1
|
Irewale AT, Dimkpa CO, Elemike EE, Oguzie EE. Water hyacinth: Prospects for biochar-based, nano-enabled biofertilizer development. Heliyon 2024; 10:e36966. [PMID: 39281463 PMCID: PMC11401212 DOI: 10.1016/j.heliyon.2024.e36966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The widespread proliferation of water hyacinth (Eichhornia crassipes) in aquatic ecosystems has raised significant ecological, environmental, and socioeconomic concerns globally. These concerns include reduced biodiversity, impeded water transportation and recreational activities, damage to marine infrastructure, and obstructions in power generation dams and irrigation systems. This review critically evaluates the challenges posed by water hyacinth (WH) and investigates potential strategies for converting its biomass into value-added agricultural products, specifically nanonutrients-fortified, biochar-based, green fertilizer. The review examines various methods for producing functional nanobiochar and green fertilizer to enhance plant nutrient uptake and improve soil nutrient retention. These methods include slow or fast pyrolysis, gasification, laser ablation, arc discharge, or chemical precipitation used for producing biochar which can then be further reduced to nano-sized biochar through ball milling, a top-down approach. Through these means, utilization of WH-derived biomass in economically viable, eco-friendly, sustainable, precision-driven, and smart agricultural practices can be achieved. The positive socioeconomic impacts of repurposing this invasive aquatic plant are also discussed, including the prospects of a circular economy, job creation, reduced agricultural input costs, increased agricultural productivity, and sustainable environmental management. Utilizing WH for nanobiochar (or nano-enabled biochar) for green fertilizer production offers a promising strategy for waste management, environmental remediation, improvement of waterway transportation infrastructure, and agricultural sustainability. To underscore the importance of this work, a metadata analysis of literature carried out reveals that an insignificant section of the body of research on WH and biochar have focused on the nano-fortification of WH biochar for fertilizer development. Therefore, this review aims to expand knowledge on the upcycling of non-food crop biomass, particularly using WH as feedstock, and provides crucial insights into a viable solution for mitigating the ecological impacts of this invasive species while enhancing agricultural productivity.
Collapse
Affiliation(s)
- Adewale T Irewale
- Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511 United States
| | - Elias E Elemike
- Department of Chemistry, Federal University of Petroleum Resources Effurun, Nigeria
| | - Emeka E Oguzie
- Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria
| |
Collapse
|
2
|
Izydorczyk G, Skrzypczak D, Mironiuk M, Mikula K, Samoraj M, Gil F, Taf R, Moustakas K, Chojnacka K. Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171343. [PMID: 38438048 DOI: 10.1016/j.scitotenv.2024.171343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The growing focus on sustainable agriculture and optimal resource utilization has spurred investigations into lignocellulosic biomass as a potential source for producing environmentally friendly fertilizers. This paper reviews recent advancements in the production and application of innovative fertilizers derived from lignocellulose. It highlights potential in enhancing agricultural productivity and reducing environmental impacts such as carbon footprint and water pollution. The paper outlines various methods for conversion, highlighting the unique advantages of chemical, enzymatic, and microbiological processes, for converting lignocellulosic biomass into nutrient-rich fertilizers. The study compares the efficacy of lignocellulosic fertilizers to traditional fertilizers in promoting crop growth, enhancing soil health, and reducing nutrient losses. The results demonstrate the potential of lignocellulosic biomass-derived fertilizers in promoting resource efficiency and sustainable agriculture. While this research significantly contributes to the existing body of knowledge, further studies on long-term impacts and scalability are recommended for the development of innovative and sustainable agricultural practices.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland.
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Mateusz Samoraj
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Filip Gil
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Rafał Taf
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| |
Collapse
|
3
|
Li Y, Zhou C, Chen L, Deng R, Wong M, Shan S. Effects of biochar on the manganese enrichment and oxidation by a microalga Scenedesmus quadricauda in the aquatic environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115961. [PMID: 38218106 DOI: 10.1016/j.ecoenv.2024.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/25/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Microalgae play a significant impact in the biogeochemical cycle of Mn(II) in the aquatic ecosystem. Meanwhile, the inflow of biochar into the water bodies is bound to impact the aquatic organisms. However, the influence of biochar on the manganese transformation in algae-rich water has not drawn much attention. Thus, we studied the effects of rice straw biochar on manganese enrichment and oxidation by a common type of algae in freshwater (Scenedesmus quadricauda). The results showed that Mn(II) was absorbed intracellularly and adsorbed extracellularly by active algal cells. A significant portion of enriched Mn(II) was oxidized to amorphous precipitates MnO2, MnOOH, and Mn2O3. Moreover, the extracellular bound Mn(II) content in the coexistent system of algae and biochar increased compared with the pure Scenedesmus quadricauda system. Nevertheless, the intracellular Mn content was continually lowered as the biochar dose rose from an initial 0.2 to 2.0 g·L-1, suggesting that Mn assimilation of the cell was suppressed. It was calculated that the total enrichment ability of Scenedesmus quadricauda in the algae-biochar coexistent system was 0.31- 15.32 mg Mn/g biomass, more than that in the pure algae system. More importantly, with biochar in the algae system, the amount of generated MnOx increased, and more Mn(II) was oxidized into highly-charged Mn(IV). This was probably because the biochar could relieve the stress of massive Mn(II) on algae and support the MnOx precipitates. In brief, moderate biochar promoted the Mn(II) accumulation by algal cells and its oxidation activity. This study offers deeper insight into the bioconversion of Mn(II) by algae and the potential impact of biochar application to the aquatic system.
Collapse
Affiliation(s)
- Yongchao Li
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China.
| | - Chuanfeng Zhou
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Liping Chen
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Minghung Wong
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, PR China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| |
Collapse
|
4
|
Zaki M, Rowles LS, Adjeroh DA, Orner KD. A Critical Review of Data Science Applications in Resource Recovery and Carbon Capture from Organic Waste. ACS ES&T ENGINEERING 2023; 3:1424-1467. [PMID: 37854077 PMCID: PMC10580293 DOI: 10.1021/acsestengg.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Municipal and agricultural organic waste can be treated to recover energy, nutrients, and carbon through resource recovery and carbon capture (RRCC) technologies such as anaerobic digestion, struvite precipitation, and pyrolysis. Data science could benefit such technologies by improving their efficiency through data-driven process modeling along with reducing environmental and economic burdens via life cycle assessment (LCA) and techno-economic analysis (TEA), respectively. We critically reviewed 616 peer-reviewed articles on the use of data science in RRCC published during 2002-2022. Although applications of machine learning (ML) methods have drastically increased over time for modeling RRCC technologies, the reviewed studies exhibited significant knowledge gaps at various model development stages. In terms of sustainability, an increasing number of studies included LCA with TEA to quantify both environmental and economic impacts of RRCC. Integration of ML methods with LCA and TEA has the potential to cost-effectively investigate the trade-off between efficiency and sustainability of RRCC, although the literature lacked such integration of techniques. Therefore, we propose an integrated data science framework to inform efficient and sustainable RRCC from organic waste based on the review. Overall, the findings from this review can inform practitioners about the effective utilization of various data science methods for real-world implementation of RRCC technologies.
Collapse
Affiliation(s)
- Mohammed
T. Zaki
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Lewis S. Rowles
- Department
of Civil Engineering and Construction, Georgia
Southern University, Statesboro, Georgia 30458, United States
| | - Donald A. Adjeroh
- Lane
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Kevin D. Orner
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
5
|
Ding D, Jiang D, Zhou Y, Xia F, Chen Y, Kong L, Wei J, Zhang S, Deng S. Assessing the environmental impacts and costs of biochar and monitored natural attenuation for groundwater heavily contaminated with volatile organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157316. [PMID: 35842168 DOI: 10.1016/j.scitotenv.2022.157316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Although biochar (BC) and monitored natural attenuation (MNA) are regarded as green technologies for remediating volatile organic compounds (VOCs) contaminated groundwater, their life cycle environmental impacts and costs have not been systematically quantified. This work assessed the primary and secondary environmental impacts and the cost of three options for remediating the groundwater at a closed pesticide manufacturing plant site, which was contaminated by high levels of multiple VOCs and is undergoing MNA. The studied options include a combination of MNA and BC (MNA + BC), BC, and pump and treat (PT). The environmental impacts were examined through a Life Cycle Assessment (LCA) using the ReCiPe 2016 method. The costs were evaluated using a Life Cycle Cost (LCC) method created in the SimaPro. The LCA results show that the overall environmental impacts follow the sequence of PT > BC > MNA + BC, but MNA + BC shows evident primary impacts. The CO2 eq emissions generated from PT are more than five times of MNA + BC or BC. The cement, electricity, and steel for construction, and the operation energy are the environmental hotspots in PT. In MNA + BC and BC, the electricity for feedstock pyrolysis is the environmental hotspot, while the use of BC by-products to generate heat and power has positive environmental credit that compensates other negative environmental burdens. Incorporating institutional controls, using renewable energy and recycled or alternative materials, and developing BC with superior adsorption capacity are recommended to optimize the remediation strategies. The LCC results show that PT renders the highest cost, with cement and electricity being the two most expensive items. Electricity is the dominant contributor to the costs of MNA + BC and BC, while the avoided heat and power generation can save the cost of other items. Overall, this study provides scientific support to develop and optimize green remediation solutions for VOCs contaminated groundwater.
Collapse
Affiliation(s)
- Da Ding
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Dengdeng Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Yan Zhou
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Feiyang Xia
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Lingya Kong
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Shengtian Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China.
| |
Collapse
|
6
|
Wang P, Wang Z, Ren Z, Ding Y, Pan J, Wang Y, Jin D. Effects of di-n-butyl phthalate on aerobic composting process of agricultural waste: Mainly based on bacterial biomass and community dynamics analysis. ENVIRONMENTAL RESEARCH 2022; 212:113290. [PMID: 35427593 DOI: 10.1016/j.envres.2022.113290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Phthalic acid esters (PAEs) pollution has become a major environmental problem in agricultural waste composting. However, little information was available about the how the PAEs alter microbial processes during composting. This study investigated the effects of di-n-butyl phthalate (DBP) on bacterial biomass and community dynamics during composting. The results showed that a decreasing of DBP was observed from thermophilic phase and 43.26% of DBP was degraded after composting. The bacterial biomass and diversity during composting were reduced under DBP stress, so delaying the decomposition of organic matter. Moreover, the changes in bacterial community were observed since the thermophilic phase of DBP-contaminated composting. KEGG pathway analysis indicated that DBP stress decreased the relative abundance of the main metabolic pathways and inhibited compost maturation. Moreover, DBP stress had more significant correlation with the dominant bacteria. This work will expand the understanding of PAEs-contaminated organic waste composting and further control of PAEs pollutants.
Collapse
Affiliation(s)
- Ping Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Ziming Ren
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yuejie Ding
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China
| | - Yanhui Wang
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Decai Jin
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
7
|
Effects of Biochar Production Methods and Biomass Types on Lead Removal from Aqueous Solution. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biochar has proven its potential in removing heavy metal ions from water. The objective of this study was to evaluate locally obtained biomass feedstocks for biochar production and their efficiency as a sorbent for aqueous lead (Pb2+) removal. The biomass feedstocks consisted of avocado seed, avocado peel, grapefruit peel, and brown seaweed, which represent agricultural and marine biomasses. The biochar materials were produced in two different methods: (1) a laboratory tube furnace at 300 °C and (2) a Do-It-Yourself (DIY) biochar maker, “BioCharlie Log”. The biochars were characterized for selected physicochemical properties, and batch adsorption tests with 10 mg Pb2+ L−1 were conducted. All biochars exhibited >90% Pb2+ removal with the avocado seed and grapefruit peel biochars being the most effective (99%) from the tube-furnace-produced biochars. BioCharlie-produced-biochars showed similar Pb2+ removal (90–97%) with brown seaweed and avocado seed biochars being the most effective (97%). Land-based biochars showed a higher carbon content (>53%) than the brown seaweed biochar (28%), which showed the highest ash content (68%). Our results suggested that oxygen-containing surface functional groups in land-based biochar and mineral (ash) fraction in marine-based biochar play a key role in Pb2+ removal.
Collapse
|
8
|
Zhang J, Ling J, Zhou W, Zhang W, Yang F, Wei Z, Yang Q, Zhang Y, Dong J. Biochar Addition Altered Bacterial Community and Improved Photosynthetic Rate of Seagrass: A Mesocosm Study of Seagrass Thalassia hemprichii. Front Microbiol 2021; 12:783334. [PMID: 34925287 PMCID: PMC8678274 DOI: 10.3389/fmicb.2021.783334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Seagrass meadows, as typical “blue carbon” ecosystems, play critical ecological roles in the marine ecosystem and decline every year. The application of biochar in soil has been proposed as a potential soil amendment to improve soil quality and mitigate global climate change. The effects of biochar on soil bacterial activities are integrally linked to the potential of biochar in achieving these benefits. However, biochar has been rarely applied in marine ecosystems. Whether the application of biochar could work on the seagrass ecosystem remained unknown. In this study, we investigated the responses of sediment and rhizosphere bacterial communities of seagrass Thalassia hemprichii to the biochar addition derived from maize at ratios of 5% by dry weight in the soil during a one-month incubation. Results indicated that the biochar addition significantly changed the sedimental environment with increasing pH, total phosphorus, and total kalium while total nitrogen decreased. Biochar addition significantly altered both the rhizosphere and sediment bacterial community compositions. The significant changes in rhizosphere bacterial community composition occurred after 30days of incubation, while the significant variations in sediment bacterial community composition distinctly delayed than in sediment occurred on the 14th day. Biochar application improved nitrification and denitrification, which may accelerate nitrogen cycling. As a stabilizer to communities, biochar addition decreased the importance of deterministic selection in sediment and changed the bacterial co-occurrence pattern. The biochar addition may promote seagrass photosynthesis and growth by altering the bacterial community compositions and improving nutrient circulation in the seagrass ecosystem, contributing to the seagrass health improvement. This study provided a theoretical basis for applying biochar to the seagrass ecosystem and shed light on the feasible application of biochar in the marine ecosystem. ![]()
Collapse
Affiliation(s)
- Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fangfang Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Zhangliang Wei
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
9
|
Sensitivity Analysis of the Climate Effect of Using Pyrochar Biofuel for Heat and Electricity Generation. Processes (Basel) 2021. [DOI: 10.3390/pr9101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aims to quantify the climate change impact of pyrochar production from pulp and paper mill sludge and the subsequent utilisation in combined heat and power (CHP) plants for co-generation of heat and electricity using the environmental life cycle assessment (E-LCA) method. In the Pyrochar Scenario, in which the sludge is pyrolyzed into pyrochar, the authors have assumed that pyrochar would replace coal. In the Reference Scenario, sludge is incinerated with a subsequent low rate of energy recovery. A comprehensive sensitivity analysis was performed to determine the conditions in which the sludge pyrochar would offer the greatest climate-effect benefits. The parameters selected for the said analysis are the form of pyrochar (pellet or powder), fuels replaced by it in the CHP plant (solid waste and peat vis-à-vis coal), and the utilisation of the pyrochar fuel in another European country (Germany and Spain vis-à-vis Sweden). The results of this E-LCA clearly show that using pyrochar as a biofuel in CHP plants delivered a considerable reduction in greenhouse gas (GHG) emissions (−1.87 tonne CO2-eq per 2.8 tonne dry sludge). Contribution analysis reveals that the process accounting for the biggest share of the reduction is the pyrochar combustion (a negative contribution of 76%), which results in a displacement of coal-based fuels. The authors conclude that the utilisation of pyrochar in firing units would provide the highest reduction in GHG emissions, while recommending a comprehensive economic analysis in addition to climate effect assessment, before making a decision regarding the introduction of sludge pyrochar to the energy sector.
Collapse
|
10
|
Abstract
Life cycle assessment (LCA) has received attention as a tool to evaluate the environmental impacts of products and services. In the last 20 years, research on the topic has increased, and now more than 25,000 articles are related to LCA in scientific journals databases such as the Scopus database; however, the concept is relatively new in Africa, where the number of networks has been highlighted to be very low when compared to the other regions. This paper focuses on a review of life cycle assessments conducted in Africa over the last 20 years. It aims at highlighting the current research gap for African LCA. A total of 199 papers were found for the whole continent; this number is lower than that for both Japan and Germany (more than 400 articles each) and nearly equal to developing countries such as Thailand. Agriculture is the sector which received the most attention, representing 53 articles, followed by electricity and energy (60 articles for the two sectors). South Africa (43), Egypt (23), and Tunisia (19) were the countries where most of the research was conducted. Even if the number of articles related to LCA have increased in recent years, many steps still remain. For example, establishing a specific life cycle inventory (LCI) database for African countries or a targeted ideal life cycle impact assessment (LCIA) method. Several African key sectors could also be assessed further.
Collapse
|