1
|
Li Z, Zhou M, Ran X, Wang W, Wang H, Wang T, Wang Y. A powerful but frequently overlooked role of thermodynamics in environmental microbiology: inspirations from anammox. Appl Environ Microbiol 2025; 91:e0166824. [PMID: 39760519 PMCID: PMC11837502 DOI: 10.1128/aem.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Thermodynamics has long been applied in predicting undiscovered microorganisms or analyzing energy flows in microbial metabolism, as well as evaluating microbial impacts on global element distributions. However, further development and refinement in this interdisciplinary field are still needed. This work endeavors to develop a whole-cycle framework integrating thermodynamics with microbiological studies, focusing on representative nitrogen-transforming microorganisms. Three crucial concepts (reaction favorability, energy balance, and reaction directionality) are discussed in relation to nitrogen-transforming reactions. Specifically, reaction favorability, which sheds lights on understanding the diversity of nitrogen-transforming microorganisms, has also provided guidance for novel bioprocess development. Energy balance, enabling the quantitative comparison of microbial energy efficiency, unravels the competitiveness of nitrogen-transforming microorganisms under substrate-limiting conditions. Reaction directionality, revealing the niche-differentiating patterns of nitrogen-transforming microorganisms, provides a foundation for predicting biogeochemical reactions under various environmental conditions. This review highlights the need for a more comprehensive integration of thermodynamics in environmental microbiology, aiming to comprehensively understand microbial impacts on the global environment from micro to macro scales.
Collapse
Affiliation(s)
- Zibin Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
2
|
Jiang Q, Cao L, Han Y, Li S, Zhao R, Zhang X, Ruff SE, Zhao Z, Peng J, Liao J, Zhu B, Wang M, Lin X, Dong X. Cold seeps are potential hotspots of deep-sea nitrogen loss driven by microorganisms across 21 phyla. Nat Commun 2025; 16:1646. [PMID: 39952920 PMCID: PMC11828985 DOI: 10.1038/s41467-025-56774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025] Open
Abstract
Nitrogen bioavailability, governed by fixation and loss processes, is crucial for oceanic productivity and global biogeochemical cycles. The key nitrogen loss organisms-denitrifiers and anaerobic ammonium-oxidizing (anammox) bacteria-remain poorly understood in deep-sea cold seeps. This study combined geochemical measurements, 15N stable isotope tracer analysis, metagenomics, metatranscriptomics, and three-dimensional protein structural simulations to explore cold-seeps nitrogen loss processes. Geochemical evidence from 359 sediment samples shows significantly higher nitrogen loss rates in cold seeps compared to typical deep-sea sediments, with nitrogen loss flux from surface sediments estimated at 4.96-7.63 Tg N yr-1 (1.65-2.54% of global marine sediment). Examination of 147 million non-redundant genes indicates a high prevalence of nitrogen loss genes, including nitrous-oxide reductase (NosZ; 6.88 genes per million reads, GPM), nitric oxide dismutase (Nod; 1.29 GPM), and hydrazine synthase (HzsA; 3.35 GPM) in surface sediments. Analysis of 3,164 metagenome-assembled genomes expands the nitrous-oxide reducers by three phyla, nitric oxide-dismutating organisms by one phylum and two orders, and anammox bacteria by ten phyla going beyond Planctomycetota. These microbes exhibit structural adaptations and complex gene cluster enabling survival in cold seeps. Cold seeps likely are previously underestimated nitrogen loss hotspots, potentially contributing notably to the global nitrogen cycle.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Lei Cao
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Shengjie Li
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xiaoli Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - S Emil Ruff
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jiaxue Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Baoli Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Taoyuan Agroecosystem Research Station, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Minxiao Wang
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xianbiao Lin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
3
|
Wang B, Chen X, Xie Y, Wang P, Feng JC, Zhang S. Hydrate formation in porous media with upward-migrating methane and its implications for the evolution of deep-sea cold seep ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178299. [PMID: 39756308 DOI: 10.1016/j.scitotenv.2024.178299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
Methane leaking from the deep seabed is a primary source of carbon and energy for various microorganisms, sustaining the evolution and productivity of cold seep ecosystems. However, the dynamics of methane hydrate formation under methane seepage conditions and potential impacts on the evolution of cold seep ecosystems remain unclear. This study investigated the dynamic formation characteristics of gas hydrates within cold seep sediments by simulating the methane leakage process. Using magnetic resonance imaging (MRI) to monitor the methane hydrate formation process by detecting the distribution of 1H in pore water, we aimed to determine the influence of various parameters on hydrate formation. Our experimental results demonstrated that high flow rates and pressures combined with low temperatures would accelerate the formation of methane hydrates and effectively promote the conversion of leaked methane into solid hydrates. Our findings suggest that methane hydrate formation within cold seep sediments may regulate the availability and flux of methane for microbial activities within cold seep environments, thus influencing local biogeochemical processes and ecosystem dynamics. This study advances our understanding of the transformation of leaked methane into solid hydrate within cold seep sediments, highlighting its importance in the dynamic evolution of cold seep ecosystems and its impact on the oceanic carbon cycle.
Collapse
Affiliation(s)
- Bin Wang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yan Xie
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
| | - Pengfei Wang
- Institute of Major Scientific Facilities for New Materials & Shenzhen Key Laboratory of Natural Gas Hydrates & Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Chun Feng
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China.
| | - Si Zhang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Wang J, Wu D, Wu Q, Chen J, Zhao Y, Wang H, Liu F, Yuan Q. Vertical profiles of community and activity of methanotrophs in large lake and reservoir of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177782. [PMID: 39626421 DOI: 10.1016/j.scitotenv.2024.177782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Microbial methane oxidation plays a significant role in regulating methane emissions from lakes and reservoirs. However, the differences in methane oxidation activity and methanotrophic community between lakes and reservoirs remain inadequately characterized. In this study, sediment and water samples were collected from the large shallow lake (Dianchi) and deep reservoirs (Dongfeng and Hongjiadu) located in karst area, Southwest China. The results indicated that the rates of aerobic oxidation of methane (AeOM) in lake sediment ranged from 7.1 to 27.7 μg g-1 d-1, which was higher than that in reservoirs sediment (1.92 to 11.56 μg g-1 d-1). Similarly, the average AeOM in the water column of lake (104.7 μg L-1 d-1) was much higher than that of reservoirs (46 μg L-1 d-1). The content of sediment organic carbon and dissolved inorganic carbon were important factors that influenced the rates of AeOM in sediment and water column, respectively. 16S rRNA genes sequencing revealed a higher relative abundance of methanotrophs in lake sediments compared to reservoir sediments. The dominant methanotrophic taxa in lake was Methylococcaceae (type Ib), while Methylomonadaceae (type Ia) was predominant in reservoirs. Meanwhile, anaerobic methane-oxidizing microorganisms Candidatus Methylomirabilis and Candidatus Methanoperedens were also abundant in sediments of reservoirs. However, metatranscriptomic analysis revealed that the type I methanotrophs, especially Methylobacter, was most active in the sediment of both lake and reservoir. Water depth and conductivity could be the key controlling factors of the structures of methanotrophic communities in sediment and water column, respectively. Metagenome-assembled genomes suggested that type I methanotrophs exhibited greater motility, as evidenced by a higher number of flagellar assembly genes, while type II methanotrophs demonstrated advantages in metabolic processes such as carbon, phosphorus, and methane metabolism.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debin Wu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiusheng Wu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingan Chen
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China
| | - Yuan Zhao
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Wang
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fukang Liu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China.
| |
Collapse
|
5
|
Lyu L, Wu Y, Chen Y, Li J, Chen Y, Wang L, Mai Z, Zhang S. Synergetic effects of chlorinated paraffins and microplastics on microbial communities and nitrogen cycling in deep-sea cold seep sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135760. [PMID: 39259999 DOI: 10.1016/j.jhazmat.2024.135760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Chlorinated paraffins (CPs) and microplastics (MPs) are commonly found in deep-sea cold seep sediments, where nitrogen cycling processes frequently occur. However, little is known about their combined effects on sedimentary microbial communities and nitrogen cycling in these environments. This study aimed to investigate the synergistic impacts of CPs and MPs on microbial communities and nitrogen cycling in deep-sea cold seep sediments through microcosm experiments. Our results demonstrated that the presence of CPs and MPs induced significant alterations in microbial community composition, promoting the growth of Halomonas. Furthermore, CPs and MPs were found to enhance nitrification, denitrification and anammox processes, which was evidenced by the higher abundance of genes associated with nitrification and denitrification, as well as increased activity of denitrification and anammox in the CPs and MPs-treatment groups compared to the control group. Additionally, the enhanced influence of CPs and MPs on denitrification was expected to promote nitrate-dependent and sulfate-dependent anaerobic oxidation of methane, thereby resulting in less methane released into the environment. These findings shed light on the potential consequences of simultaneous exposure to CPs and MPs on biogeochemical nitrogen cycling in deep-sea cold seep sediments.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Yang Wu
- National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou Marine Geological Survey, Guangzhou 511458, China
| | - Yangjun Chen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China.
| |
Collapse
|
6
|
Lu R, Li D, Guo Y, Cui Z, Wei Z, Fan G, Zhang W, Wang Y, Gu Y, Han M, Liu S, Meng L. Comparative metagenomics highlights the habitat-related diversity in taxonomic composition and metabolic potential of deep-sea sediment microbiota. Heliyon 2024; 10:e39055. [PMID: 39634420 PMCID: PMC11616513 DOI: 10.1016/j.heliyon.2024.e39055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Sediment plays a pivotal role in deep-sea ecosystems by providing habitats for a diverse range of microorganisms and facilitates the cycling processes of carbon, sulfur and nitrogen. Beyond the normal seafloor (NS), distinctive geographical features such as cold seeps (CS) and hydrothermal vent (HV) are recognized as life oases harboring highly diverse microbial communities. A global atlas of microorganisms can reveal the notable association between geological processes and microbial colonization. However, a comprehensive understanding of the systematic comparison of microbial communities in sediments across various deep-sea regions worldwide and their contributions to Earth's elemental cycles remains limited. Analyzing metagenomic data from 163 deep-sea sediment samples across 73 locations worldwide revealed that microbial communities in CS sediments exhibited the highest richness and diversity, followed by HV sediments, with NS sediments showing the lowest diversity. The NS sediments were predominantly inhabited by Nitrosopumilaceae, a type of ammonia-oxidizing archaea (AOA). In contrast, CSs and HVs were dominated by ANME-1, a family of anaerobic methane-oxidizing archaea (ANME), and Desulfofervidaceae, a family of sulfate-reducing bacteria (SRB), respectively. Microbial networks were established for each ecosystem to analyze the relationships and interactions among different microorganisms. Additionally, we analyzed the metabolic patterns of microbial communities in different deep-sea sediments. Despite variations in carbon fixation pathways in ecosystems with different oxygen concentrations, carbon metabolism remains the predominant biogeochemical cycle in deep-sea sediments. Benthic ecosystems exhibit distinct microbial potentials for sulfate reduction, both assimilatory and dissimilatory sulfate reduction (ASR and DSR), in response to different environmental conditions. The presence of nitrogen-fixing microorganisms in CS sediments may influence the global nitrogen balance. In this study, the significant differences in the taxonomic composition and functional potential of microbial communities inhabiting various deep-sea environments were investigated. Our findings emphasize the importance of conducting comparative studies on ecosystems to reveal the complex interrelationships between marine sediments and global biogeochemical cycles.
Collapse
Affiliation(s)
- Rui Lu
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, 266555, China
| | - Denghui Li
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, 266555, China
| | - Yang Guo
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhen Cui
- BGI Research, Qingdao, 266555, China
| | - Zhanfei Wei
- BGI Research, Qingdao, 266555, China
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, 266555, China
| | - Weijia Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, 572000, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Gu
- BGI Research, Shenzhen, 518083, China
| | - Mo Han
- BGI Research, Sanya, 572025, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
- Shenzhen Key Laboratory of Bioenergy, BGI Research, Shenzhen, 518083, China
| | - Shanshan Liu
- MGI Tech, Shenzhen, 518083, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, 572000, China
- Shenzhen Key Laboratory of Marine Genomics, BGI Research, Shenzhen, 518083, China
| | - Liang Meng
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, 266555, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, 572000, China
| |
Collapse
|
7
|
Quan Q, Liu J, Li C, Ke Z, Tan Y. Insights into prokaryotic communities and their potential functions in biogeochemical cycles in cold seep. mSphere 2024; 9:e0054924. [PMID: 39269181 PMCID: PMC11524163 DOI: 10.1128/msphere.00549-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Microorganisms are significant drivers of organic matter mineralization and are essential in marine biogeochemical cycles. However, the variations and influencing factors in prokaryotic communities from cold-seep sediments to the water column and the specific role of these microorganisms in biogeochemical cycles in the water column above cold seep remain unclear. Here, we investigated prokaryotic communities and their roles in nitrogen/sulfur cycling processes and conducted in situ dissolved organic matter (DOM) enrichment experiments to explore the effects of diverse sources of DOM on prokaryotic communities. Field investigations showed that the prokaryotic communities in the near-bottom water were more similar to those in the deep layer of the euphotic zone (44.60%) and at a depth of 400 m (50.89%) than those in the sediment (18.00%). DOM enrichment experiments revealed that adding dissolved organic nitrogen (DON) and phosphorus DOP caused a notable increase in the relative abundances of Rhodobacterales and Vibrionales, respectively. A remarkable increase was observed in the relative abundance of Alteromonadales and Pseudomonadales after the addition of dissolved organic sulfur (DOS). The metagenomic results revealed that Proteobacteria served as the keystone taxa in mediating the biogeochemical cycles of nitrogen, phosphorus, and sulfur in the Haima cold seep. This study highlights the responses of prokaryotes to DOM with different components and the microbially driven elemental cycles in cold seeps, providing a foundational reference for further studies on material energy metabolism and the coupled cycling of essential elements mediated by deep-sea microorganisms. IMPORTANCE Deep-sea cold seeps are among the most productive ecosystems, sustaining unique fauna and microbial communities through the release of methane and other hydrocarbons. Our study revealed that the influence of seepage fluid on the prokaryotic community in the water column is surprisingly limited, which challenges conventional views regarding the impact of seepage fluids. In addition, we identified that different DOM compositions play a crucial role in shaping the prokaryotic community composition, providing new insights into the factors driving microbial diversity in cold seeps. Furthermore, the study highlighted Proteobacteria as key and multifaceted drivers of biogeochemical cycles in cold seeps, emphasizing their significant contribution to complex interactions and processes. These findings offer a fresh perspective on the dynamics of cold-seep environments and their microbial communities, advancing our understanding of the biogeochemical functions in deep-sea environments.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chaolun Li
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Li Y, Chen J, Lin Y, Zhong C, Jing H, Liu H. Thaumarchaeota from deep-sea methane seeps provide novel insights into their evolutionary history and ecological implications. MICROBIOME 2024; 12:197. [PMID: 39385283 PMCID: PMC11463064 DOI: 10.1186/s40168-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota mediate the rate-limiting step of nitrification and remove the ammonia that inhibits the aerobic metabolism of methanotrophs. However, the AOA that inhabit deep-sea methane-seep surface sediments (DMS) are rarely studied. Here, we used global DMS metagenomics and metagenome-assembled genomes (MAGs) to investigate the metabolic activity, evolutionary history, and ecological contributions of AOA. Expression of AOA-specific ammonia-oxidizing gene (amoA) was examined in the sediments collected from the South China Sea (SCS) to identify their active ammonia metabolism in the DMS. RESULTS Our analysis indicated that AOA contribute > 75% to the composition of ammonia-utilization genes within the surface layers (above 30 cm) of global DMS. The AOA-specific ammonia-oxidizing gene was actively expressed in the DMS collected from the SCS. Phylogenomic analysis of medium-/high-quality MAGs from 18 DMS-AOA indicated that they evolved from ancestors in the barren deep-sea sediment and then expanded from the DMS to shallow water forming an amoA-NP-gamma clade-affiliated lineage. Molecular dating suggests that the DMS-AOA origination coincided with the Neoproterozoic oxidation event (NOE), which occurred ~ 800 million years ago (mya), and their expansion to shallow water coincided with the Sturtian glaciation (~ 713 mya). Comparative genomic analysis suggests that DMS-AOA exhibit higher requirement of carbon source for protein synthesis with enhanced genomic capability for osmotic regulation, motility, chemotaxis, and utilization of exogenous organic compounds, suggesting it could be more heterotrophic compared with other lineages. CONCLUSION Our findings provide new insights into the evolutionary history of AOA within the Thaumarchaeota, highlighting their critical roles in nitrogen cycling in the global DMS ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yingdong Li
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiawei Chen
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanxun Lin
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheng Zhong
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
9
|
Liu H, Chen X, Hu M, Wang H, Yao L, Xu Z, Ma G, Wang Q, Kan R. In Situ High-Precision Measurement of Deep-Sea Dissolved Methane by Quartz-Enhanced Photoacoustic and Light-Induced Thermoelastic Spectroscopy. Anal Chem 2024; 96:12846-12853. [PMID: 39048518 DOI: 10.1021/acs.analchem.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Rapid and accurate realization of in situ analysis of deep-sea dissolved gases imperative to the study of ecological geology, oil and gas resource exploration, and global climate change. Herein, we report for the first time the deep-sea dissolved methane (CH4) in situ sensor based on quartz-enhanced photoacoustic and light-induced thermoelastic spectroscopy. The developed sensor system has a volume of φ120 mm × 430 mm and a power consumption of 7.6 W. The sensor, in the manner of frequency division multiplexing, is able to simultaneously measure the photoacoustic signals and light-induced thermoelastic signals, which can accurately correct laser-intensity induced influence on concentration. The spectral response of CH4 concentration varying from 0.01 to 5% is calibrated in detail based on the pressure and temperature in the application environment. The trend of the photoacoustic signal of CH4 at different water molecule (H2O) concentrations is investigated. An Allan variance analysis of several hours demonstrates a minimum detection limit of 0.21 ppm for the CH4 spectrometer. The sensor combined with the gas-liquid separation and enrichment unit is integrated into a compact marine standalone system. Since the specifically designed photoacoustic cell has a volume of only 1.2 mL, the time response for dissolved CH4 detection is reduced to 4 min. Furthermore, the sensor is successfully deployed in the vicinity of the "HaiMa" cold seeps at 1380 m underwater in the South China Sea, completing three consecutive days of measurements of dissolved CH4.
Collapse
Affiliation(s)
- Hao Liu
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230022, China
| | - Xiang Chen
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Mai Hu
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Haoran Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Lu Yao
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyu Xu
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Guosheng Ma
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Qiang Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Ruifeng Kan
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
10
|
Li Y, Wang T, Jing H, Xiao Y. Evolutionary ecology of denitrifying methanotrophic NC10 bacteria in the deep-sea biosphere. Mol Ecol 2024; 33:e17372. [PMID: 38709214 DOI: 10.1111/mec.17372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The NC10 phylum links anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophic pathway. Although numerous amplicon-based studies revealed the distribution of this phylum, comprehensive genomic insights and niche characterization in deep-sea environments were still largely unknown. In this study, we extensively surveyed the NC10 bacteria across diverse deep-sea environments, including waters, sediments, cold seeps, biofilms, rocky substrates, and subseafloor aquifers. We then reconstructed and analysed 38 metagenome-assembled genomes (MAGs), and revealed the extensive distribution of NC10 bacteria and their intense selective pressure in these harsh environments. Isotopic analyses combined with gene expression profiling confirmed that active nitrite-dependent anaerobic methane oxidation (n-DAMO) occurs within deep-sea sediments. In addition, the identification of the Wood-Ljungdahl (WL) and 3-hydroxypropionate/4-hydroxybutyrat (3HB/4HP) pathways in these MAGs suggests their capability for carbon fixation as chemoautotrophs in these deep-sea environments. Indeed, we found that for their survival in the oligotrophic deep-sea biosphere, NC10 bacteria encode two branches of the WL pathway, utilizing acetyl-CoA from the carbonyl branch for citric acid cycle-based energy production and methane from the methyl branch for n-DAMO. The observed low ratios of non-synonymous substitutions to synonymous substitutions (pN/pS) in n-DAMO-related genes across these habitats suggest a pronounced purifying selection that is critical for the survival of NC10 bacteria in oligotrophic deep-sea environments. These findings not only advance our understanding of the evolutionary adaptations of NC10 bacteria but also underscore the intricate coupling between the carbon and nitrogen cycles within deep-sea ecosystems, driven by this bacterial phylum.
Collapse
Affiliation(s)
- Yingdong Li
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Ting Wang
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Yao Xiao
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Zhang Y, Chen H, Lian C, Cao L, Guo Y, Wang M, Zhong Z, Li M, Zhang H, Li C. Insights into phage-bacteria interaction in cold seep Gigantidas platifrons through metagenomics and transcriptome analyses. Sci Rep 2024; 14:10540. [PMID: 38719945 PMCID: PMC11078923 DOI: 10.1038/s41598-024-61272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.
Collapse
Affiliation(s)
- Yan Zhang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Lian
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lei Cao
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yang Guo
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhaoshan Zhong
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mengna Li
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Zhang M, Huang W, Zhang L, Feng Z, Zuo Y, Xie Z, Xing W. Nitrite-dependent anaerobic methane oxidation (N-DAMO) in global aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171081. [PMID: 38387583 DOI: 10.1016/j.scitotenv.2024.171081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The vast majority of processes in the carbon and nitrogen cycles are driven by microorganisms. The nitrite-dependent anaerobic oxidation of methane (N-DAMO) process links carbon and nitrogen cycles, offering a novel approach for the simultaneous reduction of methane emissions and nitrite pollution. However, there is currently no comprehensive summary of the current status of the N-DAMO process in natural aquatic environments. Therefore, our study aims to fill this knowledge gap by conducting a comprehensive review of the global research trends in N-DAMO processes in various aquatic environments (excluding artificial bioreactors). Our review mainly focused on molecular identification, global study sites, and their interactions with other elemental cycling processes. Furthermore, we performed a data integration analysis to unveil the effects of key environmental factors on the abundance of N-DAMO bacteria and the rate of N-DAMO process. By combining the findings from the literature review and data integration analysis, we proposed future research perspectives on N-DAMO processes in global aquatic environments. Our overarching goal is to advance the understanding of the N-DAMO process and its role in synergistically reducing carbon emissions and removing nitrogen. By doing so, we aim to make a significant contribution to the timely achievement of China's carbon peak and carbon neutrality targets.
Collapse
Affiliation(s)
- Miao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wenmin Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan 430074, China
| | - Lei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zixuan Feng
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanxia Zuo
- Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan 430074, China.
| |
Collapse
|
13
|
Fu L, Liu Y, Wang M, Lian C, Cao L, Wang W, Sun Y, Wang N, Li C. The diversification and potential function of microbiome in sediment-water interface of methane seeps in South China Sea. Front Microbiol 2024; 15:1287147. [PMID: 38380093 PMCID: PMC10878133 DOI: 10.3389/fmicb.2024.1287147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
The sediment-water interfaces of cold seeps play important roles in nutrient transportation between seafloor and deep-water column. Microorganisms are the key actors of biogeochemical processes in this interface. However, the knowledge of the microbiome in this interface are limited. Here we studied the microbial diversity and potential metabolic functions by 16S rRNA gene amplicon sequencing at sediment-water interface of two active cold seeps in the northern slope of South China Sea, Lingshui and Site F cold seeps. The microbial diversity and potential functions in the two cold seeps are obviously different. The microbial diversity of Lingshui interface areas, is found to be relatively low. Microbes associated with methane consumption are enriched, possibly due to the large and continuous eruptions of methane fluids. Methane consumption is mainly mediated by aerobic oxidation and denitrifying anaerobic methane oxidation (DAMO). The microbial diversity in Site F is higher than Lingshui. Fluids from seepage of Site F are mitigated by methanotrophic bacteria at the cyclical oxic-hypoxic fluctuating interface where intense redox cycling of carbon, sulfur, and nitrogen compounds occurs. The primary modes of microbial methane consumption are aerobic methane oxidation, along with DAMO, sulfate-dependent anaerobic methane oxidation (SAMO). To sum up, anaerobic oxidation of methane (AOM) may be underestimated in cold seep interface microenvironments. Our findings highlight the significance of AOM and interdependence between microorganisms and their environments in the interface microenvironments, providing insights into the biogeochemical processes that govern these unique ecological systems.
Collapse
Affiliation(s)
- Lulu Fu
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Yanjun Liu
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Chao Lian
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lei Cao
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Weicheng Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Sun
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Nan Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laoshan Laboratory, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Lyu Y, Zhang J, Chen Y, Li Q, Ke Z, Zhang S, Li J. Distinct diversity patterns and assembly mechanisms of prokaryotic microbial sub-community in the water column of deep-sea cold seeps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119240. [PMID: 37837767 DOI: 10.1016/j.jenvman.2023.119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Methane leakage from deep-sea cold seeps has a major impact on marine ecosystems. Microbes sequester methane in the water column of cold seeps and can be divided into abundant and rare groups. Both abundant and rare groups play an important role in cold seep ecosystems, and the environmental heterogeneity in cold seeps may enhance conversion between taxa with different abundances. Yet, the environmental stratification and assembly mechanisms of these microbial sub-communities remain unclear. We investigated the diversities and assembly mechanisms in microbial sub-communities with distinct abundance in the deep-sea cold seep water column, from 400 m to 1400 m. We found that bacterial β-diversity, as measured by Sørensen dissimilarities, exhibited a significant species turnover pattern that was influenced by several environmental factors including depth, temperature, SiO32-, and salinity. In contrast, archaeal β-diversity showed a relatively high percentage of nestedness pattern, which was driven by the levels of soluble reactive phosphate and SiO32-. During the abundance dependency test, abundant taxa of both bacteria and archaea showed a significant species turnover, while the rare taxa possessed a higher percentage of nestedness. Stochastic processes were prominent in shaping the prokaryotic community, but deterministic processes were more pronounced for the abundant taxa than rare ones. Furthermore, the metagenomics results revealed that the abundances of methane oxidation, sulfur oxidation, and nitrogen fixation-related genes and related microbial groups were significantly higher in the bottom water. Our results implied that the carbon, sulfur, and nitrogen cycles were potentially strongly coupled in the bottom water. Overall, the results obtained in this study highlight taxonomic and abundance-dependent microbial community diversity patterns and assembly mechanisms in the water column of cold seeps, which will help understand the impacts of fluid seepage from the sea floor on the microbial community in the water column and further provide guidance for the management of cold seep ecosystem under future environmental pressures.
Collapse
Affiliation(s)
- Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhixin Ke
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
15
|
Wang D, Li J, Su L, Shen W, Feng K, Peng X, Wang Z, Zhao B, Zhang Z, Zhang Z, Yergeau É, Deng Y. Phylogenetic diversity of functional genes in deep-sea cold seeps: a novel perspective on metagenomics. MICROBIOME 2023; 11:276. [PMID: 38102689 PMCID: PMC10722806 DOI: 10.1186/s40168-023-01723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Leakages of cold, methane-rich fluids from subsurface reservoirs to the sea floor are termed cold seeps. Recent exploration of the deep sea has shed new light on the microbial communities in cold seeps. However, conventional metagenomic methods largely rely on reference databases and neglect the phylogeny of functional genes. RESULTS In this study, we developed the REMIRGE program to retrieve the full-length functional genes from shotgun metagenomic reads and fully explored the phylogenetic diversity in cold seep sediments. The abundance and diversity of functional genes involved in the methane, sulfur, and nitrogen cycles differed in the non-seep site and five cold seep sites. In one Haima cold seep site, the divergence of functional groups was observed at the centimeter scale of sediment depths, with the surface layer potentially acting as a reservoir of microbial species and functions. Additionally, positive correlations were found between specific gene sequence clusters of relevant genes, indicating coupling occurred within specific functional groups. CONCLUSION REMIRGE revealed divergent phylogenetic diversity of functional groups and functional pathway preferences in a deep-sea cold seep at finer scales, which could not be detected by conventional methods. Our work highlights that phylogenetic information is conducive to more comprehensive functional profiles, and REMIRGE has the potential to uncover more new insights from shotgun metagenomic data. Video Abstract.
Collapse
Affiliation(s)
- Danrui Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Wenli Shen
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhujun Wang
- College of Tropical Crops, Hainan University, Haikou, 572000, China
| | - Bo Zhao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Étienne Yergeau
- Institut National de La Recherche Scientique, Centre Armand-Frappier Santé Biotechnologie, Laval, H7V 1B7, QC, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
16
|
Jiang Q, Jing H, Li X, Wan Y, Chou IM, Hou L, Dong H, Niu Y, Gao D. Active pathways of anaerobic methane oxidization in deep-sea cold seeps of the South China Sea. Microbiol Spectr 2023; 11:e0250523. [PMID: 37916811 PMCID: PMC10715046 DOI: 10.1128/spectrum.02505-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Cold seeps occur in continental margins worldwide and are deep-sea oases. Anaerobic oxidation of methane is an important microbial process in the cold seeps and plays an important role in regulating methane content. This study elucidates the diversity and potential activities of major microbial groups in dependent anaerobic methane oxidation and sulfate-dependent anaerobic methane oxidation processes and provides direct evidence for the occurrence of nitrate-/nitrite-dependent anaerobic methane oxidation (Nr-/N-DAMO) as a previously overlooked microbial methane sink in the hydrate-bearing sediments of the South China Sea. This study provides direct evidence for occurrence of Nr-/N-DAMO as an important methane sink in the deep-sea cold seeps.
Collapse
Affiliation(s)
- Qiuyun Jiang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Xuegong Li
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ye Wan
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - I-Ming Chou
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| |
Collapse
|
17
|
Liu Y, Chen S, Wang J, Shao B, Fang J, Cao J. The Phylogeny, Metabolic Potentials, and Environmental Adaptation of an Anaerobe, Abyssisolibacter sp. M8S5, Isolated from Cold Seep Sediments of the South China Sea. Microorganisms 2023; 11:2156. [PMID: 37764000 PMCID: PMC10536192 DOI: 10.3390/microorganisms11092156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Bacillota are widely distributed in various environments, owing to their versatile metabolic capabilities and remarkable adaptation strategies. Recent studies reported that Bacillota species were highly enriched in cold seep sediments, but their metabolic capabilities, ecological functions, and adaption mechanisms in the cold seep habitats remained obscure. In this study, we conducted a systematic analysis of the complete genome of a novel Bacillota bacterium strain M8S5, which we isolated from cold seep sediments of the South China Sea at a depth of 1151 m. Phylogenetically, strain M8S5 was affiliated with the genus Abyssisolibacter within the phylum Bacillota. Metabolically, M8S5 is predicted to utilize various carbon and nitrogen sources, including chitin, cellulose, peptide/oligopeptide, amino acids, ethanolamine, and spermidine/putrescine. The pathways of histidine and proline biosynthesis were largely incomplete in strain M8S5, implying that its survival strictly depends on histidine- and proline-related organic matter enriched in the cold seep ecosystems. On the other hand, strain M8S5 contained the genes encoding a variety of extracellular peptidases, e.g., the S8, S11, and C25 families, suggesting its capabilities for extracellular protein degradation. Moreover, we identified a series of anaerobic respiratory genes, such as glycine reductase genes, in strain M8S5, which may allow it to survive in the anaerobic sediments of cold seep environments. Many genes associated with osmoprotectants (e.g., glycine betaine, proline, and trehalose), transporters, molecular chaperones, and reactive oxygen species-scavenging proteins as well as spore formation may contribute to its high-pressure and low-temperature adaptations. These findings regarding the versatile metabolic potentials and multiple adaptation strategies of strain M8S5 will expand our understanding of the Bacillota species in cold seep sediments and their potential roles in the biogeochemical cycling of deep marine ecosystems.
Collapse
Affiliation(s)
- Ying Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535000, China
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China;
| | - Jiahua Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
| | - Baoying Shao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
| |
Collapse
|
18
|
Frank J, Zhang X, Marcellin E, Yuan Z, Hu S. Salinity effect on an anaerobic methane- and ammonium-oxidising consortium: Shifts in activity, morphology, osmoregulation and syntrophic relationship. WATER RESEARCH 2023; 242:120090. [PMID: 37331229 DOI: 10.1016/j.watres.2023.120090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
Nitrate-dependent anaerobic methane oxidation (AOM) is a microbial process of both ecological significance for global methane mitigation and application potential for wastewater treatment. It is mediated by organisms belonging to the archaeal family 'Candidatus Methanoperedenaceae', which have so far mainly been found in freshwater environments. Their potential distribution in saline environments and their physiological responses to salinity variation were still poorly understood. In this study, the responses of the freshwater 'Candidatus Methanoperedens nitroreducens'-dominated consortium to different salinities were investigated using short- and long-term setups. Short-term exposure to salt stress significantly affected nitrate reduction and methane oxidation activities over the tested concentration range of 15-200‰ NaCl, and 'Ca. M. nitroreducens' showed the higher tolerance to high salinity stress than its partner of anammox bacteria. At high salinity concentration, near marine conditions of 37‰, the target organism 'Ca. M. nitroreducens' showed stabilized nitrate reduction activity of 208.5 µmol day-1 gCDW-1 in long-term bioreactors over 300 days, in comparison to 362.9 and 334.3 µmol day-1 gCDW-1 under low-salinity conditions (1.7‰ NaCl) and control conditions (∼15‰ NaCl). Different partners of 'Ca. M. nitroreducens' evolved in the consortia with three different salinity conditions, suggesting the different syntrophic mechanisms shaped by changes in salinity. A new syntrophic relationship between 'Ca. M. nitroreducens' and Fimicutes and/or Chloroflexi denitrifying populations was identified under the marine salinity condition. Metaproteomic analysis shows that the salinity changes lead to higher expression of response regulators and selective ion (Na+/H+) channeling proteins that can regulate the osmotic pressure between the cell and its environment. The reverse methanogenesis pathway was, however, not impacted. The finding of this study has important implications for the ecological distribution of the nitrate-dependent AOM process in marine environments and the potential of this biotechnological process for the treatment of high-salinity industrial wastewater.
Collapse
Affiliation(s)
- Joshua Frank
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
19
|
Yue XL, Xu L, Cui L, Fu GY, Xu XW. Metagenome-based analysis of carbon-fixing microorganisms and their carbon-fixing pathways in deep-sea sediments of the southwestern Indian Ocean. Mar Genomics 2023; 70:101045. [PMID: 37245381 DOI: 10.1016/j.margen.2023.101045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Carbon fixation by chemoautotrophic microorganisms in the dark ocean makes a large contribution to oceanic primary production and the global carbon cycle. In contrast to the Calvin cycle-dominated carbon-fixing pathway in the marine euphotic zone, carbon-fixing pathways and their hosts in deep-sea areas are diverse. In this study, four deep-sea sediment samples close to hydrothermal vents in the southwestern Indian Ocean were collected and processed using metagenomic analysis to investigate carbon fixation potential. Functional annotations revealed that all six carbon-fixing pathways had genes to varied degrees present in the samples. The reductive tricarboxylic acid cycle and Calvin cycle genes occurred in all samples, in contrast to the Wood-Ljungdahl pathway, which previous studies found mainly in the hydrothermal area. The annotations also elucidated the chemoautotrophic microbial members associated with the six carbon-fixing pathways, and the majority of them containing key carbon fixation genes belonged to the phyla Pseudomonadota and Desulfobacterota. The binned metagenome-assembled genomes revealed that key genes for the Calvin cycle and the 3-hydroxypropionate/4-hydroxybutyrate cycle were also found in the order Rhodothermales and the family Hyphomicrobiaceae. By identifying the carbon metabolic pathways and microbial populations in the hydrothermal fields of the southwest Indian Ocean, our study sheds light on complex biogeochemical processes in deep-sea environments and lays the foundation for further in-depth investigations of carbon fixation processes in deep-sea ecosystems.
Collapse
Affiliation(s)
- Xiao-Lan Yue
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China; Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Ge-Yi Fu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| | - Xue-Wei Xu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| |
Collapse
|
20
|
Chen C, Deng Y, Zhou H, Jiang L, Deng Z, Chen J, Han X, Zhang D, Zhang C. Revealing the response of microbial communities to polyethylene micro(nano)plastics exposure in cold seep sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163366. [PMID: 37044349 DOI: 10.1016/j.scitotenv.2023.163366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
To date, multiple studies have shown that the accumulation of microplastics (MPs)/nanoplastics (NPs) in the environment may lead to various problems. However, the effects of MPs/NPs on microbial communities and biogeochemical processes, particularly methane metabolism in cold seep sediments, have not been well elucidated. In this study, an indoor microcosm experiment for a period of 120 days exposure of MPs/NPs was conducted. The results showed that MPs/NPs addition did not significantly influence bacterial and archaeal richness in comparison with the control (p > 0.05), whereas higher levels of NPs (1 %, w/w) had a significant adverse effect on bacterial diversity (p < 0.05). Moreover, the bacterial community was more sensitive to the addition of MPs/NPs than the archaea, and Epsilonbacteraeota replaced Proteobacteria as the dominant phylum in the MPs/NPs treatments (except 0.2 % NPs). With respect to the co-occurrence relationships, network analysis showed that the presence of NPs, in comparison with MPs, reduced microbial network complexity. Finally, the presence of MPs/NPs decreased the abundance of mcrA, while promoting the abundance of pmoA. This study will help elucidate the responses of microbial communities to MPs/NPs and evaluate their effects on methane metabolism in cold seep ecosystems.
Collapse
Affiliation(s)
- Chunlei Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Yinan Deng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangzhou Marine Geological Survey, Guangzhou 510075, China
| | - Hanghai Zhou
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Lijia Jiang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Zhaochao Deng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Jiawang Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Xiqiu Han
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Key Laboratory of Submarine Geosciences & The Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
21
|
Biogeochemical Activity of Methane-Related Microbial Communities in Bottom Sediments of Cold Seeps of the Laptev Sea. Microorganisms 2023; 11:microorganisms11020250. [PMID: 36838215 PMCID: PMC9964916 DOI: 10.3390/microorganisms11020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Bottom sediments at methane discharge sites of the Laptev Sea shelf were investigated. The rates of microbial methanogenesis and methane oxidation were measured, and the communities responsible for these processes were analyzed. Methane content in the sediments varied from 0.9 to 37 µmol CH4 dm-3. Methane carbon isotopic composition (δ13C-CH4) varied from -98.9 to -77.6‱, indicating its biogenic origin. The rates of hydrogenotrophic methanogenesis were low (0.4-5.0 nmol dm-3 day-1). Methane oxidation rates varied from 0.4 to 1.2 µmol dm-3 day-1 at the seep stations. Four lineages of anaerobic methanotrophic archaea (ANME) (1, 2a-2b, 2c, and 3) were found in the deeper sediments at the seep stations along with sulfate-reducing Desulfobacteriota. The ANME-2a-2b clade was predominant among ANME. Aerobic ammonium-oxidizing Crenarchaeota (family Nitrosopumilaceae) predominated in the upper sediments along with heterotrophic Actinobacteriota and Bacteroidota, and mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae). Members of the genera Sulfurovum and Sulfurimonas occurred in the sediments of the seep stations. Mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae) occurred in the sediments of all stations. The microbial community composition was similar to that of methane seep sediments from geographically remote areas of the global ocean.
Collapse
|
22
|
Lin YT, Xu T, Ip JCH, Sun Y, Fang L, Luan T, Zhang Y, Qian PY, Qiu JW, Qian PY, Qiu JW. Interactions among deep-sea mussels and their epibiotic and endosymbiotic chemoautotrophic bacteria: Insights from multi-omics analysis. Zool Res 2023; 44:106-125. [PMID: 36419378 PMCID: PMC9841196 DOI: 10.24272/j.issn.2095-8137.2022.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel ( Gigantidas haimaensis) as a model, we explored this host-bacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing (SOX) multienzyme complex with the acquisition of soxB from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway (RuMP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine, isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.
Collapse
Affiliation(s)
- Yi-Tao Lin
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China,Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Yanan Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Ling Fang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, Guangdong 510875, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510875, China,Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China,E-mail:
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China,Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China,
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jiang Q, Jing H, Liu H, Du M. Biogeographic distributions of microbial communities associated with anaerobic methane oxidation in the surface sediments of deep-sea cold seeps in the South China Sea. Front Microbiol 2022; 13:1060206. [PMID: 36620029 PMCID: PMC9822730 DOI: 10.3389/fmicb.2022.1060206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cold seeps are oasis for the microbes in the deep-sea ecosystems, and various cold seeps are located along the northern slope of the South China Sea (SCS). However, by far most microbial ecological studies were limited to specific cold seep in the SCS, and lack of comparison between different regions. Here, the surface sediments (0-4 cm) from the Site F/Haima cold seeps and the Xisha trough in the SCS were used to elucidate the biogeography of microbial communities, with particular interest in the typical functional groups involved in the anaerobic oxidation of methane (AOM) process. Distinct microbial clusters corresponding to the three sampling regions were formed, and significantly higher gene abundance of functional groups were present in the cold seeps than the trough. This biogeographical distribution could be explained by the geochemical characteristics of sediments, such as total nitrogen (TN), total phosphorus (TP), nitrate (NO3 -), total sulfur (TS) and carbon to nitrogen ratios (C/N). Phylogenetic analysis demonstrated that mcrA and pmoA genotypes were closely affiliated with those from wetland and mangroves, where denitrifying anaerobic methane oxidation (DAMO) process frequently occurred; and highly diversified dsrB genotypes were revealed as well. In addition, significantly higher relative abundance of NC10 group was found in the Xisha trough, suggesting that nitrite-dependent DAMO (N-DAMO) process was more important in the hydrate-bearing trough, although its potential ecological contribution to AOM deserves further investigation. Our study also further demonstrated the necessity of combining functional genes and 16S rRNA gene to obtain a comprehensive picture of the population shifts of natural microbial communities among different oceanic regions.
Collapse
Affiliation(s)
- Qiuyun Jiang
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,*Correspondence: Hongmei Jing,
| | - Hao Liu
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Mengran Du
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
24
|
Chaudhary DK, Karki HP, Bajagain R, Kim H, Rhee TS, Hong JK, Han S, Choi YG, Hong Y. Mercury and other trace elements distribution and profiling of microbial community in the surface sediments of East Siberian Sea. MARINE POLLUTION BULLETIN 2022; 185:114319. [PMID: 36343547 DOI: 10.1016/j.marpolbul.2022.114319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, total mercury (THg), methylmercury (MeHg), various trace elements, and microbial communities were measured in surface sediments of the East Siberian Sea (ESS). The results showed that the average values of THg and MeHg were 58.8 ± 15.21 μg/kg and 0.50 ± 0.22 μg/kg, respectively. The notable levels of trace elements present in both surface sediment and porewater were Al, Fe, and Mn. The enrichment factor and geoaccumulation index analyses found that both natural phenomena and anthropogenic activities contributed to elevated concentrations of metals in the ESS. The redox proxy metals, pH, and SO42- were the major factors influencing the THg and MeHg distributions. Microbial profiles were substantially affected by metals and other abiotic factors. Proteobacteria and Thaumarchaeota were the most abundant phyla. Overall, the findings presented here facilitate the understanding of the current status of metal contamination, its influencing factors, and metal-microbiota-interactions in ESS.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Hem Prakash Karki
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Rishikesh Bajagain
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Hwansuk Kim
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Tae Siek Rhee
- Korea Polar Research Institute, 26 Songdomirae-ro, Incheon 21990, Republic of Korea
| | - Jong Kuk Hong
- Korea Polar Research Institute, 26 Songdomirae-ro, Incheon 21990, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Young-Gyun Choi
- Department of Environmental Engineering, Chungnam National University, Daejeon City, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea.
| |
Collapse
|
25
|
Chen J, Zhou Z, Gu JD. Distribution pattern of N-damo bacteria along an anthropogenic nitrogen input gradient from the coastal mangrove wetland to the South China sea sediments. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105739. [PMID: 36084374 DOI: 10.1016/j.marenvres.2022.105739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Microbial nitrite-dependent anaerobic methane oxidation (n-damo) process is important for mitigating methane emission and anthropogenic nitrogen inputs in the marine environment. However, the distribution pattern of n-damo bacteria along an anthropogenic N-input gradient from the coastal wetland to the pristine South China Sea is poorly understood. This study investigated the diversity and abundance of n-damo bacteria in samples collected along a N-input gradient from Mai Po (MP) mangrove wetland sediments of the Pearl River Estuary (PRE) to the deep ocean sediments of the South China Sea (SCS). Retrieved 16S rDNA sequences showed a shift of n-damo community composition of complex structures with both freshwater and marine n-damo lineages in MP intertidal sediments to marine dominated characteristic in SCS sediments. The observed variation of Shannon and Chao1 indexes of n-damo bacteria shared a similar trend of a decrease at first followed by an increase along the targeting gradient with previously investigated methanogens, anaerobic methanotrophic archaea, ammonia-oxidizing archaea and ammonia-oxidizing bacteria, but had a reverse pattern with anammox bacteria. The community structure of pmoA gene sequences contained freshwater lineages only in SCS continental shelf sediments closer to the PRE, and turned to group with other marine samples in deeper and pristine sediments. Results suggested that n-damo bacteria might be a major contributor to anaerobic denitrification in the SCS sediments because their abundances were much higher than previously studied anammox bacteria in the same sample set. The distribution pattern of n-damo bacterial diversity, richness and abundance along the anthropogenic N-input gradient implies that they could be used as a bio-indicator for monitoring the anthropogenic/terrestrial inputs in marine environments.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China; Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
| |
Collapse
|
26
|
Lyu L, Li J, Chen Y, Mai Z, Wang L, Li Q, Zhang S. Degradation potential of alkanes by diverse oil-degrading bacteria from deep-sea sediments of Haima cold seep areas, South China Sea. Front Microbiol 2022; 13:920067. [PMID: 36338091 PMCID: PMC9626528 DOI: 10.3389/fmicb.2022.920067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Marine oil spills are a significant concern worldwide, destroying the ecological environment and threatening the survival of marine life. Various oil-degrading bacteria have been widely reported in marine environments in response to marine oil pollution. However, little information is known about culturable oil-degrading bacteria in cold seep of the deep-sea environments, which are rich in hydrocarbons. This study enriched five oil-degrading consortia from sediments collected from the Haima cold seep areas of the South China Sea. Parvibaculum, Erythrobacter, Acinetobacter, Alcanivorax, Pseudomonas, Marinobacter, Halomonas, and Idiomarina were the dominant genera. Further results of bacterial growth and degradation ability tests indicated seven efficient alkane-degrading bacteria belonging to Acinetobacter, Alcanivorax, Kangiella, Limimaricola, Marinobacter, Flavobacterium, and Paracoccus, whose degradation rates were higher in crude oil (70.3–78.0%) than that in diesel oil (62.7–66.3%). From the view of carbon chain length, alkane degradation rates were medium chains > long chains > short chains. In addition, Kangiella aquimarina F7, Acinetobacter venetianus F1, Limimaricola variabilis F8, Marinobacter nauticus J5, Flavobacterium sediminis N3, and Paracoccus sediminilitoris N6 were first identified as oil-degrading bacteria from deep-sea environments. This study will provide insight into the bacterial community structures and oil-degrading bacterial diversity in the Haima cold seep areas, South China Sea, and offer bacterial resources to oil bioremediation applications.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Lina Lyu,
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Si Zhang,
| |
Collapse
|
27
|
Dong X, Zhang C, Peng Y, Zhang HX, Shi LD, Wei G, Hubert CRJ, Wang Y, Greening C. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments. Nat Commun 2022; 13:4885. [PMID: 35985998 PMCID: PMC9391474 DOI: 10.1038/s41467-022-32503-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Microbially mediated nitrogen cycling in carbon-dominated cold seep environments remains poorly understood. So far anaerobic methanotrophic archaea (ANME-2) and their sulfate-reducing bacterial partners (SEEP-SRB1 clade) have been identified as diazotrophs in deep sea cold seep sediments. However, it is unclear whether other microbial groups can perform nitrogen fixation in such ecosystems. To fill this gap, we analyzed 61 metagenomes, 1428 metagenome-assembled genomes, and six metatranscriptomes derived from 11 globally distributed cold seeps. These sediments contain phylogenetically diverse nitrogenase genes corresponding to an expanded diversity of diazotrophic lineages. Diverse catabolic pathways were predicted to provide ATP for nitrogen fixation, suggesting diazotrophy in cold seeps is not necessarily associated with sulfate-dependent anaerobic oxidation of methane. Nitrogen fixation genes among various diazotrophic groups in cold seeps were inferred to be genetically mobile and subject to purifying selection. Our findings extend the capacity for diazotrophy to five candidate phyla (Altarchaeia, Omnitrophota, FCPU426, Caldatribacteriota and UBA6262), and suggest that cold seep diazotrophs might contribute substantially to the global nitrogen balance.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Hong-Xi Zhang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, University Town, Shenzhen, China
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Yong Wang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, University Town, Shenzhen, China.
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
28
|
Cheng C, He Q, Zhang J, Chen B, Pavlostathis SG. Is the role of aerobic methanotrophs underestimated in methane oxidation under hypoxic conditions? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155244. [PMID: 35427622 DOI: 10.1016/j.scitotenv.2022.155244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Microbial methane oxidation is the major biological methane (CH4) sink in the carbon cycle. Methanotrophs can use various electron acceptors in addition to oxygen; understanding the role and contribution of methanotrophs is thus an important topic. However, anaerobic oxidation of methane (AOM) mediated by methanotrophs is poorly explored and understood. This article summarizes the role aerobic methanotrophic bacteria play in AOM. Though AOM was originally considered to be mediated by anaerobic methanotrophic archaea, intra-aerobic methane-oxidizing bacteria (Candidatus Methylomirabilis oxyfera) appear to be involved in nitrite-dependent AOM. In addition, aerobic methanotrophs of the Methylomonadaceae and Methylocystaceae, are more versatile than previously assumed and can also be involved in nitrate/nitrite- or mineral oxide-dependent AOM under oxygen-limitation. Furthermore, the simultaneous reduction of nitrous oxide and oxidation of CH4 may be another new metabolic trait of aerobic methanotrophs. We discuss the potential metabolic pathways of CH4 oxidation under hypoxic conditions. It is of great ecological importance not only for the quantification of CH4 oxidation and emissions, but also for the definition of a new function of aerobic methanotrophs in anaerobic/hypoxic environments.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Qiang He
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Bowen Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
29
|
Wang J, Guo X, Li Y, Song G, Zhao L. Understanding the Variation of Bacteria in Response to Summertime Oxygen Depletion in Water Column of Bohai Sea. Front Microbiol 2022; 13:890973. [PMID: 35756048 PMCID: PMC9221365 DOI: 10.3389/fmicb.2022.890973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022] Open
Abstract
Aiming to reveal the variation in bacteria community under oxygen depletion formed every summer in water column of central Bohai Sea, a time-scenario sampling from June to August in 2018 at a 20-day interval along one inshore-offshore transect was settled. Water samples were collected at the surface, middle, and bottom layer and then analyzed by high-throughput sequencing targeting both 16S rRNA and nosZ genes. Compared to the surface and middle water, oxygen depletion occurred at bottom layer in August. In top two layers, Cyanobacteria dominated the bacterial community, whereas heterotrophic bacteria became dominant in bottom water of Bohai Sea. Based on the time scenario, distinct community separation was observed before (June and July) and after (August) oxygen depletion (p = 0.003). Vertically, strict stratification of nosZ gene was stably formed along 3 sampling layers. As a response to oxygen depletion, the diversity indices of both total bacteria (16S rRNA) and nosZ gene-encoded denitrification bacteria all increased, which indicated the intense potential of nitrogen lose when oxygen depleted. Dissolved oxygen (DO) was the key impacting factor on the community composition of total bacteria in June, whereas nutrients together with DO play the important roles in August for both total and denitrifying bacteria. The biotic impact was revealed further by strong correlations which showed between Cyanobacteria and heterotrophic bacteria in June from co-occurrence network analysis, which became weak in August when DO was depleted. This study discovered the variation in bacteria community in oxygen-depleted water with further effort to understand the potential role of denitrifying bacteria under oxygen depletion in Bohai Sea for the first time, which provided insights into the microbial response to the world-wide expanding oxygen depletion and their contributions in the ocean nitrogen cycling.
Collapse
Affiliation(s)
- Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Xiaoxiao Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yanying Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Guisheng Song
- School of Marine Science and Technology, Tianjin University, Tianjin, China
| | - Liang Zhao
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
30
|
Jiang Q, Jing H, Jiang Q, Zhang Y. Insights into carbon-fixation pathways through metagonomics in the sediments of deep-sea cold seeps. MARINE POLLUTION BULLETIN 2022; 176:113458. [PMID: 35217425 DOI: 10.1016/j.marpolbul.2022.113458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 05/10/2023]
Abstract
Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean's interior. At present, six pathways of autotrophic carbon fixation have been found: the Calvin cycle, the reductive Acetyl-CoA or Wood-Ljungdahl pathway (rAcCoA), the reductive tricarboxylic acid cycle (rTCA), the 3-hydroxypropionate bicycle (3HP), the 3-hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB), and the dicarboxylate/4-hydroxybutyrate cycle (DC/4HB). Although our knowledge about carbon fixation pathways in the ocean has increased significantly, carbon fixation pathways in the cold seeps are still unknown. In this study, we collected sediment samples from two cold seeps and one trough in the south China sea (SCS), and investigated with metagenomic and metagenome assembled genomes (MAGs). We found that six autotrophic carbon fixation pathways present in the cold seeps and trough with rTCA cycle was the most common pathway, whose genes were particularly high in the cold seeps and increased with sediment depths; the rAcCoA cycle mainly occurred in the cold seep regions, and the abundance of module genes increased with sediment depths. We also elucidated members of chemoautotrophic microorganisms involved in these six carbon-fixation pathways. The rAcCoA, rTCA and DC/4-HB cycles required significantly less energy probably play an important role in the deep-sea environments, especially in the cold seeps. This study provided metabolic insights into the carbon fixation pathways in the cold seeps, and laid the foundation for future detailed study on processes and rates of carbon fixation in the deep-sea ecosystems.
Collapse
Affiliation(s)
- QiuYun Jiang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China.
| | - QiuLong Jiang
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201400, China
| | - Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Bacteria and Archaea Synergistically Convert Glycine Betaine to Biogenic Methane in the Formosa Cold Seep of the South China Sea. mSystems 2021; 6:e0070321. [PMID: 34491083 PMCID: PMC8547467 DOI: 10.1128/msystems.00703-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cold seeps are globally widespread seafloor ecosystems that feature abundant methane production and flourishing chemotrophic benthic communities. Chemical evidence indicates that cold seep methane is largely biogenic; however, the primary methane-producing organisms and associated pathways involved in methanogenesis remain elusive. This work detected methane production when glycine betaine (GBT) or trimethylamine (TMA) was added to the sediment microcosms of the Formosa cold seep, South China Sea. The methane production was suppressed by antibiotic inhibition of bacteria, while GBT was accumulated. This suggests that the widely used osmoprotectant GBT could be converted to cold seep biogenic methane via the synergistic activity of bacteria and methanogenic archaea because archaea are not sensitive to antibiotics and no bacteria are known to produce ample methane (mM). 16S rRNA gene diversity analyses revealed that the predominant bacterial and archaeal genera in the GBT-amended methanogenic microcosms included Oceanirhabdus and Methanococcoides. Moreover, metagenomic analyses detected the presence of grdH and mtgB genes that are involved in GBT reduction and demethylation, respectively. Two novel species were obtained, including bacterium Oceanirhabdus seepicola, which reduces GBT to TMA, and a methanogenic archaeon, Methanococcoides seepicolus, which produces methane from TMA and GBT. The two strains reconstituted coculture efficiently converted GBT to methane at 18°C; however, at 4°C addition of dimethylglycine (DMG), the GBT demethylation product, was necessary. Therefore, this work demonstrated that GBT is the precursor not only of the biogenic methane but also of the cryoprotectant DMG to the microorganisms at the Formosa cold seep. IMPORTANCE Numerous cold seeps have been found in global continental margins where methane is enriched in pore waters that are forced upward from sediments. Therefore, high concerns have been focused on the methane-producing organisms and the metabolic pathways in these environments because methane is a potent greenhouse gas. In this study, GBT was identified as the main precursor for methane in the Formosa cold seep of the South China Sea. Further, synergism of bacteria and methanogenic archaea was identified in GBT conversion to methane via the GBT reduction pathway, while methanogen-mediated GBT demethylation to methane was also observed. In addition, GBT-demethylated product dimethyl glycine acted as a cryoprotectant that promoted the cold seep microorganisms at cold temperatures. GBT is an osmoprotectant that is widely used by marine organisms, and therefore, the GBT-derived methanogenic pathway reported here could be widely distributed among global cold seep environments.
Collapse
|
32
|
Guerrero-Cruz S, Vaksmaa A, Horn MA, Niemann H, Pijuan M, Ho A. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front Microbiol 2021; 12:678057. [PMID: 34054786 PMCID: PMC8163242 DOI: 10.3389/fmicb.2021.678057] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Methane is the final product of the anaerobic decomposition of organic matter. The conversion of organic matter to methane (methanogenesis) as a mechanism for energy conservation is exclusively attributed to the archaeal domain. Methane is oxidized by methanotrophic microorganisms using oxygen or alternative terminal electron acceptors. Aerobic methanotrophic bacteria belong to the phyla Proteobacteria and Verrucomicrobia, while anaerobic methane oxidation is also mediated by more recently discovered anaerobic methanotrophs with representatives in both the bacteria and the archaea domains. The anaerobic oxidation of methane is coupled to the reduction of nitrate, nitrite, iron, manganese, sulfate, and organic electron acceptors (e.g., humic substances) as terminal electron acceptors. This review highlights the relevance of methanotrophy in natural and anthropogenically influenced ecosystems, emphasizing the environmental conditions, distribution, function, co-existence, interactions, and the availability of electron acceptors that likely play a key role in regulating their function. A systematic overview of key aspects of ecology, physiology, metabolism, and genomics is crucial to understand the contribution of methanotrophs in the mitigation of methane efflux to the atmosphere. We give significance to the processes under microaerophilic and anaerobic conditions for both aerobic and anaerobic methane oxidizers. In the context of anthropogenically influenced ecosystems, we emphasize the current and potential future applications of methanotrophs from two different angles, namely methane mitigation in wastewater treatment through the application of anaerobic methanotrophs, and the biotechnological applications of aerobic methanotrophs in resource recovery from methane waste streams. Finally, we identify knowledge gaps that may lead to opportunities to harness further the biotechnological benefits of methanotrophs in methane mitigation and for the production of valuable bioproducts enabling a bio-based and circular economy.
Collapse
Affiliation(s)
- Simon Guerrero-Cruz
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Annika Vaksmaa
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, ’t Horntje, Netherlands
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, ’t Horntje, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
- Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Adrian Ho
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|