 33819653 DOI: 10.1016/j.jenvman.2021.112515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides (OCPs) contaminated sites pose great threats to both human health and environmental safety. Targeted bioremediation in these regions largely depends on microbial diversity and activity. This study applied metagenomics to characterize the microbial communities and functional groups composition features during independent or simultaneous rapeseed oil and tartaric acid applications, as well as the degradation kinetics of OCPs. Results showed that: the degradation rates of α-chlordane, β-chlordane and mirex were better when (0.50% w/w) rapeseed oil and (0.05 mol L-1) tartaric acid were applied simultaneously than singular use, yielding removal rates of 56.4%, 53.9%, and 49.4%, respectively. Meanwhile, bio-stimulation facilitated microbial enzyme (catalase/superoxide dismutase/peroxidase) activity in soils significantly, promoting the growth of dominant bacterial communities. Classification at phylum level showed that the relative abundance of Proteobacteria was significantly increased (p < 0.05). Network analysis showed that bio-stimulation substantially increased the dominant bacterial community's proportion, especially Proteobacteria. The functional gene results illustrated that bio-stimulation facilitated total relative abundance of degradation genes, phosphorus, carbon, nitrogen, sulfur metabolic genes, and iron transporting genes (p < 0.05). In metabolic pathways, functional genes related to methanogenesis and ammonia generation were markedly upregulated, indicating that bio-stimulation promoted the transformation of metabolic genes, such as carbon and nitrogen. This research is conducive to exploring the microbiological response mechanisms of bio-stimulation in indigenous flora, which may provide technical support for assessing the microbial ecological remediation outcomes of bio-stimulation in OCP contaminated sites.
Collapse
Affiliation(s)
- Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzhong Wan
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210008, China
| | - Li Liu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210008, China; School of Earth Science and Engineering, Hohai University, Nanjing, 210008, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
27
|
Shu W, Price GW, Jamieson R, Lake C. Biodegradation kinetics of individual and mixture non-steroidal anti-inflammatory drugs in an agricultural soil receiving alkaline treated biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142520. [PMID: 33032129 DOI: 10.1016/j.scitotenv.2020.142520] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Land application of biosolids is one potential source of pharmaceuticals and personal care products (PPCPs) into agricultural soils. Degradation is an important natural attenuation pathway that affects the fate and transport of PPCPs in the soil system and biosolids application could alter the process. The present study assessed the effect of individual and mixture compound environments on the biodegradation rate and half-life of three non-steroidal anti-inflammatory drugs (NSAIDs), naproxen (NPX), ibuprofen (IBF), and ketoprofen (KTF), in a loamy sand textured agricultural soil receiving an alkaline treated biosolid (ATB) amendment. A prolonged half-life of the target NSAIDs was determined for sterile soils and shorter half-lives in unsterile soils, indicating the loss of target compounds in all treatments was mainly attributed to biodegradation and followed first-order kinetics. IBF and NPX showed low to moderate persistence in soil and ATB amended soil, with half-lives ranging from 4.9 to 14.8 days, while KTF appeared to be highly persistent with an average half-life of 33 days. The order in which the target NSAIDs disappeared in both soil and ATB amended soil was: IBF > NPX > KTF, for both individual and mixture compound treatments. Soils that received the ATB amendment demonstrated inhibited degradation of NPX in all treatments, as well as IBF and KTF in individual compound treatment over the 14-day incubation study. We also observed an inhibition effect from the ATB amendment in sterile soil treatments. In mixture compound treatments, IBF degradation was inhibited in both soil and ATB amended soil. The degradation rate of KTF in mixture compound environment in soil was lower, while the opposite effects were observed in ATB amended soils. For NPX, the degradation was enhanced in mixture compound environment in ATB amended soil, while the same degradation rate of NPX was calculated in soil.
Collapse
Affiliation(s)
- W Shu
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G W Price
- Department of Engineering, Dalhousie University Faculty of Agriculture, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - R Jamieson
- Department of Civil and Resource Engineering, Faculty of Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C Lake
- Department of Civil and Resource Engineering, Faculty of Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|