1
|
Ologundudu OT, Msagati TAM, Popoola OE, Edokpayi JN. Bisphenol A in Selected South African Water Sources: A Critical Review. ACS OMEGA 2025; 10:6279-6293. [PMID: 40028087 PMCID: PMC11866014 DOI: 10.1021/acsomega.4c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 03/05/2025]
Abstract
Bisphenol A (BPA) is a pollutant that has gained the attention of scientists globally because of its ubiquity in environmental matrices as well as its toxicity in the environment. It is listed as a priority pollutant in South Africa, capable of health risk impacts, which, according to the European Union, should not exceed 2.5 μg/L in water. In South Africa, historical data on its environmental occurrence is sparingly available, although research on BPA and other endocrine disruptors is currently gaining momentum. Surface, ground, and wastewater constitute the major proportion of the water sources that are prone to contamination by emerging pollutants such as BPA. In order to gain a holistic perspective of this chemical, a detailed review was carried out using over five hundred peer-reviewed articles that investigated the occurrence of BPA in South African aquatic systems. This study shows that Gauteng and Western Cape are the Provinces with the highest reported number of BPA occurrences in water. The data also shows that surface water constitutes 41% of all BPA articles while matrices like ponds and lagoons have no recorded studies. Its presence was attributed to anthropogenic activities such as the generation of domestic, agricultural, and industrial waste. Local application of removal techniques such as adsorption and photocatalysis on laboratory and field samples has shown good prospects (especially photocatalysis) in mitigating current challenges related to the occurrence of BPA. However, there is room for more innovative initiatives. Although there is a ban on the use of BPA for making baby bottles, additional regulations can be put in place regarding the use of BPA in making plastics or other packaging materials from which BPA can leach.
Collapse
Affiliation(s)
- Oladipo T. Ologundudu
- Department
of Geography and Environmental Sciences, University of Venda, Thohoyandou 0950, South Africa
| | - Titus A. M. Msagati
- College
of Science, Engineering and Technology, Institute for Nanotechnology
and Water Sustainability, Florida Science Campus, University of South Africa, 1709 Johannesburg, South Africa
| | - Oluseun E. Popoola
- Department
of Science Laboratory Technology (Chemistry Unit), Yaba College of Technology, P.M.B. 2011, Yaba, Lagos 101212, Nigeria
| | - Joshua N. Edokpayi
- Department
of Geography and Environmental Sciences, University of Venda, Thohoyandou 0950, South Africa
| |
Collapse
|
2
|
Acevedo JM, Kahn LG, Pierce KA, Carrasco A, Rosenberg MS, Trasande L. Temporal and geographic variability of bisphenol levels in humans: A systematic review and meta-analysis of international biomonitoring data. ENVIRONMENTAL RESEARCH 2025; 264:120341. [PMID: 39522874 PMCID: PMC11863187 DOI: 10.1016/j.envres.2024.120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Bisphenols are endocrine-disrupting chemicals known to contribute to chronic disease across the lifespan. With increased awareness of their health effects, changes in regulation and health behaviors have contributed to reductions in urinary bisphenol A (BPA) levels in the United States, Canada, and Europe. However, global trends in bisphenols outside these regions, especially bisphenol S (BPS) exposure, have been less studied. AIM We examine trends in urinary BPA and BPS concentration in non-occupationally exposed populations, where representative data at a country level is unavailable. METHODS We systematically reviewed studies published between 2000 and 2023 that included urinary bisphenol concentrations. We examined BPA and BPS concentration changes by sampling year, controlling for region, age, and pregnancy status, with and without a quadratic term and geometric mean, via mixed-effects meta-regression models with a random intercept and sensitivity analysis. We identified heterogeneity using Cochran's Q-statistic, I2 index, and funnel plots. RESULTS The final analytic sample consisted of 164 studies. We observed positive non-linear associations between time and BPA concentration internationally (beta: 0.02 ng/mL/year2, 95% CI: [0.01, 0.03]) and in Eastern and Pacific Asia (beta: 0.03 ng/mL/year2, 95% CI: [0.02, 0.05]). We also observed non-linear associations of time with both BPA and BPS concentrations in the Middle East and South Asia (beta: 0.13 ng/mL/year2, 95% CI: [0.01, 0.25] and beta: 0.29 ng/mL/year2, 95% CI: [-0.50, -0.08], respectively). In the sensitivity analyses excluding studies with geometric or arithmetic mean values, each displayed significant shifts from the main findings with some consistent outcomes occurring internationally and/or in specific regions. Heterogeneity was high across studies, suggesting possible bias in our estimations. CONCLUSIONS Our findings provide evidence for concern about increasing population exposure to BPA and BPS. Further studies estimating attributable disease burden and costs at regional and global levels are warranted to show these chemicals' impact on population health and economies.
Collapse
Affiliation(s)
- Jonathan M Acevedo
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristyn A Pierce
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna Carrasco
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Wagner School of Public Service, New York University, New York, NY, USA
| |
Collapse
|
3
|
Li J, Yu G, Wang L, Zhang W, Ke W, Li Y, Liu D, Xie K, Xu Y, Cha C, Guo G, Zhang J. Enriched environment rescues bisphenol A induced anxiety-like behavior and cognitive impairment by modulating synaptic plasticity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117427. [PMID: 39632333 DOI: 10.1016/j.ecoenv.2024.117427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Bisphenol A (BPA) is an exogenous endocrine disruptor in the environmental context, garnering attention for its harmful effects on the nervous system function and behavior. Research indicates that being exposed to BPA may result in anxiety-like behavior and impairment in cognitive function. Enriched environment (EE) is beneficial to improve cognitive behavior, but whether EE can improve BPA-induced behavioral impairment is still unclear. This research explored the possible pathways through which EE alleviates anxiety-like behavior and cognitive impairment in mice exposed to BPA. Except for the control mice, all mice received BPA treatment. After BPA treatment, some mice were housed normally, some housed with EE, and some were given NMDA and AMPA receptor agonists. Our research revealed that exposure to BPA results in anxiety-like behavior in open field and elevated-plus maze experiments. Additionally, spatial and learning memory cognitive impairments were observed in Y-maze and water maze tests. Furthermore, exposure to BPA led to a decrease in both the density and maturity of dendritic spines, as well as a reduction in neurite length and branch numbers. PSD-95, GluA1, and NR2A expression were down-regulated, and excitatory synaptic transmission was decreased. However, EE treatment increased dendrite spine density and maturity, up-regulated PSD-95, GluA1and NR2A expression, enhanced excitatory synaptic transmission, and relieved anxiety-like behavior and cognitive impairment in BPA mice. Furthermore, administering NMDA or AMPA receptor agonists to BPA mice led to an increase in dendritic spine density and maturity, a rise in mEPSC amplitude, as well as a restoration of anxiety-like behavior and cognitive deficits induced by BPA. The findings of this study provide proof that EE has a neuroprotective effect in reducing anxiety-related behavior and cognitive decline caused by BPA.
Collapse
Affiliation(s)
- Jiong Li
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Guangyin Yu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Laijian Wang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Wenjun Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Wenya Ke
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yifei Li
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Danlei Liu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Keman Xie
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yuanyuan Xu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Caihui Cha
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510120, China
| | - Guoqing Guo
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Jifeng Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
4
|
Waleed S, Haroon M, Ullah N, Tuzen M, Rind IK, Sarı A. A comprehensive review on advanced trends in treatment technologies for removal of Bisphenol A from aquatic media. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:83. [PMID: 39707071 DOI: 10.1007/s10661-024-13460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Toxic environmental pollutants are considered to be posed a major threat to human and aquatic systems. The fast advancement of the petrochemical and chemical industries has woken up rising worries concerning the pollution of water by contaminants including phenolic Bisphenol A (BPA), an endocrine-disrupting chemical (EDC). The intermediate BPA used in synthesis of certain plastics, polycarbonate polymers, polysulfone, and epoxy resins of various polyesters. Due to potential health risks, severe toxicity, and widespread distribution, there is an urgent need to develop efficient techniques for the removal of BPA. Therefore, advance management for the active elimination of BPA prior to its release into the water sources is of serious concern. Degradation, membrane separation, adsorption, and biological treatments have been extensively examined as they are easy to operate and cost-effective for effective BPA removal. In this review, we summarized the mechanism and performance for removal of BPA by several sorbents, including natural polymers, natural inorganic minerals, porous and carbon-based materials. Comparative results revealed that composite materials and modified adsorbents have good performances for removal of BPA. Furthermore, kinetic study investigating adsorption mechanisms was also discussed. Hazardous quantities of such types of chemicals in various samples have thus been the subject of increasing concern of investigation. This review clarified the extensive literature regarding the major health effects of BPA and its advanced treatment technologies including biological treatment by natural and synthetic materials have been discussed briefly. It delivers regulation for future development and research from the aspects of materials functionalization, development of methods, and mechanism investigation that directing to stimulate developments for removal of emerging contaminants.
Collapse
Affiliation(s)
- Sangeen Waleed
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
| | - Muhammad Haroon
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
| | - Naeem Ullah
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Imran Khan Rind
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Ahmet Sarı
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
- Interdisciplinary Research Center of Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
5
|
Sun M, Wang Z, Cao Z, Dong Z. Infants exposure to chemicals in diapers: A review and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176072. [PMID: 39255936 DOI: 10.1016/j.scitotenv.2024.176072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Diapers are a staple care product for infants, yet concerns persist regarding the potential risks posed by dermal exposure to chemicals through their usage. This review provides a comprehensive summary of reported chemicals, highlighting the frequent detection of polychlorodibenzo-p-dioxins (PCDDs), phthalates (PAEs), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), bisphenols (BPs), organotins, and heavy metals. Disposable diapers commonly exhibit higher concentrations of VOCs, PAEs, BPs, and heavy metals than other chemicals. Our estimation reveals formaldehyde as posing the highest dermal exposure dose, reaching up to 0.018 mg/kg bw/day. Conversely, perfluorooctanoic acid (PFOA) exhibits lower exposure, but its non-cancer hazard quotient (0.062) is the highest. In most scenarios, the risk of chemical exposure through diapers for infants is deemed acceptable, while the risk is higher under some extreme exposure scenarios. Using the cancer slope factor recently suggested by U.S. EPA, the cancer risk in diapers raised by PFOA is 5.5 × 10-5. It should be noted that our estimation is approximately 1000-10,000 folds lower than some previous estimations. The high uncertainties associated with exposure and risk estimations are primarily raised by unclear parameters related to chemical migration coefficients, absorption factors, concentrations, and toxicity data for skin exposure, which requires research attention in future. Besides that, future research endeavors should prioritize the identification of potential toxic chemicals and the development of hygiene guidelines and standards.
Collapse
Affiliation(s)
- Mengxin Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Zhexi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Zhaomin Dong
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; School of Materials Science and Engineering, Beihang University, Beijing, China; School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
7
|
Ucheana IA, Omeka ME, Ezugwu AL, Agbasi JC, Egbueri JC, Abugu HO, Aralu CC. A targeted review on occurrence, remediation, and risk assessments of bisphenol A in Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1193. [PMID: 39532752 DOI: 10.1007/s10661-024-13337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) is a vital raw material used to manufacture various household and commercial goods. However, BPA is a contaminant of emerging concern (CEC) and an endocrine-disrupting chemical (EDC) capable of migrating and bio-accumulating in environmental and biological compartments. At threshold levels, they become toxic causing adverse health and environmental issues. BPA's occurrence in food, food contact materials (FCMs), beverages, water, cosmetics, consumer goods, soil, sediments, and human/biological fluids across Africa was outlined. Unlike most reviews, it further collated data on BPA remediation techniques, including the human and ecological risk assessment studies conducted across Africa. A systematic scrutiny of the major indexing databases was employed extracting relevant data for this study. Results reveal that only 10 out of 54 countries have researched BPA in Africa. BPA levels in water were the most investigated, whereas levels in cosmetics and consumer goods were the least studied. Maximum BPA concentrations found in Africa were 3,590,000 ng/g (cosmetic and consumer goods), 154,820,000 ng/g (soils), 189 ng/mL (water), 1139 ng/g (food), and 208.55 ng/mL (biological fluids). The optimum percentage removal/degradation of BPA was within 70-100%. The potential health and ecological risk levels were assessed by comparing them with recommended limits and were found to fall within safe/low risks to unsafe/high risks. In conclusion, this study revealed that there is still little research on BPA in Africa. Levels detected in some matrices call for increased research, stricter health and environmental regulations, and surveillance.
Collapse
Affiliation(s)
- Ifeanyi Adolphus Ucheana
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Central Science Laboratory, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Michael Ekuru Omeka
- Department of Geology, University of Calabar, Etagbor, 540271, Cross River State, Nigeria
| | - Arinze Longinus Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Johnson C Agbasi
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Anambra State, Nigeria
| | - Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Anambra State, Nigeria
| | - Hillary Onyeka Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Chiedozie Chukwuemeka Aralu
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, 420007, Anambra State, Nigeria
| |
Collapse
|
8
|
Giri S, Debroy A, Nag A, Mukherjee A. Evaluating the role of soil EPS in modifying the toxicity potential of the mixture of polystyrene nanoplastics and xenoestrogen, Bisphenol A (BPA) in Allium cepa L. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135252. [PMID: 39047567 DOI: 10.1016/j.jhazmat.2024.135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The coexistence of emerging pollutants like nanoplastics and xenoestrogen chemicals such as Bisphenol A (BPA) raises significant environmental concerns. While the individual impacts of BPA and polystyrene nanoplastics (PSNPs) on plants have been studied, their combined effects are not well understood. This study examines the interactions between eco-corona formation, physicochemical properties, and cyto-genotoxic effects of PSNPs and BPA on onion (Allium cepa) root tip cells. Eco-corona formation was induced by exposing BPA-PSNP mixtures to soil extracellular polymeric substances (EPS), and changes were analyzed using 3D-EEM, TEM, FTIR, hydrodynamic diameter, and contact angle measurements. Onion roots were treated with BPA (2.5, 5, and 10 mgL-1) combined with plain, aminated, and carboxylated PSNPs (100 mgL-1), with and without EPS interaction. Toxicity was assessed via cell viability, oxidative stress markers (superoxide radical, total ROS, hydroxyl radical), lipid peroxidation, SOD and catalase activity, mitotic index, and chromosomal abnormalities. BPA alone increased cytotoxic and genotoxic parameters in a dose-dependent manner. BPA with aminated PSNPs exhibited the highest toxicity among the pristine mixtures, revealing increased chromosomal abnormalities, oxidative stress, and cell mortality with rising BPA concentrations. In-silico experiments demonstrated the relationship between superoxide dismutase (SOD), catalase enzymes, PSNPs, BPA, and their mixtures. EPS adsorption notably reduced cyto-genotoxic effects, lipid peroxidation, and ROS levels, mitigating the toxicity of BPA-PSNP mixtures.
Collapse
Affiliation(s)
- Sayani Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anish Nag
- Department of Life Sciences, Bangalore Central campus, CHRIST (Deemed to be University), Bangalore, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
9
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
10
|
Santos CRD, Arcanjo GS, Araújo AAD, Santos LVDS, Amaral MCS. Occurrence, environmental risks, and removal of bisphenol A and its analogues by membrane bioreactors. CHEMICAL ENGINEERING JOURNAL 2024; 494:153278. [DOI: 10.1016/j.cej.2024.153278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Zhang Y, Xu H, Jia Y, Yang X, Gao M. Snowflake Cu 2S@ZIF-67: A novel heterostructure substrate for enhanced adsorption and sensitive detection in BPA. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134524. [PMID: 38714058 DOI: 10.1016/j.jhazmat.2024.134524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Developing semiconductor substrates with superior stability and sensitivity is challenging in surface-enhanced Raman scattering (SERS) research. Here, a snowflake Cu2S@ZIF-67 heterostructure was fabricated using a straightforward method, exhibiting a notable enhancement factor of 9.0 × 109 and a limit of detection (LOD) of 10-14 M for methylene blue (MB). In addition, the Cu2S@ZIF-67 heterostructure substrate demonstrates outstanding homogeneity (relative standard deviation (RSD) = 9.2%) and stability (120 days). Employing Cu2S generates highly sensitive hotspots via an electromagnetic (EM) mechanism, and the growth of ZIF-67 on its surface augments the adsorption capacity and charge transfer capability (chemical mechanism, CM), thereby enhancing the SERS detection sensitivity. Furthermore, the Cu2S@ZIF-67 heterostructure, which was used as a SERS substrate, facilitated the detection of bisphenol A (BPA) with an LOD of 10-11 M. The Cu2S@ZIF-67 heterostructure substrate has excellent selectivity and anti-interference, which is very suitable for BPA detection in complex environment applications. The accuracy of the Cu2S@ZIF-67 heterostructure as a SERS substrate for detecting BPA in real water samples (water bottles, tap water, and pure milk) was confirmed by comparison with high-performance liquid chromatography (HPLC). These results demonstrate that through the rational design of heterostructures can achieve the quantitative and accurate detection of hazardous substances in food and the environment can be achieved.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Hongquan Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Yuehan Jia
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Xiaotian Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China.
| |
Collapse
|
12
|
Chen Z, Li X, Gao J, Liu Y, Zhang N, Guo Y, Wang Z, Dong Z. Reproductive toxic effects of chronic exposure to bisphenol A and its analogues in marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106927. [PMID: 38643640 DOI: 10.1016/j.aquatox.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17βhsd, 3βhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China.
| |
Collapse
|
13
|
Chen Z, Li X, Gao J, Liu Y, Zhang N, Guo Y, Wang Z, Dong Z. Effects of salinity on behavior and reproductive toxicity of BPA in adult marine medaka. CHEMOSPHERE 2024; 357:142103. [PMID: 38653400 DOI: 10.1016/j.chemosphere.2024.142103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Salinity is an important environmental factor influencing the toxicity of chemicals. Bisphenol A (BPA) is an environmental endocrine disruptor with adverse effects on aquatic organisms, such as fish. However, the influence of salinity on the biotoxicity of BPA and the underlying mechanism are unclear. In this study, we exposed marine medaka (Oryzias melastigma) to BPA at different salinities (0 psμ, 15 psμ, and 30 psμ) for 70days to investigate the toxic effects. At 0 psμ salinity, BPA had an inhibitory effect on the swimming behavior of female medaka. At 15 psμ salinity, exposure to BPA resulted in necrotic cells in the ovaries but not on the spermatozoa. In addition, BPA exposure changed the transcript levels of genes related to the nervous system (gap43, elavl3, gfap, mbpa, and α-tubulin) and the hypothalamic-pituitary-gonadal (HPG) axis (fshr, lhr, star, arα, cyp11a, cyp17a1, cyp19a, and erα); the expression changes differed among salinity levels. These results suggest that salinity influences the adverse effects of BPA on the nervous system and reproductive system of medaka. These results emphasize the importance of considering the impact of environmental factors when carrying out ecological risk assessment of pollutants.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
14
|
Wang S, Dong Y, Zhai L, Bai Y, Yang Y, Jia L. Decreased Treg cells induced by bisphenol A is associated with up-regulation of PI3K/Akt/mTOR signaling pathway and Foxp3 DNA methylation in spleen of adolescent mice. CHEMOSPHERE 2024; 357:141957. [PMID: 38641296 DOI: 10.1016/j.chemosphere.2024.141957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The current study aimed to explore whether bisphenol A (BPA) exposure aggravated the decrease in Tregs induced by ovalbumin (OVA) in adolescent female mouse models of asthma, and whether the process was associated with mTOR-mediated signaling pathways and DNA methylation levels. A total of 40 female C57BL/6 mice at the age of four weeks were used and divided into five groups after 1 week of domestication. Each group consisted of eight mice: the control group, OVA group, OVA + BPA (0.1 μg mL-1) group, OVA + BPA (0.2 μg mL-1) group, and OVA + BPA (0.4 μg mL-1) group. Results revealed that Foxp3 protein levels decreased in the spleens of mice exposed to BPA compared to those in the OVA group. After an elevation in BPA dose, the mRNAs of methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) were gradually upregulated. The mechanism was related to the activity of TLR4/NF-κB and PI3K/Akt/mTOR signaling pathways and the enhancement of Foxp3 DNA methylation. Our results, collectively, provided a new view for studying the mechanisms underlying BPA exposure-induced immune dysfunction. Investigation of the regulatory mechanisms of DNA methylation in the abnormal Th immune response caused by BPA exposure could help reveal the causes and molecular mechanisms underlying the high incidence of allergic diseases in children in recent years.
Collapse
Affiliation(s)
- Simeng Wang
- Institute for International Health Professions Education and Research, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110022, PR China.
| | - Lingling Zhai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yinglong Bai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yilong Yang
- Department of Health Policy and Management, School of Public Health, Hangzhou Normal University, NO. 2318 Yuhangtang Road, Yuhang District, Hangzhou, Zhejiang, 311121, PR China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
15
|
Fu Q, Li C, Liu Z, Ma X, Xu Y, Wang Y, Liu X, Wang D. The Impact of Bisphenol A on the Anaerobic Sulfur Transformation: Promoting Sulfur Flow and Toxic H 2S Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8043-8052. [PMID: 38648493 DOI: 10.1021/acs.est.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.
Collapse
Affiliation(s)
- Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chenxi Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zirui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
16
|
Chi ZH, Liu L, Zheng J, Tian L, Chevrier J, Bornman R, Obida M, Goodyer CG, Hales BF, Bayen S. Biomonitoring of bisphenol A (BPA) and bisphenol analogues in human milk from South Africa and Canada using a modified QuEChERS extraction method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123730. [PMID: 38458524 DOI: 10.1016/j.envpol.2024.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
A sensitive modified QuEChERS extraction method was developed to assess the levels of free and conjugated bisphenols (BPs) in human milk collected between 2018 and 2019 from two regions of South Africa (the Limpopo Province Vhembe district, n = 194; Pretoria, n = 193) and Canada (Montreal, n = 207). Total BPA (free and conjugated) and BPS were the predominant bisphenols detected in samples from Vhembe and Pretoria, whereas total BPS was the predominant bisphenol detected in Montreal samples. The levels of total BPA in samples from Vhembe and Pretoria ranged between < MDL-18.61 and
Collapse
Affiliation(s)
- Zhi Hao Chi
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Jingyun Zheng
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | | | | | | | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
He X, Xiang Y, Xu R, Gao H, Guo Z, Sun W. Bisphenol A affects microbial interactions and metabolic responses in sludge anaerobic digestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19635-19648. [PMID: 38363507 DOI: 10.1007/s11356-024-32422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The widespread use of bisphenol A (BPA) has resulted in the emergence of new pollutants in various environments, particularly concentrated in sewage sludge. This study investigated the effects of BPA on sludge anaerobic digestion, focusing specifically on the interaction of microbial communities and their metabolic responses. While the influence of BPA on methane accumulation is not significant, BPA still enhanced the conversion of soluble COD, protein, and polysaccharides. BPA also positively influenced the hydrolysis-acidogenesis process, leading to 17% higher concentrations of volatile fatty acids (VFAs). Lower BPA levels (0.2-0.5 mg/kg dw) led to decreased hydrolysis and acidogenesis gene abundance, indicating metabolic inhibition; conversely, higher concentrations (1-5 mg/kg dw) increased gene abundance, signifying metabolic enhancement. Diverse methane metabolism was observed and exhibited alterations under BPA exposure. The presence of BPA impacted both the diversity and composition of microbial populations. Bacteroidetes, Proteobacteria, Firmicutes, and Chloroflexi dominated in BPA-treated groups and varied in abundance among different treatments. Changes of specific genera Sedimentibacter, Fervikobacterium, Blvii28, and Coprothermobacter in response to BPA, affecting hydrolysis and acetogenesis. Archaeal diversity declined while the hydrogenotrophic methanogen Methanospirillum thrived under BPA exposure. BPA exposure enabled microorganisms to form structured community interaction networks and boost their metabolic activities during anaerobic digestion. The study also observed the enrichment of BPA biodegradation pathways at high BPA concentrations, which could interact and overlap to ensure efficient BPA degradation. The study provides insights into the digestion performance and interactions of microbial communities to BPA stress and sheds light on the potential effect of BPA during anaerobic digestion.
Collapse
Affiliation(s)
- Xiao He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, People's Republic of China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China.
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, People's Republic of China
| |
Collapse
|
18
|
Paydar S, Feizi F, Shamsipur M, Barati A, Mousavi F, Matt D. A novel ratiometric fluorescence probe based on calix[4]arene functionalized polymer dots for bisphenol A detection in real water samples. Talanta 2024; 269:125450. [PMID: 38042141 DOI: 10.1016/j.talanta.2023.125450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
Bisphenol A (BPA) is one of key raw materials used in the production of epoxy resins and plastics, which has toxicological effects on humans by disrupting cell functions through a variety of cell signaling pathways. Therefore, it is of great significance to develop a simple, rapid, and accurate BPA detection method in real water samples. In this study, a ratiometric fluorescence method based on yellow-emitting surface-functionalized polymer dots (PFBT@L Pdots) and blue-emitting carbon dots (Cdots) was described for the detection of BPA. Pdots as the detecting part were synthesized by using highly fluorescent hydrophobic Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT) polymer and (R)-5,11,17,23-Tetra-tert-butyl-25,27-bis[(diphenylphosphinoyl)methoxy]-26-(3-oxabutyloxy)-28-[(1-phenylethyl)- carbamoylmethoxy]calix [4]arene (L) functionalizing ligand, and Cdots as internal reference were prepared by hydrothermal treatment of citric acid and urea. In the presence of BPA, chemical binding of the phosphorus atoms of nearby PFBT@L Pdots with BPA hydroxyl functional groups led to the aggregation of the PFBT@L Pdots aggregation and quenching their yellow emission, but the blue emission of Cdots, on the other hand, remained stable. The proposed PFBT@L Pdots probe was successfully applied for the detection of BPA in real water samples, and the results were in good agreement with those obtained by HPLC-FLD. To the best of our knowledge, this is the first report that the calixarene has been utilized to modify Pdots.
Collapse
Affiliation(s)
- Sardar Paydar
- Department of Chemistry, Razi University, Kermanshah, Iran
| | - Foroozan Feizi
- Department of Chemistry, Razi University, Kermanshah, Iran.
| | | | - Ali Barati
- Department of Chemistry, Razi University, Kermanshah, Iran
| | | | - Dominique Matt
- Molecular Inorganic Chemistry Laboratory, Louis Pasteur University, France
| |
Collapse
|
19
|
Sarkar A, Roy S. Metabolome profile variation in Azolla filiculoides exposed to Bisphenol A assists in the identification of stress-responsive metabolites. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106792. [PMID: 38086201 DOI: 10.1016/j.aquatox.2023.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
This study attempted to explore the metabolome profile of Azolla filiculoides subjected to two different concentrations of BPA (1 and 30 mg L-1) in congruence with two different durations (3 and 9 days) of treatment. Bisphenol A (BPA) is a ubiquitously occurring environmental pollutant that imparts acute toxicity in aquatic plants. Therefore, studying the variations in the fern metabolome profile and identifying stress-responsive metabolites can help develop criteria for assessing the aquatic ecosystem. In recent times, metabolomics has drawn attention for its ability to detect biochemical processes and help link plant responses with environmental stresses. However, the studies concerning the metabolome profile of A. filiculoides exposed to environmental contaminants are limited. In the present study, the untargeted metabolomics study allowed the detection of a large array of metabolites, with 767 shared metabolites representing 41 crucial pathways. Exposure to 30 mg L-1 BPA seemingly disrupted the primary metabolism of the fern and induced a shift toward defense-related pathways. Additionally, BPA stress triggered the expression of metabolites like 3,4-dihydroxyphenylglycol, perillic acid, and perillaldehyde in BPA_L3 (1 mg L-1 for 3 days) and BPA_L9 (1 mg L-1 for 9 days) samples indicating protective mechanism of the plants. Conversely, the BPA_H3 (30 mg L-1 for 3 days) and BPA_H9 (30 mg L-1 for 9 days) samples expressed a distinct set of markers like luteolin, 3-hydroxyanthranilic acid, cinnamaldehyde, and l-DOPA indicating the onset of senescence and apoptosis related pathways can help in the health assessment of freshwater ecosystems and also appraisal of ecotoxicological risks imposed by BPA.
Collapse
Affiliation(s)
- Ashis Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| |
Collapse
|
20
|
Abdelmoneim MS, Hafez EE, Dawood MFA, Hammad SF, Ghazy MA. Toxicity of bisphenol A and p-nitrophenol on tomato plants: Morpho-physiological, ionomic profile, and antioxidants/defense-related gene expression studies. Biomol Concepts 2024; 15:bmc-2022-0049. [PMID: 38924751 DOI: 10.1515/bmc-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Bisphenol A (BPA) and p-nitrophenol (PNP) are emerging contaminants of soils due to their wide presence in agricultural and industrial products. Thus, the present study aimed to integrate morpho-physiological, ionic homeostasis, and defense- and antioxidant-related genes in the response of tomato plants to BPA or PNP stress, an area of research that has been scarcely studied. In this work, increasing the levels of BPA and PNP in the soil intensified their drastic effects on the biomass and photosynthetic pigments of tomato plants. Moreover, BPA and PNP induced osmotic stress on tomato plants by reducing soluble sugars and soluble proteins relative to control. The soil contamination with BPA and PNP treatments caused a decline in the levels of macro- and micro-elements in the foliar tissues of tomatoes while simultaneously increasing the contents of non-essential micronutrients. The Fourier transform infrared analysis of the active components in tomato leaves revealed that BPA influenced the presence of certain functional groups, resulting in the absence of some functional groups, while on PNP treatment, there was a shift observed in certain functional groups compared to the control. At the molecular level, BPA and PNP induced an increase in the gene expression of polyphenol oxidase and peroxidase, with the exception of POD gene expression under BPA stress. The expression of the thaumatin-like protein gene increased at the highest level of PNP and a moderate level of BPA without any significant effect of both pollutants on the expression of the tubulin (TUB) gene. The comprehensive analysis of biochemical responses in tomato plants subjected to BPA and PNP stress illustrates valuable insights into the mechanisms underlying tolerance to these pollutants.
Collapse
Affiliation(s)
- Mahmoud S Abdelmoneim
- Biotechnology program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71515, Assiut, Egypt
| | - Elsayed E Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), 21934, New Borg El-Arab city, Alexandrina, Egypt
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71515, Assiut, Egypt
| | - Sherif F Hammad
- Pharm D program, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Ain Helwan, Cairo, Egypt
| | - Mohamed A Ghazy
- Biotechnology program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|
21
|
Liu SG, Wu T, Liang Z, Zhao Q, Gao W, Shi X. A fluorescent method for bisphenol A detection based on enzymatic oxidation-mediated emission quenching of silicon nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123123. [PMID: 37441956 DOI: 10.1016/j.saa.2023.123123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
As a common raw material of industrial products, bisphenol A (BPA) is widely used in the production of food contact materials, and there is a high risk of exposure in food. However, BPA is a well-known endocrine disruptor and poses a serious threat to human health. Herein, a fluorescent sensing platform of BPA based on enzymatic oxidation-mediated fluorescence quenching of silicon nanoparticles (SiNPs) is established and used to the detection of BPA in food species. The SiNPs are prepared with a facile one-step synthesis and emit bright green fluorescence. BPA can be oxidized by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) to form a product which can quench the fluorescence of SiNPs through electron transfer. There is a good linear relationship between the fluorescence intensity and BPA concentration in the range of 1-100 μM. Therefore, a fluorometry of BPA is established with a low limit of detection (LOD) of 0.69 μM. This method has been applied to the determination of BPA in mineral drinking water, orange juice, and milk with satisfactory results. The fluorescent sensor of BPA based on SiNPs has favorable application foreground in the field of food safety analysis.
Collapse
Affiliation(s)
- Shi Gang Liu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Tiankang Wu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhixin Liang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qian Zhao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Wenli Gao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
22
|
Mishra A, Goel D, Shankar S. Bisphenol A contamination in aquatic environments: a review of sources, environmental concerns, and microbial remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1352. [PMID: 37861868 DOI: 10.1007/s10661-023-11977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
The production of polycarbonate, a high-performance transparent plastic, employs bisphenol A, which is a prominent endocrine-disrupting compound. Polycarbonates are frequently used in the manufacturing of food, bottles, storage containers for newborns, and beverage packaging materials. Global production of BPA in 2022 was estimated to be in the region of 10 million tonnes. About 65-70% of all bisphenol A is used to make polycarbonate plastics. Bisphenol A leaches from improperly disposed plastic items and enters the environment through wastewater from plastic-producing industries, contaminating, sediments, surface water, and ground water. The concentration BPA in industrial and domestic wastewater ranges from 16 to 1465 ng/L while in surface water it has been detected 170-3113 ng/L. Wastewater treatment can be highly effective at removing BPA, giving reductions of 91-98%. Regardless, the remaining 2-9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the USA and Europe. The health effects of BPA have been the subject of prolonged public and scientific debate, with PubMed listing more than 17,000 scientific papers as of 2023. Bisphenol A poses environmental and health hazards in aquatic systems, affecting ecosystems and human health. While several studies have revealed its presence in aqueous streams, environmentally sound technologies should be explored for its removal from the contaminated environment. Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical. Present review article encompasses the updated information on sources, environmental concerns, and sustainable remediation techniques for bisphenol A removal from aquatic ecosystems, discussing gaps, constraints, and future research requirements.
Collapse
Affiliation(s)
- Anuradha Mishra
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Divya Goel
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Shiv Shankar
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India.
| |
Collapse
|
23
|
Zhang J, Zhu Z, Huang J, Yang H, Wang Q, Zhang Y. Analyzing the impact and mechanism of bisphenol A on testicular lipid metabolism in Gobiocypris rarus through integrated lipidomics and transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115498. [PMID: 37742580 DOI: 10.1016/j.ecoenv.2023.115498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Bisphenol A (BPA) is one of the most common environmental endocrine chemicals, known for its estrogenic effects that can interfere with male spermatogenesis. Lipids play crucial roles in sperm production, capacitation, and motility as important components of the sperm plasma membrane. However, limited research has explored whether BPA affects lipid metabolism in the testes of male fish and subsequently impacts spermatogenesis. In this study, we employed Gobiocypris rarus rare minnow as a research model and exposed them to environmentally relevant concentrations of BPA (15 μg/L) for 5 weeks. We assessed sperm morphology and function and analyzed changes in testicular lipid composition and transcriptomics. The results demonstrated a significant increase in the sperm head membrane damage rate, along with reduced sperm motility and fertilization ability due to BPA exposure. Lipidomics analysis revealed that BPA increased the content of 11 lipids while decreasing the content of 6 lipids in the testes, particularly within glycerophospholipids, glycerolipids, and sphingolipid subclasses. Transcriptomics results indicated significant up-regulation in pathways such as cholesterol metabolism, peroxisome proliferator-activated receptor signaling, and fat digestion and absorption, with significant alterations in key genes related to lipid metabolism, including apolipoprotein A-I, apolipoprotein C-I, and translocator protein. These findings suggest that BPA exposure can induce testicular lipid metabolism disruption in rare minnows, potentially resulting in abnormalities in rare minnow spermatogenesis.
Collapse
Affiliation(s)
- Jianlu Zhang
- Shaanxi key laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China; College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiqin Huang
- Shaanxi key laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qijun Wang
- Shaanxi key laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China.
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
24
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Bisphenols-A Threat to the Natural Environment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6500. [PMID: 37834637 PMCID: PMC10573430 DOI: 10.3390/ma16196500] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Negative public sentiment built up around bisphenol A (BPA) follows growing awareness of the frequency of this chemical compound in the environment. The increase in air, water, and soil contamination by BPA has also generated the need to replace it with less toxic analogs, such as Bisphenol F (BPF) and Bisphenol S (BPS). However, due to the structural similarity of BPF and BPS to BPA, questions arise about the safety of their usage. The toxicity of BPA, BPF, and BPS towards humans and animals has been fairly well understood. The biodegradability potential of microorganisms towards each of these bisphenols is also widely recognized. However, the scale of their inhibitory pressure on soil microbiomes and soil enzyme activity has not been estimated. These parameters are extremely important in determining soil health, which in turn also influences plant growth and development. Therefore, in this manuscript, knowledge has been expanded and systematized regarding the differences in toxicity between BPA and its two analogs. In the context of the synthetic characterization of the effects of bisphenol permeation into the environment, the toxic impact of BPA, BPF, and BPS on the microbiological and biochemical parameters of soils was traced. The response of cultivated plants to their influence was also analyzed.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Agata Borowik
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
25
|
Jenzri M, Gharred C, Bouraoui Z, Guerbej H, Jebali J, Gharred T. Assessment of single and combined effects of bisphenol-A and its analogue bisphenol-S on biochemical and histopathological responses of sea cucumber Holothuria poli. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106032. [PMID: 37267666 DOI: 10.1016/j.marenvres.2023.106032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Bisphenols (BPs) are among emerging pollutants that have been frequently detected in different compartments of marine ecosystems and elicited great concern due to their potential toxicity to marine organisms. This work aimed to investigate the toxicity of bisphenol A (BPA) and bisphenol S (BPS) on oxidative stress markers, neurotoxicity and histopathological alterations in sea cucumbers (Holothuria poli). The results showed that exposure to 200 μg/L of BPA and BPS produced oxidative stress, neurotoxicity in the digestive tract and respiratory tree, and several types of histopathological lesions in tissues of the respiratory tree of the sea cucumber, posing a health hazard to this aquatic organism. In addition, BPA has greater effects than BPS on the generation of oxidative stress marked by the inductions of catalase (CAT), glutathione S-transferase (GST) and malondialdehyde (MDA) levels and neurotoxicity shown by the decrease in acetylcholinesterase activity (AChE). The respiratory tree of sea cucumbers might be an appropriate tissue for assessing CAT, MDA and AChE activity levels, which are reliable biomarkers that may be useful in marine biomonitoring studies. Evaluation of histopathological lesions of the respiratory tree suggests that BPA and BPS and their mixture cause various tissue alterations that may be associated with oxidative stress damage and neurotoxicity. In conclusion, this study showed that oxidative stress (CAT and MDA) and neurotoxicity (AChE) markers, as well as respiratory tree lesions, are sensitive biomarkers for the assessment of BPA and BPS toxicity in sea cucumbers.
Collapse
Affiliation(s)
- Maroua Jenzri
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000 Monastir, Tunisia.
| | - Chayma Gharred
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000 Monastir, Tunisia
| | - Zied Bouraoui
- Laboratory of Blue Biotechnology and Aquatic Bioproducts (B3Aqua), National Institute of Marine Sciences and Technology, BP 59, 5000, Monastir, Tunisia
| | - Hamadi Guerbej
- Laboratory of Blue Biotechnology and Aquatic Bioproducts (B3Aqua), National Institute of Marine Sciences and Technology, BP 59, 5000, Monastir, Tunisia
| | - Jamel Jebali
- Research Laboratory of Genetics, Biodiversity and Valorization of Bioresources (LR11ES41), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000, Monastir, Tunisia
| | - Tahar Gharred
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000 Monastir, Tunisia
| |
Collapse
|
26
|
Kubota A, Hirano M, Yoshinouchi Y, Chen X, Nakamura M, Wakayama Y, Lee JS, Nakata H, Iwata H, Kawai YK. In vivo and in silico assessments of estrogenic potencies of bisphenol A and its analogs in zebrafish (Danio rerio): Validity of in silico approaches to predict in vivo effects. Comp Biochem Physiol C Toxicol Pharmacol 2023; 269:109619. [PMID: 37003593 DOI: 10.1016/j.cbpc.2023.109619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
This study assessed the estrogen-like potencies of bisphenol A (BPA) and its analogs (BPs) using in vivo and in silico approaches in zebrafish. Zebrafish embryos were exposed to 16 BPs, most of which concentration-dependently induced cytochrome P450 19A1b (CYP19A1b) expression. BPs-induced CYP19A1b expression was suppressed by fulvestrant, a nonselective high affinity antagonist for estrogen receptor (Esr) subtypes. For BPs that concentration-dependently induced CYP19A1b expression, we estimated their 50 % effective concentration (EC50) and relative potencies (REPs) with respect to the potency of BPA for inducing CYP19A1b expression. BP C2, Bis-MP, and BPAF showed lower EC50 than BPA, BPE, and BPF, while BPZ and BPB showed moderate EC50. The REP order of the BPs was BP C2 (26) > Bis-MP (24) > BPAF (21) > BPZ (5.8) > BPB (2.7) > BPE (1.5) > BPF (0.63) > 2,4'-BPF (0.22), indicating that some BPs showed greater estrogenic potencies than BPA in our system. We also constructed in silico homology models of ligand binding domains for zebrafish Esr subtypes, including Esr1, Esr2a, and Esr2b. Molecular docking simulations of ligands with the Esr subtypes revealed the interaction energies of some BPs were lower than that of BPA. The interaction energies showed significant positive correlations with their EC50 values for inducing CYP19A1b expression in vivo. This study showed that some BPA analogs have greater estrogenic potencies than BPA and that in silico simulations of interactions between ligands and Esr subtypes may help predict in vivo estrogenic potencies of untested chemicals.
Collapse
Affiliation(s)
- Akira Kubota
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan.
| | - Masashi Hirano
- Department of Food and Life Sciences, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-city, Kumamoto 862-8652, Japan
| | - Yuka Yoshinouchi
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Xing Chen
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| | - Michiko Nakamura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| | - Yumi Wakayama
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| | - Jae Seung Lee
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| | - Haruhiko Nakata
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yusuke K Kawai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
27
|
Vujčić Bok V, Gerić M, Gajski G, Gagić S, Domijan AM. Phytotoxicity of Bisphenol A to Allium cepa Root Cells Is Mediated through Growth Hormone Gibberellic Acid and Reactive Oxygen Species. Molecules 2023; 28:molecules28052046. [PMID: 36903292 PMCID: PMC10004651 DOI: 10.3390/molecules28052046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
The aim of this study was to test the phytotoxicity and mode of action of bisphenol A (BPA) on Allium cepa using a multibiomarker approach. A. cepa roots were exposed to BPA in concentration range 0-50 mg L-1 for 3 days. BPA even in the lowest applied concentration (1 mg L-1) reduced root length, root fresh weight, and mitotic index. Additionally, the lowest BPA concentration (1 mg L-1) decreased the level of gibberellic acid (GA3) in root cells. BPA at concentration 5 mg L-1 increased production of reactive oxygen species (ROS) that was followed by increase in oxidative damage to cells' lipids and proteins and activity of enzyme superoxide dismutase. BPA in higher concentrations (25 and 50 mg L-1) induced genome damage detected as an increase in micronucleus (MNs) and nuclear buds (NBUDs). BPA at >25 mg L-1 induced synthesis of phytochemicals. Results of this study using multibiomarker approach indicate that BPA is phytotoxic to A. cepa roots and has shown genotoxic potential to plants, thus its presence in the environment should be monitored.
Collapse
Affiliation(s)
- Valerija Vujčić Bok
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Kovačićeva 1, 10000 Zagreb, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute form Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute form Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia
| | - Sanja Gagić
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Kovačićeva 1, 10000 Zagreb, Croatia
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Kovačićeva 1, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1481-8288
| |
Collapse
|
28
|
Liu J, Kong W, Liu Y, Ma Q, Shao Q, Zeng L, Chao Y, Song X, Zhang J. Stage-Related Neurotoxicity of BPA in the Development of Zebrafish Embryos. TOXICS 2023; 11:toxics11020177. [PMID: 36851052 PMCID: PMC9963847 DOI: 10.3390/toxics11020177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is one of the most widely produced chemicals in the world used in the production of epoxy resins and polycarbonate plastics. BPA is easily migrated from the outer packaging to the contents. Due to the lipophilic property, BPA is easily accumulated in organisms. Perinatal low-dose BPA exposure alters brain neural development in later generations. In this study, after BPA treatment, the spontaneous movement of zebrafish larvae from the cleavage period to the segmentation period (1-24 hpf) was significantly decreased, with speed decreasing by 18.97% and distance decreasing between 18.4 and 29.7% compared to controls. Transcriptomics analysis showed that 131 genes were significantly differentially expressed in the exposed group during the 1-24 hpf period, among which 39 genes were significantly upregulated and 92 genes were significantly downregulated. The GO enrichment analysis, gene function analysis and real-time quantitative PCR of differentially expressed genes showed that the mRNA level of guanine deaminase (cypin) decreased significantly in the 1-24 hpf period. Moreover, during the 1-24 hpf period, BPA exposure reduced guanine deaminase activity. Therefore, we confirmed that cypin is a key sensitive gene for BPA during this period. Finally, the cypin mRNA microinjection verified that the cypin level of zebrafish larvae was restored, leading to the restoration of the locomotor activity. Taken together, the current results show that the sensitive period of BPA to zebrafish embryos is from the cleavage period to the segmentation period (1-24 hpf), and cypin is a potential target for BPA-induced neurodevelopmental toxicity. This study provides a potential sensitive period and a potential target for the deep understanding of neurodevelopmental toxicity mechanisms caused by BPA.
Collapse
|
29
|
Han M, Zhang Z, Liu S, Sheng Y, Waigi MG, Hu X, Qin C, Ling W. Genotoxicity of organic contaminants in the soil: A review based on bibliometric analysis and methodological progress. CHEMOSPHERE 2023; 313:137318. [PMID: 36410525 DOI: 10.1016/j.chemosphere.2022.137318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Organic contaminants (OCs) are ubiquitous in the environment, posing severe threats to human health and ecological balance. In particular, OCs and their metabolites could interact with genetic materials to induce genotoxicity, which has attracted considerable attention. In this review, bibliometric analysis was executed to analyze the publications on the genotoxicity of OCs in soil from 1992 to 2021. The result indicated that significant contributions were made by China and the United States in this field and the research hotspots were biological risks, damage mechanisms, and testing methods. Based on this, in this review, we summarized the manifestations and influencing factors of genotoxicity of OCs to soil organisms, the main damage mechanisms, and the most commonly utilized testing methods. OCs can induce genotoxicity and the hierarchical response of soil organisms, which could be influenced by the physicochemical properties of OCs and the properties of soil. Specific mechanisms of genotoxicity can be classified into DNA damage, epigenetic toxicity, and chromosomal aberrations. OCs with different molecular weights lead to genetic material damage by inducing the generation of ROS or forming adducts with DNA, respectively. The micronucleus test and the comet test are the most commonly used testing methods. Moreover, this review also pointed out that future studies should focus on the relationships between bioaccessibilities and genotoxicities, transcriptional regulatory factors, and potential metabolites of OCs to elaborate on the biological risks and mechanisms of genotoxicity from an overall perspective.
Collapse
Affiliation(s)
- Miao Han
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zaifeng Zhang
- Jiangsu Province Nantong Environmental Monitoring Center, Nantong 226006, PR China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Youying Sheng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
30
|
Photocatalytic Treatment of Emerging Contaminants with Ag-Modified Titania—Is There a Risk Arising from the Degradation Products? Processes (Basel) 2022. [DOI: 10.3390/pr10122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bisphenol A, bisphenol S, and fluconazole are environmental contaminants widely found in surface waters because of their extensive usage and low biodegradability. Therefore, other methods are often considered for the removal of these compounds. The present study aims at their photodegradation with the use of UV light and three different catalysts, ZnO, TiO2, and Ag-TiO2. The results obtained show that photocatalytic removal of these compounds is also problematic and the use of catalysts, such as ZnO and TiO2, at increasing concentrations mostly leads to lower degradation of the tested compounds. The modification of TiO2 with silver increases the degradation of both bisphenols up to 100%, which was achieved in 60 min by bisphenol A and in as little as 10 min by bisphenol S. Nevertheless, the degradation of fluconazole remained at the same level, not exceeding 70% in 60 min, i.e., still much lower than expected. In addition, the degradation products of bisphenols show the hydroxylation and destruction of their phenolic rings, while no degradation products were found during the test with fluconazole. Although the potentially genotoxic bisphenol A degradation product was found, the acute toxicity of the formed compounds differs little in comparison to the parent bisphenols.
Collapse
|
31
|
Developmental and Reproductive Impacts of Four Bisphenols in Daphnia magna. Int J Mol Sci 2022; 23:ijms232314561. [PMID: 36498889 PMCID: PMC9738221 DOI: 10.3390/ijms232314561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Bisphenol A (BPA) is a typical endocrine-disrupting chemical (EDC) used worldwide. Considering its adverse effects, BPA has been banned or strictly restricted in some nations, and many analogs have been introduced to the market. In this study, we selected three representative substitutes, BPS, BPF, and BPAF, along with BPA, to assess the developmental and reproductive effects on Daphnia magna. The F0 generation was exposed to bisphenols (BPs) at an environmentally relevant concentration (100 μg/L) for 21 d; then the embryo spawn at day 21 was collected. Behavior traits, the activity of antioxidant enzymes, and gene transcription were evaluated at three developmental stages (days 7, 14, and 21). Notably, body length, heart rate, and thoracic limb beating were significantly decreased, and D. magna behaved more sluggishly in the exposed group. Moreover, exposure to BPs significantly increased the antioxidant enzymatic activities, which indicated that BPs activated the antioxidant defense system. Additionally, gene expression indicated intergenerational effects in larvae, particularly in the BPAF group. In conclusion, BPA analogs such as BPF and BPAF showed similar or stronger reproductive and developmental toxicity than BPA in D. magna. These findings collectively deepen our understanding of the toxicity of BPA analogs and provide empirical evidence for screening safe alternatives to BPA.
Collapse
|
32
|
Gałązka A, Jankiewicz U. Endocrine Disrupting Compounds (Nonylphenol and Bisphenol A)-Sources, Harmfulness and Laccase-Assisted Degradation in the Aquatic Environment. Microorganisms 2022; 10:2236. [PMID: 36422306 PMCID: PMC9698202 DOI: 10.3390/microorganisms10112236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 01/23/2025] Open
Abstract
Environmental pollution with organic substances has become one of the world's major problems. Although pollutants occur in the environment at concentrations ranging from nanograms to micrograms per liter, they can have a detrimental effect on species inhabiting aquatic environments. Endocrine disrupting compounds (EDCs) are a particularly dangerous group because they have estrogenic activity. Among EDCs, the alkylphenols commonly used in households deserve attention, from where they go to sewage treatment plants, and then to water reservoirs. New methods of wastewater treatment and removal of high concentrations of xenoestrogens from the aquatic environment are still being searched for. One promising approach is bioremediation, which uses living organisms such as fungi, bacteria, and plants to produce enzymes capable of breaking down organic pollutants. These enzymes include laccase, produced by white rot fungi. The ability of laccase to directly oxidize phenols and other aromatic compounds has become the focus of attention of researchers from around the world. Recent studies show the enormous potential of laccase application in processes such as detoxification and biodegradation of pollutants in natural and industrial wastes.
Collapse
Affiliation(s)
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| |
Collapse
|
33
|
Advanced molecularly imprinted polymer-based paper analytical device for selective and sensitive detection of Bisphenol-A in water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Zhang M, Li Y, Yang B, Su Y, Xu J, Deng J, Zhou T. Promoted BPA degradation in food waste leachate via alkali-fluffed CoFe2O4@CoSiOx activated PMS under the assistance of inherent acetate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Ason B, Armah FA, Essumang DK. Characterization and quantification of endocrine disruptors in female menstrual blood samples. Toxicol Rep 2022; 9:1877-1882. [PMID: 36561951 PMCID: PMC9764248 DOI: 10.1016/j.toxrep.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/06/2022] Open
Abstract
Selected endocrine disrupting chemicals (EDCs) were measured in adult female menstrual blood for the first time in Ghana, Africa, taking into account the importance of non-invasive means of matrices sampling in vulnerable groups, such as pregnant women, the elderly or chronically ill people. The menstrual blood samples of twenty (20) female adults between the ages of 25-45 years were sampled. The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method was applied for the extraction and clean up, while gas chromatography-mass spectrometry (GC-MS) was used to measure the selected EDCs in adult female menstrual blood, taking into account the composition of menstrual discharge. Diethyl phthalate (DEP), Dibutyl phthalate (DBP) and Bis (2-ethylhexyl) phthalate (DEHP) were detected in all samples, whereas bisphenol A (BPA) was found in 13 participants. Dimethyl phthalate (DMP) was detected in 7 participants, Di-n-octyl phthalate (DNOP) was detected in 3 participants, Bis (2-ethylhexyl) adipate (DEHA) and pyrimidine were detected in 2 participants, while benzyl butyl phthalate (BBP) was detected in only 1 participant. The maximum concentration of DEP measured was 115.6 µg.L-1and the minimum was 439 µg.L-1. DEHP was the next most abundant phthalate with a maximum measured concentration of 982 µg.L-1 and minimum of 95 µg.L-1. The presence of parent phthalates (rather than metabolites) in menstrual blood of all participants studied suggests that bioaccumulation of selected phthalate compounds such as DEHP, DEP and DBP may be occurring with appreciable human toxicity though the carcinogenic exposure risks of DEHP via various routes were much lower than 1 × 10-6 considered to be very low.
Collapse
Affiliation(s)
- Benjamin Ason
- Department of Chemistry, School of Physical Science, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Soil Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
- Corresponding author at: Department of Chemistry, School of Physical Science, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Frederick Ato Armah
- Department of Environmental Science, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David Kofi Essumang
- Department of Chemistry, School of Physical Science, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
36
|
Li X, Liu Y, Chen Y, Song X, Chen X, Zhang N, Li H, Guo Y, Wang Z, Dong Z. Long-term exposure to bisphenol A and its analogues alters the behavior of marine medaka (Oryzias melastigma) and causes hepatic injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156590. [PMID: 35690219 DOI: 10.1016/j.scitotenv.2022.156590] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols (BPA, BPF, and BPAF) are widely present in the aquatic environment and have various adverse effects on aquatic organisms. However, their hepatic toxicity in marine fish is not fully understood. Hence, we examined the growth parameters, histological features, antioxidant defense mechanisms, and gene expression profiles in the livers of marine medaka after exposure to single and combined bisphenols for 70 days. The final body weight and final body length of males exposed to BPAF were significantly higher than those in the control group, and the survival rate was significantly lower. Bisphenol exposure led to vacuolization and local lesions in the liver, especially in the BPAF group, and altered antioxidant enzyme activity in the liver, leading to oxidative stress. In addition, after bisphenol exposure, marine medaka showed anxiolytic effects and a significant reduction in swimming distance compared with that in the control group. As determined by RNA-seq, bisphenol exposure altered multiple biological pathways in the liver, such as fatty acid biosynthesis, fatty acid metabolism, and ribosome biogenesis pathways, with significant changes in gene expression levels. In particular, chgs and vtgs were significantly up-regulated after BPAF exposure, suggesting an estrogenic effect. Overall, bisphenols can adversely affect the growth and metabolism of marine medaka. BPF and BPAF may not be ideal substitutes for BPA.
Collapse
Affiliation(s)
- Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuebi Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinlin Song
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huichen Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha 41000, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
37
|
Photocatalytic degradation of bisphenol A over Co-BiOCl/biochar hybrid catalysts: Properties, efficiency and mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Brouard V, Drouault M, Elie N, Guénon I, Hanoux V, Bouraïma-Lelong H, Delalande C. Effects of bisphenol A and estradiol in adult rat testis after prepubertal and pubertal exposure. Reprod Toxicol 2022; 111:211-224. [PMID: 35700937 DOI: 10.1016/j.reprotox.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Over the past few decades, male fertility has been decreasing worldwide. Many studies attribute this outcome to endocrine disruptors exposure such as bisphenol A (BPA), which is a chemical compound used in plastics synthesis and exhibiting estrogenic activity. In order to assess how the window of exposure modulates the effects of BPA on the testis, prepubertal (15 dpp to 30 dpp) and pubertal (60 dpp to 75 dpp) male Sprague-Dawley rats were exposed to BPA (50 µg/kg bw/day), 17-β-estradiol (E2) (20 µg/kg bw/day) as a positive control, or to a combination of these compounds. For both periods of exposure, the rats were sacrificed and their testes were collected at 75 dpp. The histological analysis and the quantification of the gene expression of testis cell markers by RT-qPCR confirmed the complete spermatogenesis in all groups for both periods of exposure. However, our results suggest a deleterious effect of BPA on the blood-testis barrier in adults after pubertal exposure as BPA and BPA+E2 treatments induced a decrease in caveolin-1 and connexin-43 gene expression; which are proteins of the junctional complexes. As none of these effects were found after a prepubertal exposure, these results suggested the reversibility of BPA's effects. Caution must be taken when transposing this finding to humans and further studies are needed in this regard. However, from a regulatory perspective, this study emphasizes the importance of taking into account different periods of exposure, as they present different sensitivities to BPA exposure.
Collapse
Affiliation(s)
| | | | - Nicolas Elie
- Normandie Univ, UNICAEN, SF 4206 ICORE, CMABIO3, 14000 Caen, France
| | | | | | | | | |
Collapse
|
39
|
Shirani M, Aslani A, Sepahi S, Parandi E, Motamedi A, Jahanmard E, Nodeh HR, Akbari-Adergani B. An efficient 3D adsorbent foam based on graphene oxide/AgO nanoparticles for rapid vortex-assisted floating solid phase extraction of bisphenol A in canned food products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2623-2630. [PMID: 35735028 DOI: 10.1039/d2ay00426g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a three-dimensional adsorbent was developed based on graphene oxide/AgO nanoparticles over interconnected nickel foam (GO/AgO@Ni foam) for rapid and efficient vortex assisted floating solid phase extraction of bisphenol A in canned food products prior to high performance liquid chromatography with a fluorescence detector. The analytical techniques scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared (FT-IR) were used for characterization of the synthetized GO/AgO@Ni foam. The effect of proficiency factors including pH, foam size, vortexing time, salt addition, sample volume, desorption type and volume, and desorption time on the extraction efficiency of bisphenol A were explored through the matrix match method. Under the above experimental conditions, the figures of merit of the method were acquired as LODs (S/N = 3) of 0.18-0.84 μg kg-1, LOQs of 0.61-2.81 μg kg-1 (S/N = 10), linear ranges of 0.5-500 μg kg-1, and enrichment factors of 235.5-244.9. The inter-day precision values (RSD%, n = 7) of 2.5-3.6 and the intra-day precision (%) of (5 days and seven replicates for each day) 2.8-3.8 were achieved for bisphenol A at a concentration of 50 μg kg-1. The relative recoveries of 94.0% to 99.6% were obtained for the canned food samples.
Collapse
Affiliation(s)
- Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, P. O. Box 7867161167, Jiroft, Iran.
| | - Abolfazl Aslani
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Soheila Sepahi
- Laboratories of Food and Drug Control, Vice Chancellery for Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Parandi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Azadeh Motamedi
- Laboratories of Food and Drug Control, Vice Chancellery for Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Jahanmard
- Laboratories of Food and Drug Control, Vice Chancellery for Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Rashidi Nodeh
- Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute, Karaj, Iran.
| | - Behrouz Akbari-Adergani
- Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education Tehran, Tehran, Iran
| |
Collapse
|
40
|
Dias P, Tvdrý V, Jirkovský E, Dolenc MS, Peterlin Mašič L, Mladěnka P. The effects of bisphenols on the cardiovascular system. Crit Rev Toxicol 2022; 52:66-87. [PMID: 35394415 DOI: 10.1080/10408444.2022.2046690] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bisphenols, endocrine disrupting chemicals, have frequently been used for producing food packaging materials. The best-known member, bisphenol A (BPA), has been linked to impaired foetal development in animals. Possible negative effects of BPA on human health have resulted in the production of novel, so-called next-generation (NextGen) bisphenols whose effects on humans are much less explored or even missing. This review aimed to summarise and critically assess the main findings and shortages in current bisphenol research in relation to their potential impact on the cardiovascular system in real biological exposure. Because of the common presence of bisphenols in daily use products, humans are clearly exposed to these compounds. Most data are available on BPA, where total serum levels (i.e. included conjugated metabolite) can reach up to ∼430 nM, while free bisphenol levels have been reported up to ∼80 nM. Limited data are available for other bisphenols, but maximal serum levels of bisphenol S have been reported (680 nM). Such levels seem to be negligible, although in vitro studies have showed effects on ion channels, and thyroid, oestrogenic and androgenic receptors in low micromolar concentrations. Ex vivo studies suggest vasodilatory effects of bisphenols. This stays in clear contrast to the elevation of arterial blood pressure documented in vivo and in observatory cross-sectional human studies. Bisphenols are also claimed to have a negative effect on lipidic spectrum and coronary artery disease. Regardless, the reported data are generally inconsistent and unsatisfactory. Hence novel well-designed studies, testing in particular NextGen bisphenols, are needed.
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Václav Tvdrý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | | | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
41
|
Li J, Hu X, Wang J, Yin L, Yao Y, Zhang Y, He H, Yang S, Ni L, Li S. Methyl silicate promotes the oxidative degradation of bisphenol A by permanganate: Efficiency enhancement mechanism and solid-liquid separation characteristics. CHEMOSPHERE 2022; 293:133634. [PMID: 35051515 DOI: 10.1016/j.chemosphere.2022.133634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Permanganate (Mn (VII)) is an environmentally-friendly mild oxidant in the field of advanced oxidation treatment, however, manganese colloids are produced as byproducts, which is difficult to separate from water, resulting in secondary pollution. This study used potassium methyl silicates (PMS) as surface modifiers to improve the aggregation of colloidal particles by increasing the hydrophobicity of the colloidal surface, and then explored the oxidation of bisphenol A (BPA) by Mn (VII) under the influence of potassium methyl silicate and the solid-liquid separation performance of the reaction system. The results showed that PMS and sodium silicate (SS) substantially enhanced the degradation of BPA by Mn (VII), and the promotion effect of potassium methyl silicate was greater than that of sodium silicate. PMS provided not only enough adsorption sites for MnO2 colloidal particles formed in the reaction process, but also reaction space for Mn (VII) to catalyze the oxidation of BPA. PMS combined with the hydroxyl group of MnO2 through hydrogen bonds and forms hydrophobic PMS-MnO2 complexes which accelerated sedimentation by polycondensation. The strong adsorption ability of in situ formed MnO2 colloids also accelerated the deposition of PMS-MnO2 complex. This study solved the low efficiency problem of Mn (VII) oxidation degradation of organic pollutants and difficult separation of manganese containing colloids and provided a new strategy for the efficient utilization of Mn (VII).
Collapse
Affiliation(s)
- Jing Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Xin Hu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Juan Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Youru Yao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China.
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
42
|
Castro G, Fourie AJ, Marlin D, Venkatraman V, González SV, Asimakopoulos AG. Occurrence of bisphenols and benzophenone UV filters in wild brown mussels (Perna perna) from Algoa Bay in South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152571. [PMID: 34954183 DOI: 10.1016/j.scitotenv.2021.152571] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Bisphenols and benzophenone UV filters are contaminants present in a wide variety of plastic materials and consumer products. The scientific attention towards these contaminants has increased in recent years due to their presence in microplastics, their ubiquitous occurrence in the environment, and their known endocrine disrupting health effects. In this study, the occurrence of nine bisphenol and five benzophenone UV-filter analogues was assessed in wild brown mussels (Perna perna) collected from different sampling sites along the coast of Algoa Bay, South Africa. Eleven out of fourteen target analytes were detected, and bisphenol AP (BPAP) was detected for the first time in mussels, presenting the highest median concentration of 150 ng g-1 dry weight (d.w.) and a detection frequency of 91%. Regarding benzophenone UV-filters, median concentrations of the analogues (across all sites) ranged from 2.01 to 10.6 ng g-1 d.w., with benzophenone-1 (BzP-1) and benzophenone-3 (BzP-3) presenting the highest concentrations. Human exposure was assessed by estimating daily intakes (EDI) of the target analytes through mussel consumption. To our knowledge, this is the first study from the African continent on the occurrence of bisphenols and benzophenone UV-filters in a large population (n=138) of wild brown mussels.
Collapse
Affiliation(s)
- Gabriela Castro
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Amarein J Fourie
- Sustainable Seas Trust, 222 Main Road, Walmer, Port Elizabeth 6070, South Africa
| | - Danica Marlin
- Sustainable Seas Trust, 222 Main Road, Walmer, Port Elizabeth 6070, South Africa
| | - Vishwesh Venkatraman
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Susana V González
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| |
Collapse
|
43
|
Wojnarowski K, Cholewińska P, Palić D, Bednarska M, Jarosz M, Wiśniewska I. Estrogen Receptors Mediated Negative Effects of Estrogens and Xenoestrogens in Teleost Fishes-Review. Int J Mol Sci 2022; 23:2605. [PMID: 35269746 PMCID: PMC8910684 DOI: 10.3390/ijms23052605] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Estrogen receptors (ERs) play a key role in many biochemical and physiological processes, that are involved in maintaining organism homeostasis. At the most basic level, they can be divided into nuclear estrogen receptors and membrane estrogen receptors that imply their effect in two ways: slower genomic, and faster non-genomic. In these ways, estrogens and xenoestrogens can negatively affect animal health and welfare. Most of the available literature focuses on human and mammalian physiology, and clearly, we can observe a need for further research focusing on complex mutual interactions between different estrogens and xenoestrogens in aquatic animals, primarily fishes. Understanding the mechanisms of action of estrogenic compounds on the ERs in fishes and their negative consequences, may improve efforts in environmental protection of these animals and their environment and benefit society in return. In this review, we have summarized the ER-mediated effects of xenoestrogens and estrogens on teleost fishes metabolism, their carcinogenic potential, immune, circulatory, and reproductive systems.
Collapse
Affiliation(s)
- Konrad Wojnarowski
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany;
| | - Paulina Cholewińska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany;
| | - Małgorzata Bednarska
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (M.B.); (I.W.)
| | - Magdalena Jarosz
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Iga Wiśniewska
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (M.B.); (I.W.)
| |
Collapse
|
44
|
Sahu C, Singla S, Jena G. Studies on male gonadal toxicity of bisphenol A in diabetic rats: An example of exacerbation effect. J Biochem Mol Toxicol 2022; 36:e22996. [DOI: 10.1002/jbt.22996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Chittaranjan Sahu
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Shivani Singla
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| |
Collapse
|
45
|
Malea P, Kokkinidi D, Kevrekidou A, Adamakis IDS. The Enzymatic and Non-Enzymatic Antioxidant System Response of the Seagrass Cymodocea nodosa to Bisphenol-A Toxicity. Int J Mol Sci 2022; 23:1348. [PMID: 35163270 PMCID: PMC8835922 DOI: 10.3390/ijms23031348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
The effects of environmentally relevant bisphenol A (BPA) concentrations (0.3, 1 and 3 μg L-1) were tested at 2, 4, 6 and 8 days, on intermediate leaves, of the seagrass Cymodocea nodosa. Hydrogen peroxide (H2O2) production, lipid peroxidation, protein, phenolic content and antioxidant enzyme activities were investigated. Increased H2O2 formation was detected even at the lowest BPA treatments from the beginning of the experiment and both the enzymatic and non-enzymatic antioxidant defense mechanisms were activated upon application of BPA. Elevated H2O2 levels that were detected as a response to increasing BPA concentrations and incubation time, led to the decrease of protein content on the 4th day even at the two lower BPA concentrations, and to the increase of the lipid peroxidation at the highest concentration. However, on the 6th day of BPA exposure, protein content did not differ from the control, indicating the ability of both the enzymatic and non-enzymatic mechanisms (such as superoxide dismutase (SOD) and phenolics) to counteract the BPA-derived oxidative stress. The early response of the protein content determined that the Low Effect Concentration (LOEC) of BPA is 0.3 μg L-1 and that the protein content meets the requirements to be considered as a possible early warning "biomarker" for C. nodosa against BPA toxicity.
Collapse
Affiliation(s)
- Paraskevi Malea
- School of Biology, Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Danae Kokkinidi
- School of Biology, Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alkistis Kevrekidou
- School of Engineering, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | |
Collapse
|
46
|
Gu J, Guo M, Yin X, Huang C, Qian L, Zhou L, Wang Z, Wang L, Shi L, Ji G. A systematic comparison of neurotoxicity of bisphenol A and its derivatives in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150210. [PMID: 34534871 DOI: 10.1016/j.scitotenv.2021.150210] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
As more and more countries have prohibited the manufacture and sale of plastic products with bisphenol A (BPA), a number of bisphenol analogues (BPs), including BPS, BPF and BPAF, have gradually been used as its primary substitutes. Ideally, substitutes used to replace chemicals with environmental risks should be inert, so it makes sense that the risk of the similar chemical substitutes (BPS, BPF, and BPAF) should be assessed before they used. Therefore, in the present study, the neurotoxicity of four BPs at environmentally relevant concentration (200 μg/L) were systematically compared using zebrafish as a model. Our results showed that the four BPs (BPA, BPS, BPF and BPAF) exhibited no obvious effect on the hatchability, survival rate and body length of zebrafish larvae, noteworthily a significant inhibitory effect on spontaneous movement at 24 hpf was observed in the BPA, BPF and BPAF treatment groups. Behavioral tests showed that BPAF, BPF and BPA exposure significantly reduced the locomotor activity of the larvae. Additionally, BPAF treatment adversely affected motor neuron axon length in transgenic lines hb9-GFP zebrafish and decreased central nervous system (CNS) neurogenesis in transgenic lines HuC-GFP zebrafish. Intriguingly, BPAF displayed the strongest effects on the levels and metabolism of neurotransmitters, followed by BPF and BPA, while BPS showed the weakest effects on neurotransmitters. In conclusion, our study deciphered that environmentally relevant concentrations of BPs exposure exhibited differential degrees of neurotoxicity, which ranked as below: BPAF > BPF ≈ BPA > BPS. The possible mechanisms can be partially ascribed to the dramatical changes of multiple neurotransmitters and the inhibitory effects on neuronal development. These results suggest that BPAF and BPF should be carefully considered as alternatives to BPA.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Lingling Qian
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
47
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Bisphenol A-A Dangerous Pollutant Distorting the Biological Properties of Soil. Int J Mol Sci 2021; 22:ijms222312753. [PMID: 34884560 PMCID: PMC8657726 DOI: 10.3390/ijms222312753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA), with its wide array of products and applications, is currently one of the most commonly produced chemicals in the world. A narrow pool of data on BPA–microorganism–plant interaction mechanisms has stimulated the following research, the aim of which has been to determine the response of the soil microbiome and crop plants, as well as the activity of soil enzymes exposed to BPA pressure. A range of disturbances was assessed, based on the activity of seven soil enzymes, an abundance of five groups of microorganisms, and the structural diversity of the soil microbiome. The condition of the soil was verified by determining the values of the indices: colony development (CD), ecophysiological diversity (EP), the Shannon–Weaver index, and the Simpson index, tolerance of soil enzymes, microorganisms and plants (TIBPA), biochemical soil fertility (BA21), the ratio of the mass of aerial parts to the mass of plant roots (PR), and the leaf greenness index: Soil and Plant Analysis Development (SPAD). The data brought into sharp focus the adverse effects of BPA on the abundance and ecophysiological diversity of fungi. A change in the structural composition of bacteria was noted. Bisphenol A had a more beneficial effect on the Proteobacteria than on bacteria from the phyla Actinobacteria or Bacteroidetes. The microbiome of the soil exposed to BPA was numerously represented by bacteria from the genus Sphingomonas. In this object pool, the highest fungal OTU richness was achieved by the genus Penicillium, a representative of the phylum Ascomycota. A dose of 1000 mg BPA kg−1 d.m. of soil depressed the activity of dehydrogenases, urease, acid phosphatase and β-glucosidase, while increasing that of alkaline phosphatase and arylsulfatase. Spring oilseed rape and maize responded significantly negatively to the soil contamination with BPA.
Collapse
|
48
|
Shamhari A‘A, Abd Hamid Z, Budin SB, Shamsudin NJ, Taib IS. Bisphenol A and Its Analogues Deteriorate the Hormones Physiological Function of the Male Reproductive System: A Mini-Review. Biomedicines 2021; 9:1744. [PMID: 34829973 PMCID: PMC8615890 DOI: 10.3390/biomedicines9111744] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
BPA is identified as an endocrine-disrupting chemical that deteriorates the physiological function of the hormones of the male reproductive system. Bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) are actively explored as substitutes for BPA and are known as BPA analogues in most manufacturing industries. These analogues may demonstrate the same adverse effects as BPA on the male reproductive system; however, toxicological data explaining the male reproductive hormones' physiological functions are still limited. Hence, this mini-review discusses the effects of BPA and its analogues on the physiological functions of hormones in the male reproductive system, focusing on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, and spermatogenesis outcomes. The BPA analogues mainly show a similar negative effect on the hormones' physiological functions, proven by alterations in the HPG axis and steroidogenesis via activation of the aromatase activity and reduction of spermatogenesis outcomes when compared to BPA in in vitro and in vivo studies. Human biomonitoring studies also provide significant adverse effects on the physiological functions of hormones in the male reproductive system. In conclusion, BPA and its analogues deteriorate the physiological functions of hormones in the male reproductive system as per in vitro, in vivo, and human biomonitoring studies.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Zariyantey Abd Hamid
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Nurul Jehan Shamsudin
- Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| |
Collapse
|
49
|
Balabanič D, Filipič M, Krivograd Klemenčič A, Žegura B. Genotoxic activity of endocrine disrupting compounds commonly present in paper mill effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148489. [PMID: 34217092 DOI: 10.1016/j.scitotenv.2021.148489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/23/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
In the present study we evaluated cytotoxic and genotoxic activities of endocrine disrupting compounds (EDCs), including dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), and nonylphenol (NP), which have been previously identified in effluents from two paper mills with different paper production technologies (virgin or recycled fibres). Moreover, we evaluated genotoxic activity of the effluents from these two paper mills and compared it to the activity of artificial complex mixtures consisting of the seven EDCs at concentrations detected in corresponding paper mill effluents. None of the EDCs was genotoxic in Salmonella typhimurium (SOS/umuC assay), while all induced DNA damage in human hepatocellular carcinoma (HepG2) cells (comet assay). After 4 h of exposure genotoxic effects were determined at concentrations ≥ 1 μg/L for BBP and DEHP, ≥10 μg/L for DMP, DEP, DBP, and BPA, and ≥100 μg/L for NP, while after 24 h of exposure DNA damage occurred at ≥10 μg/L for DBP, BPA and NP, and ≥100 μg/L for DMP, DEP, BBP and DEHP. The effluents and corresponding artificial mixtures of EDCs from paper mill that uses virgin fibres did not induce DNA damage in HepG2 cells, while the effluents and corresponding artificial mixtures for the paper mill that uses recycled fibres were genotoxic. Genotoxic activity of effluents was significantly higher compared to corresponding artificial mixtures suggesting the presence of further unknown compounds contributing to the effect. Wastewater monitoring based on chemical analysis is limited to determination of targeted compounds and does not take into account possible interactions between chemicals in mixtures. Therefore, it alone cannot provide an adequate information on potential toxic effects required for the assessment of genotoxic activity of real environmental samples and their potential threats to the environment and human health.
Collapse
Affiliation(s)
- Damjan Balabanič
- Faculty of Industrial Engineering, Šegova ulica 112, SI-8000 Novo mesto, Slovenia.
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Aleksandra Krivograd Klemenčič
- University of Ljubljana, Faculty of Civil and Geodetic Engineering, Institute for Sanitary Engineering, Hajdrihova 28, SI-1000 Ljubljana, Slovenia.
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
50
|
Sun Z, Xiao Q, Tang J, Zhuang Q, Wang Y. Ratiometric electrochemical sensor for bisphenol A detection using a glassy carbon electrode modified with a poly(toluidine blue)/gold nanoparticle composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5085-5092. [PMID: 34661224 DOI: 10.1039/d1ay01366a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A ratiometric electrochemical sensor for bisphenol A (BPA) detection is developed using a glassy carbon electrode modified with a poly(toluidine blue)/gold nanoparticle composite (PTB/AuNP/GCE). The ratiometric signal, namely, the oxidation peak current ratio of BPA to PTB, increases linearly with BPA concentration in the 0.2-5.0 μM range, with a detection limit of 0.15 μM. The electrochemical mechanism of BPA is studied at the PTB/AuNP/GCE, and the results show that BPA undergoes an electrooxidation process of two electrons and two protons at the PTB/AuNP/GCE. The proposed sensor has high sensitivity, high stability and good selectivity. The application of BPA in water samples is successfully verified using the proposed ratiometric electrochemical sensor.
Collapse
Affiliation(s)
- Zhiyuan Sun
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Qin Xiao
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Jingjing Tang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Qianfen Zhuang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Yong Wang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|