1
|
de Souza Pereira W, Kelecom A, Lopes JM, Charles-Pierre M, do Carmo AS, Paiva AK, Pelegrinelli SQ, Filho WSS, Silva LF, da Silva AX. Internal dose rate due to intake of uranium and thorium by fish from a dam reservoir associated with a uranium mine in Brazil. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024; 63:97-107. [PMID: 38197922 DOI: 10.1007/s00411-023-01051-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/18/2023] [Indexed: 01/11/2024]
Abstract
Uranium mining can cause environmental impacts on non-human biota around mine sites. Because of this, the reduction in non-human biota exposure becomes an important issue. Environmental radioprotection results from the evolution of human radioprotection; it is based on dose rate to non-human biota and uses, as a biological target, and has harmful effects on populations. In the present study, a flooded impoundment created following dam construction in a uranium mine plant undergoing decommissioning was investigated. Internal dose rates due to activity concentration of natural uranium (Unat) and 232Th in omnivorous, phytophagous, and carnivorous fish species were estimated. Radionuclide activity concentrations were obtained by spectrophotometry with arsenazo III in the visible range. The dose rate contribution of 232Th was lower than that of Unat. There were no differences between the internal dose rates to studied fish species due to 232Th, but there were differences for Unat. A dose rate of 2.30·10-2 µGy∙d-1 was found due to the two studied radionuclides. Although this value falls below the benchmark for harmful effects, it is important to acknowledge that the assessment did not account for other critical radionuclides from uranium mining, which also contribute to the internal dose. Moreover, the study did not assess external doses. As a result, the possibility cannot be excluded that dose rates at the study area overcome the established benchmarks for harmful effects.
Collapse
|
2
|
Diacre A, Chalaux Clergue T, Burban S, Gauthier C, Hubert A, Humbert AC, Lefevre I, Fauré AL, Pointurier F, Evrard O. Temporal evolution of plutonium concentrations and isotopic ratios in the Ukedo - Takase Rivers draining the Difficult-To-Return zone in Fukushima, Japan (2013-2020). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120963. [PMID: 36587785 DOI: 10.1016/j.envpol.2022.120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In 2011, the Fukushima Dai-Ichi Nuclear Power Plant (FDNPP) accident released significant quantities of radionuclides into the environment. Japanese authorities decided to progressively reopen the Difficult-To-Return Zone after the decontamination of priority reconstruction zones. These areas include parts of the initially highly contaminated municipalities located to the north of the FDNPP, including Namie Town, an area drained by the Ukedo and Takase Rivers. Eleven years after the accident, research focused on the spatial distribution of plutonium (Pu) and radiocesium (Cs) isotopes at contrasted individual locations. To complement previous results, the current research was conducted on flood sediment deposits collected at the same locations after major flooding events during eleven fieldwork campaigns organised between 2013 and 2020 at the outlet of the Ukedo and Takase Rivers (n = 22). The results highlighted a global decrease of the Pu and 137Cs contents in sediment with time during the abandonment phase in the region, from 2013 (238.20 fg g-1) to 2020 (4.28 fg g-1). Furthermore, based on the analysis of the 240Pu/239Pu isotopic ratios, the plutonium transiting these rivers (range: 0.166 - 0.220) essentially originated from the global fallout (0.180 ± 0.014 (Kelley et al., 1999)). Sediment showed contrasted properties in the two investigated rivers, which is likely mainly the result of the occurrence of Ogaki Dam on upper sections of the Ukedo River as it strongly impacts the material supply from this river to the Pacific Ocean. A statistical analysis highlighted the strong correlation between Pu activity concentrations and 137Cs activities in both rivers, confirming that both radionuclides are transported with a similar pathway. Despite it was detected early after the accident (2011-2013), the current research demonstrates that plutonium originating from FDNPP is no longer detected in these rivers draining the Difficult-To-Return Zone at the onset of the reopening of the area to its former inhabitants.
Collapse
Affiliation(s)
- Aurélie Diacre
- Commissariat à L'Energie Atomique et Aux énergies Alternatives (CEA, DAM, DIF), F-91297, Arpajon, France; Laboratoire des Sciences Du Climat et de L'Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Thomas Chalaux Clergue
- Laboratoire des Sciences Du Climat et de L'Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Soazig Burban
- Commissariat à L'Energie Atomique et Aux énergies Alternatives (CEA, DAM, DIF), F-91297, Arpajon, France
| | - Caroline Gauthier
- Laboratoire des Sciences Du Climat et de L'Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Amélie Hubert
- Commissariat à L'Energie Atomique et Aux énergies Alternatives (CEA, DAM, DIF), F-91297, Arpajon, France
| | - Anne-Claire Humbert
- Commissariat à L'Energie Atomique et Aux énergies Alternatives (CEA, DAM, DIF), F-91297, Arpajon, France
| | - Irène Lefevre
- Laboratoire des Sciences Du Climat et de L'Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne-Laure Fauré
- Commissariat à L'Energie Atomique et Aux énergies Alternatives (CEA, DAM, DIF), F-91297, Arpajon, France
| | - Fabien Pointurier
- Commissariat à L'Energie Atomique et Aux énergies Alternatives (CEA, DAM, DIF), F-91297, Arpajon, France
| | - Olivier Evrard
- Laboratoire des Sciences Du Climat et de L'Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
López-Lora M, Olszewski G, Chamizo E, Törnquist P, Pettersson H, Eriksson M. Plutonium Signatures in a Dated Sediment Core as a Tool to Reveal Nuclear Sources in the Baltic Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1959-1969. [PMID: 36690010 PMCID: PMC9910043 DOI: 10.1021/acs.est.2c07437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Plutonium distribution was studied in an undisturbed sediment core sampled from the Tvären bay in the vicinity of the Studsvik nuclear facility in Sweden. The complete analysis, including minor isotopes, of the Pu isotope composition (238Pu, 239Pu, 240Pu, 241Pu, 242Pu, and 244Pu) allowed us to establish the Pu origin in this area of the Baltic Sea and to reconstruct the Studsvik aquatic release history. The results show highly enriched 239Pu, probably originating from the Swedish nuclear program in the 1960s and 1970s and the handling of high burn-up nuclear fuel in the later years. In addition, the 244Pu/239Pu atomic ratio for the global fallout period between 1958 and 1965 is suggested to be (7.94 ± 0.31)·10-5. In the bottom layer of the sediment, dated 1953-1957, we detected a higher average 244Pu/239Pu ratio of (1.51 ± 0.11)·10-4, indicating the possible impact of the first US thermonuclear tests (1952-1958).
Collapse
Affiliation(s)
- Mercedes López-Lora
- Department
of Health, Medicine and Caring Sciences (HMV), Linköping University, 58183Linköping, Sweden
| | - Grzegorz Olszewski
- Department
of Health, Medicine and Caring Sciences (HMV), Linköping University, 58183Linköping, Sweden
- Faculty
of Chemistry, Department of Environmental Chemistry and Radiochemistry,
Laboratory of Toxicology and Radiation Protection, University of Gdańsk, Wita Stwosza 63, 80-308Gdańsk, Poland
| | - Elena Chamizo
- Centro
Nacional de Aceleradores (CNA), Universidad de Sevilla, Junta de Andalucía,
Consejo Superior de Investigaciones Científicas, Parque científico y tecnológico Cartuja, Thomas Alva Edison 7, 41092Sevilla, Spain
| | - Per Törnquist
- Department
of Health, Medicine and Caring Sciences (HMV), Linköping University, 58183Linköping, Sweden
| | - Håkan Pettersson
- Department
of Medical Radiation Physics, and Department of Health, Medicine and
Caring Sciences, Linköping University, 58183Linköping, Sweden
| | - Mats Eriksson
- Department
of Health, Medicine and Caring Sciences (HMV), Linköping University, 58183Linköping, Sweden
| |
Collapse
|
4
|
Johansen MP, Child DP, Collins R, Cook M, Davis J, Hotchkis MAC, Howard DL, Howell N, Ikeda-Ohno A, Young E. Radioactive particles from a range of past nuclear events: Challenges posed by highly varied structure and composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156755. [PMID: 35718169 DOI: 10.1016/j.scitotenv.2022.156755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Mathew P Johansen
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| | - David P Child
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | | | - Megan Cook
- International Atomic Energy Agency (IAEA), Environmental Laboratories, Monaco
| | - Joel Davis
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Michael A C Hotchkis
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Daryl L Howard
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Nicholas Howell
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Atsushi Ikeda-Ohno
- Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan
| | - Emma Young
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| |
Collapse
|
5
|
Wang KY, Nedelec P, Clark H, Harris N, Kajino M, Igarashi Y. Impacts on air dose rates after the Fukushima accident over the North Pacific from 19 March 2011 to 2 September 2015. PLoS One 2022; 17:e0272937. [PMID: 36001589 PMCID: PMC9401177 DOI: 10.1371/journal.pone.0272937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
A fleet of thirteen in-service global container ships continuously measured the air dose rates over the North Pacific after the Fukushima Daiichi Nuclear Power Station (FDNPS) accident. The results showed that the elevated air dose rates over the Port of Tokyo and the FDNPS emissions are significantly correlated (log(emission fluxes) = 54.98 x (air dose rates) (R = 0.95, P-value<0.01), and they are also significantly correlated with the Tsukuba deposition fluxes (log(deposition fluxes) = 0.47 + 30.98 (air dose rates) (R = 0.91, P-value<0.01). These results demonstrate the direct impact of the FDNPS emissions on the depositions of radionuclides and the air dose rates over the Port of Tokyo. Over the North Pacific, the correlation equations are log(emission fluxes) = -2.72 + 202.36 x (air dose rates over the northwestern Pacific) (R = 0.40, P-value<0.01), and log(emission fluxes) = -0.55 + 80.19 x (air dose rates over the northeastern Pacific) (R = 0.29, P-value = 0.0424). These results indicate that the resuspension of the deposited radionuclides have become a dominant source in the transport of radionuclides across the North Pacific. Model simulations show underestimated air dose rates during the periods of 22-25 March 2011 and 27-30 March 2011 indicating the lack of mechanisms, such as the resuspension of radionuclides, in the model.
Collapse
Affiliation(s)
- Kuo-Ying Wang
- Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan
- * E-mail:
| | - Philippe Nedelec
- Laboratoire d’Aérologie, Centre National de la Recherche Scientifique, Observatoire Midi-Pyrénées, Toulouse, France
| | | | - Neil Harris
- Centre for Environment and Agricultural Informatics, Cranfield University, Cranfield, United Kingdom
| | - Mizuo Kajino
- Meteorological Research Institute (MRI), Japan Meteorological Agency (JMA), Tsukuba, Ibaraki, Japan
| | - Yasuhito Igarashi
- Division of Nuclear Engineering Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS), Osaka, Japan
| |
Collapse
|
6
|
Anderson D, Kaneko S, Harshman A, Okuda K, Takagi T, Chinn S, Beasley JC, Nanba K, Ishiniwa H, Hinton TG. Radiocesium accumulation and germline mutations in chronically exposed wild boar from Fukushima, with radiation doses to human consumers of contaminated meat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119359. [PMID: 35487469 DOI: 10.1016/j.envpol.2022.119359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Genetic effects and radioactive contamination of large mammals, including wild boar (Sus scrofa), have been studied in Japan because of dispersal of radionuclides from the Fukushima Dai-ichi Nuclear Power Plant in 2011. Such studies have generally demonstrated a declining trend in measured radiocesium body burdens in wildlife. Estimating radiation exposure to wildlife is important to understand possible long-term impacts. Here, radiation exposure was evaluated in 307 wild boar inhabiting radioactively contaminated areas (50-8000 kBq m-2) in Fukushima Prefecture from 2016 to 2019, and genetic markers were examined to assess possible germline mutations caused by chronic radiation exposures to several generations of wild boar. Internal Cs activity concentrations in boar remained high in areas near the power plant with the highest concentration of 54 kBq kg-1 measured in 2019. Total dose rates to wild boar ranged from 0.02 to 36 μGy h-1, which was primarily attributed to external radiation exposure, and dose rates to the maximally exposed animals were above the generic no-effects benchmark of 10 μGy h-1. Using the estimated age of each animal, lifetime radiation doses ranged from <0.1 mGy to 700 mGy. Despite chronic exposures, the genetic analyses showed no significant accumulation of mutation events. Because wild boar is an occasional human dietary item in Japan, effective dose to humans from ingesting contaminated wild boar meat was calculated. Hypothetical consumption of contaminated wild boar meat from radioactively contaminated areas in Fukushima, at the per capita pork consumption rate (12.9 kg y-1), would result in an average effective annual dose of 0.9 mSv y-1, which is below the annual ingestion limit of 1 mSv y-1. Additionally, a consumption rate of about 1.4 kg y-1 of the most contaminated meat in this study would not exceed annual ingestion limits.
Collapse
Affiliation(s)
- Donovan Anderson
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Aomori, Japan; Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Shingo Kaneko
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima City, Fukushima, Japan
| | - Amber Harshman
- Environmental Protection Services Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kei Okuda
- Faculty of Human Environmental Studies, Hiroshima Shudo University, Hiroshima, Japan
| | - Toshihito Takagi
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima City, Fukushima, Japan
| | - Sarah Chinn
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, Fukushima City, Fukushima, Japan
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, Fukushima University, Fukushima City, Fukushima, Japan
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, Fukushima City, Fukushima, Japan; Centre for Environmental Radioactivity, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
7
|
Zhong N, Li L, Yang X, Zhao Y. Analytical Methods for the Determination of 90Sr and 239,240Pu in Environmental Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061912. [PMID: 35335276 PMCID: PMC8952015 DOI: 10.3390/molecules27061912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Artificial long-lived radionuclides such as 90Sr and 239,240Pu have been long released into the environment by human nuclear activities, which have a profound impact on the ecological environment. It is of great significance to monitor the concentration of these radionuclides for environmental safety. This paper summarizes and critically discusses the separation and measurement methods for ultra-trace determination of 90Sr, 239Pu, and 240Pu in the environment. After selecting the measurement method, it is necessary to consider the decontamination of the interference from matrix elements and the key elements, and this involves the choice of the separation method. Measurement methods include both radiometric methods and non-radiometric methods. Radiometric methods, including alpha spectroscopy, liquid scintillation spectrometry, etc., are commonly used methods for measuring 239+240Pu and 90Sr. Mass spectrometry, as the representative of non-radiometric measurement methods, has been regarded as the most promising analytical method due to its high absolute sensitivity, low detection limit, and relatively short sample-analysis time. Through the comparison of various measurement methods, the future development trend of radionuclide measurement is prospected in this review. The fully automatic and rapid analysis method is a highlight. The new mass spectrometer with ultra-high sensitivity shows strong analytical capabilities for extremely low concentrations of 90Sr, 239Pu, and 240Pu, and it is expected to develop determination methods with higher sensitivity and lower detection limit.
Collapse
|
8
|
Corcho Alvarado JA, Röllin S, Sahli H, McGinnity P. Isotopic signatures of plutonium and uranium at Bikar atoll, northern Marshall Islands. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 242:106795. [PMID: 34923320 DOI: 10.1016/j.jenvrad.2021.106795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
We present plutonium (Pu) and uranium (U) isotopic fingerprints (or signatures) in environmental samples collected at Bikar Atoll. Bikar is the second -most northern atoll of the Republic of the Marshall Islands, and therefore an important reference point to evaluate the extension of the regional fallout from the Pacific Proving Grounds (PPG) in Bikini and Enewetak Atolls. Previous studies have shown that regional fallout from atmospheric nuclear weapon testing (NWT) in Bikini and Enewetak has resulted in elevated levels of fallout radionuclides in this atoll. In order to optimally interpret the isotopic fingerprints, we compare our results with data obtained in eleven certified reference materials, representing different contamination sources. As well as 238Pu, 239Pu, 240Pu, 241Pu, 238U and 235U, this study also encompasses less commonly reported radionuclides such as 242Pu, 244Pu and 236U. We show the importance of combining numerous fingerprints for improved assessment of the source of a nuclear contamination. In samples from Bikar, Pu and U isotope ratios were found to vary within narrow ranges. Pu and U fingerprints suggest that regional fallout from the Castle Bravo test in March 1954 was the main source of the contamination. This was further confirmed by two different age dating approaches that estimated 1954 as the year of the contamination. We demonstrate that use of an exponential function to approximate the yield of heavy radionuclides in thermonuclear explosions with increasing mass is a valid approach for estimating the age of a contamination. We show that, if sufficient radionuclide activity concentration measurement results with low uncertainties are available, this method is robust.
Collapse
Affiliation(s)
- J A Corcho Alvarado
- Nuclear Chemistry Division, Spiez Laboratory, Federal Office for Civil Protection, CH-3700 Spiez, Switzerland.
| | - S Röllin
- Nuclear Chemistry Division, Spiez Laboratory, Federal Office for Civil Protection, CH-3700 Spiez, Switzerland
| | - H Sahli
- Nuclear Chemistry Division, Spiez Laboratory, Federal Office for Civil Protection, CH-3700 Spiez, Switzerland
| | - P McGinnity
- International Atomic Energy Agency, Environment Laboratories, Monaco
| |
Collapse
|
9
|
Cunningham K, Hinton TG, Luxton JJ, Bordman A, Okuda K, Taylor LE, Hayes J, Gerke HC, Chinn SM, Anderson D, Laudenslager ML, Takase T, Nemoto Y, Ishiniwa H, Beasley JC, Bailey SM. Evaluation of DNA damage and stress in wildlife chronically exposed to low-dose, low-dose rate radiation from the Fukushima Dai-ichi Nuclear Power Plant accident. ENVIRONMENT INTERNATIONAL 2021; 155:106675. [PMID: 34120002 DOI: 10.1016/j.envint.2021.106675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The health effects associated with chronic low-dose, low-dose rate (LD-LDR) exposures to environmental radiation are uncertain. All dose-effect studies conducted outside controlled laboratory conditions are challenged by inherent complexities of ecological systems and difficulties quantifying dose to free-ranging organisms in natural environments. Consequently, the effects of chronic LD-LDR radiation exposures on wildlife health remain poorly understood and much debated. Here, samples from wild boar (Sus scrofa leucomystax) and rat snakes (Elaphe spp.) were collected between 2016 and 2018 across a gradient of radiation exposures in Fukushima, Japan. In vivo biomarkers of DNA damage and stress were evaluated as a function of multiple measurements of radiation dose. Specifically, we assessed frequencies of dicentric chromosomes (Telomere-Centromere Fluorescence in situ Hybridization: TC-FISH), telomere length (Telo-FISH, qPCR), and cortisol hormone levels (Enzyme Immunoassay: EIA) in wild boar, and telomere length (qPCR) in snakes. These biological parameters were then correlated to robust calculations of radiation dose rate at the time of capture and plausible upper bound lifetime dose, both of which incorporated internal and external dose. No significant relationships were observed between dicentric chromosome frequencies or telomere length and dose rate at capture or lifetime dose (p value range: 0.20-0.97). Radiation exposure significantly associated only with cortisol, where lower concentrations were associated with higher dose rates (r2 = 0.58; p < 0.0001), a relationship that was likely due to other (unmeasured) factors. Our results suggest that wild boar and snakes chronically exposed to LD-LDR radiation sufficient to prohibit human occupancy were not experiencing significant adverse health effects as assessed by biomarkers of DNA damage and stress.
Collapse
Affiliation(s)
- Kelly Cunningham
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Thomas G Hinton
- Centre for Environmental Radioactivity, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1433 Ås, Norway; Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan.
| | - Jared J Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Aryn Bordman
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Kei Okuda
- Faculty of Human Environmental Studies, Hiroshima Shudo University, Hiroshima 731-3195, Japan
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Josh Hayes
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Hannah C Gerke
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Sarah M Chinn
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Donovan Anderson
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima, Fukushima City, Kanayagawa 960-1248, Japan
| | - Mark L Laudenslager
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tsugiko Takase
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - Yui Nemoto
- Fukushima Prefectural Centre for Environmental Creation, 2-10 Fukasaku, Miharu, Fukushima 963-7799, Japan
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| |
Collapse
|
10
|
Tighe C, Castrillejo M, Christl M, Degueldre C, Andrew J, Semple KT, Joyce MJ. Local and global trace plutonium contributions in fast breeder legacy soils. Nat Commun 2021; 12:1381. [PMID: 33741911 PMCID: PMC7979690 DOI: 10.1038/s41467-021-21575-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Trace-level plutonium in the environment often comprises local and global contributions, and is usually anthropogenic in origin. Here, we report estimates of local and global contributions to trace-level plutonium in soil from a former, fast-breeder reactor site. The measured 240Pu/239Pu ratio is anomalously low, as per the reduced 240Pu yield expected in plutonium bred with fast neutrons. Anomalies in plutonium concentration and isotopic ratio suggest forensic insight into specific activities on site, such as clean-up or structural change. Local and global 239Pu contributions on-site are estimated at (34 ± 1)% and (66 ± 3)%, respectively, with mass concentrations of (183 ± 6) fg g-1 and (362 ± 13) fg g-1. The latter is consistent with levels at undisturbed and distant sites, (384 ± 44) fg g-1, where no local contribution is expected. The 240Pu/239Pu ratio for site-derived material is estimated at 0.05 ± 0.04. Our study demonstrates the multi-faceted potential of trace plutonium assay to inform clean-up strategies of fast breeder legacies.
Collapse
Affiliation(s)
- Chris Tighe
- grid.9835.70000 0000 8190 6402Department of Engineering, Lancaster University, Lancaster, UK
| | - Maxi Castrillejo
- grid.5801.c0000 0001 2156 2780Laboratory of Ion Beam Physics, ETH - Zürich, Zürich, Switzerland
| | - Marcus Christl
- grid.5801.c0000 0001 2156 2780Laboratory of Ion Beam Physics, ETH - Zürich, Zürich, Switzerland
| | - Claude Degueldre
- grid.9835.70000 0000 8190 6402Department of Engineering, Lancaster University, Lancaster, UK
| | - Jeremy Andrew
- Dounreay Site Restoration Ltd., Dounreay, Thurso, Scotland
| | - Kirk T. Semple
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Malcolm J. Joyce
- grid.9835.70000 0000 8190 6402Department of Engineering, Lancaster University, Lancaster, UK
| |
Collapse
|
11
|
Anderson D, Beresford NA, Ishiniwa H, Onuma M, Nanba K, Hinton TG. Radiocesium concentration ratios and radiation dose to wild rodents in Fukushima Prefecture. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 226:106457. [PMID: 33227677 DOI: 10.1016/j.jenvrad.2020.106457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/04/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Radiocesium was dispersed from the Fukushima Dai-ichi disaster in March 2011, causing comparatively high radioactive contamination in nearby environments. Radionuclide concentrations in wild rodents (Apodemus argenteus, and Apodemus speciosus) within these areas were monitored from 2012 to 2016. However, whole-organism to soil transfer parameters (i.e., concentration ratio, CRwo-soil) for wild rodents at Fukushima were not determined and hence were lacking from the international transfer databases. We augmented the 2012-2016 data by collecting soil activity concentrations (Bq kg-1, dry mass) from five rodent sampling sites in Fukushima Prefecture, and developed corresponding CRwo-soil values for radiocesium (134Cs and 137Cs) based on rodent radioactivity concentrations (Bq kg-1, fresh mass). The CRwo-soil were added to the Wildlife Transfer Database (WTD; http://www.wildlifetransferdatabase.org/), supporting the development of the International Commission on Radiological Protection's (ICRP) environmental protection framework, and increasing the WTD from 84 to 477 entries for cesium and Muridae ('Reference Rat'). Significant variation occurred in CRwo-soil values between study sites within Fukushima Prefecture. The geometric mean CRwo-soil, in this paper, was higher than that reported for Muridae species for Chernobyl. Radiocaesium absorbed dose rates were also estimated for wild rodents inhabiting the five Fukushima study sites and ranged from 1.3 to 33 μGy h-1. Absorbed dose rates decreased by a factor of two from 2012 to 2016. Dose rates in highly contaminated areas were within the ICRP derived consideration reference level for Reference Rat (0.1-1 mGy d-1), suggesting the possible occurrence of deleterious effects and need for radiological effect studies in the Fukushima area.
Collapse
Affiliation(s)
- Donovan Anderson
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima, Fukushima City, Kanayagawa, 960-1248, Japan.
| | - Nicholas A Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA1 4AP, UK
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Fukushima City, Kanayagawa, 960-1248, Japan
| | - Manabu Onuma
- Ecological Risk Assessment and Control Section, Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-0053, Japan
| | - Kenji Nanba
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima, Fukushima City, Kanayagawa, 960-1248, Japan; Institute of Environmental Radioactivity, Fukushima University, Fukushima, Fukushima City, Kanayagawa, 960-1248, Japan
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Fukushima City, Kanayagawa, 960-1248, Japan; Centre for Environmental Radioactivity, CoE, Norwegian University of Life Sciences, Faculty for Environmental Sciences and Nature Research Management, 1430, Åas, Norway
| |
Collapse
|