1
|
Thakur S, Bharti S. Recent progress in metal-organic frameworks based nanocomposites for antibiotic removal from water: An in-depth review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36155-3. [PMID: 40029468 DOI: 10.1007/s11356-025-36155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Antibiotic pollution has emerged as a critical concern due to the widespread use of antibiotics, their persistence in the environment, and their detrimental effects on aquatic ecosystems and human health. Therefore, developing and implementing effective strategies to eliminate these contaminants is essential. Metal-organic frameworks (MOFs) have garnered substantial interest in water purification due to their remarkable potential. This paper provides a comprehensive review of MOFs and related nanocomposites, with a particular emphasis on their effectiveness in removing antibiotics from water sources. MOFs stand out due to their unique characteristics, including high porosity, adjustable structures, and crystalline nature, making them exceptional in adsorbing contaminants and functioning as photocatalysts. The paper delves into the mechanisms of adsorption, which include electrostatic interactions, π-π bonding, van der Waals forces, hydrogen bonding, and surface complexation. It also examines the factors influencing adsorption and photodegradation, comparing these techniques to conventional adsorbents, and highlights the superior performance and cost-effectiveness of MOFs. Additionally, the study discusses the challenges, current trends, and future prospects in the field, offering insights that may inspire new researchers to further explore antibiotic removal using MOFs and develop innovative solutions to existing challenges.
Collapse
Affiliation(s)
- Suman Thakur
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Sharda Bharti
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
2
|
Zhang L, Song R, Jia Y, Zou Z, Chen Y, Wang Q. Purification of Quinoline Insolubles in Heavy Coal Tar and Preparation of Meso-Carbon Microbeads by Catalytic Polycondensation. MATERIALS (BASEL, SWITZERLAND) 2023; 17:143. [PMID: 38203998 PMCID: PMC10780107 DOI: 10.3390/ma17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
The quinoline-insoluble (QI) matter in coal tar and coal tar pitch is an important factor affecting the properties of subsequent carbon materials. In this paper, catalytic polycondensation was used to remove QI from heavy coal tar, and meso-carbon microbeads could be formed during the purification process. The results showed that AlCl3 had superior catalytic performance to CuCl2, and the content of QI and heavy components, including pitch, in the coal tar was lower after AlCl3 catalytic polycondensation. Under the condition of catalytic polycondensation (AlCl3 0.9 g, temperature 200 °C, and time 9 h), AlCl3 could reduce the QI content in heavy coal tar. The formed small particles could be filtered and removed, and good carbon materials could be obtained under the condition of catalytic polycondensation (AlCl3 0.9 g, temperature 260 °C, and time 3 h).
Collapse
Affiliation(s)
- Lei Zhang
- School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (R.S.); (Z.Z.); (Y.C.); (Q.W.)
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China
| | - Ruikang Song
- School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (R.S.); (Z.Z.); (Y.C.); (Q.W.)
| | - Yang Jia
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China;
| | - Zhuorui Zou
- School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (R.S.); (Z.Z.); (Y.C.); (Q.W.)
| | - Ya Chen
- School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (R.S.); (Z.Z.); (Y.C.); (Q.W.)
| | - Qi Wang
- School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (R.S.); (Z.Z.); (Y.C.); (Q.W.)
| |
Collapse
|
3
|
Shi Q, Yuan Y, Zhou Y, Yuan Y, Liu L, Liu X, Li F, Leng C, Wang H. Pharmaceutical and personal care products (PPCPs) degradation and microbial characteristics of low-temperature operation combined with constructed wetlands. CHEMOSPHERE 2023; 341:140039. [PMID: 37660803 DOI: 10.1016/j.chemosphere.2023.140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Emerging contaminants (ECs), which are present in water bodies, could cause global environmental and human health problems. These contaminants originate from various sources such as hospitals, clinics, households, and industries. Additionally, they can also indirectly enter the water supply through runoff from agriculture and leachate from landfills. ECs, specifically Pharmaceutical and personal care products (PPCPs), are causing widespread concern due to their contribution to persistent water pollution. Traditional approaches often involve expensive chemicals and energy or result in the creation of by-products. This study developed a practical and environmentally-friendly method for removing PPCPs, which involved combining and integrating various techniques. To implement this method, it was necessary to establish and used a field simulator based on the real-life scenario. Based on the data analysis, the average removal rates of COD, TP, TN, and NH4+-N were 57%, 59%, 63%, and 73%, respectively. the removal rate of PPCPs by CCWs was found to be 82.7% after comparing samples that were not treated by constructed wetlands and those that were treated. Combined constructed wetlands (CCWs) were found to effectively remove PPCPs from water. This is due to the combined action of plant absorption, absorption, and biodegradation by microorganisms living in the wetlands. Interestingly, the wetland plant reed had been shown to play an important role in removing these pollutants. Microbial degradation was the most important pathway for PPCPs removal in CCWs. Carbamazepine was selected as a typical PPCP for analysis. In addition, the microbial community structure of the composite filler was also investigated. High-throughput sequencing confirmed that the dominant bacteria had good adaptability to PPCPs. This technique not only reduced the potential environmental impact but also served as a foundation for further research on the use of constructed wetlands for the treatment of PPCPs contaminated water bodies and its large-scale implementation.
Collapse
Affiliation(s)
- Qiushi Shi
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yonggang Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yunlong Zhou
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yue Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Lin Liu
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Xuejing Liu
- Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Fuping Li
- Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Chunpeng Leng
- Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Hao Wang
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China.
| |
Collapse
|
4
|
Wang J, Wu S, Yang Q, Liu B, Yang M, Fei W, Tang Y, Zhang X. Effect of the degradation performance on carbon tetrachloride by anaerobic co-metabolism under different external energy sources. CHEMOSPHERE 2022; 308:136262. [PMID: 36055587 DOI: 10.1016/j.chemosphere.2022.136262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In this research, a comprehensive study was carried out on the removal of carbon tetrachloride (CT) in the anaerobic co-metabolism (ACM) reactor. The experiments showed that when the hydraulic retention time (HRT) was 36 h, pH was 7, and influent CT was 2.5mg/L, the average removal efficiency reached 82.45 ± 2.56% in the glucose co-metabolism substrate reactor, exhibiting a dramatic excellent difference in reaction performance from the other two reactors (p < 0.05) and a favorable tolerance on the CT shock loading. The content of extracellular polymeric substances (EPS) and volatile fatty acids (VFA) demonstrated that glucose could supply more energy to protect the microorganisms, which was the appropriate external energy source. Moreover, microbial community structure and biostatistics analysis demonstrated that Pseudomonas was the most important dechlorination bacteria in ACM reactors, which might via dehalogenation process mediate the transformation of CT. The succession of methanogenic bacteria further demonstrated that CT degradation using co-digestion require to destroy hydrogenotrophic methane generation pathway and the external energy substances could make up the lack of hydrogen in the treatment of CT. The change of intermediate products hinted that anaerobic dechlorination process of CT in an ACM reactor was a sequential dechlorination process, and major transformation products measured were CF. Overall, this study has improved our understanding of the roles of CT degradation process in ACM reactors.
Collapse
Affiliation(s)
- Jia Wang
- MOK Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China; Industrial Technology Office, Ministry of Environmental Protection Center for Foreign Cooperation, Beijing, 100035, PR China
| | - Shuangrong Wu
- School of Civil Engineering, Tangshan University, Tangshan, 063000, PR China
| | - Qi Yang
- MOK Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Bingyang Liu
- MOK Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Ming Yang
- Industrial Technology Office, Ministry of Environmental Protection Center for Foreign Cooperation, Beijing, 100035, PR China
| | - WeiLiang Fei
- Industrial Technology Office, Ministry of Environmental Protection Center for Foreign Cooperation, Beijing, 100035, PR China
| | - Yandong Tang
- Industrial Technology Office, Ministry of Environmental Protection Center for Foreign Cooperation, Beijing, 100035, PR China
| | - XiaoLan Zhang
- Industrial Technology Office, Ministry of Environmental Protection Center for Foreign Cooperation, Beijing, 100035, PR China
| |
Collapse
|
5
|
Removal of microplastics and attached heavy metals from secondary effluent of wastewater treatment plant using interpenetrating bipolar plate electrocoagulation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Niu Y, Yin Y, Xu R, Yang Z, Wang J, Xu D, Yuan Y, Han J, Wang H. Electrocatalytic oxidation of low concentration cefotaxime sodium wastewater using Ti/SnO 2-RuO 2 electrode: Feasibility analysis and degradation mechanism. CHEMOSPHERE 2022; 297:134146. [PMID: 35231478 DOI: 10.1016/j.chemosphere.2022.134146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
In this research, Ti/SnO2-RuO2 stable anode was successfully prepared by thermal decomposition method, and low concentration cefotaxime sodium (CFX) was degraded by green and sustainable electrocatalytic oxidation technology. The electrocatalytic activity and stability of the Ti/SnO2-RuO2 coating electrode were studied according to the polarization curve of oxygen and chlorine evolution. The effects of current density, initial concentration, pH, electrolyte concentration, and other technological parameters on the degradation efficiency were discussed. Orthogonal experiment results indicated that when the current density was 25 mA cm-2, concentration of electrolyte was 5 mM and the pH value was 7, the best CFX removal rate of 86.33% could be obtained. The degradation efficiency of electrocatalytic oxidation was discussed through electrochemical analysis. Fourier transform infrared spectroscopy was used to analyze the different inlet and outlet stages before and after the degradation of CFX, and the possible degradation process was discussed. Therefore, the electrocatalytic oxidation of Ti/SnO2-RuO2 electrode was a clean and efficient technology, which could be widely used in the treatment of CFX wastewater.
Collapse
Affiliation(s)
- Yunxia Niu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Yue Yin
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; North China University of Science and Technology Affiliated Hospital, Tangshan, PR China
| | - Runyu Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Zhinian Yang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Jia Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Duo Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Yue Yuan
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Jinlong Han
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, PR China.
| |
Collapse
|
7
|
Xu C, Kong L, Gao H, Cheng X, Wang X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front Microbiol 2022; 13:822689. [PMID: 35633728 PMCID: PMC9133924 DOI: 10.3389/fmicb.2022.822689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
The overuse of antibiotics in food animals has led to the development of bacterial resistance and the widespread of resistant bacteria in the world. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in food animals are currently considered emerging contaminants, which are a serious threat to public health globally. The current situation of ARB and ARGs from food animal farms, manure, and the wastewater was firstly covered in this review. Potential risks to public health were also highlighted, as well as strategies (including novel technologies, alternatives, and administration) to fight against bacterial resistance. This review can provide an avenue for further research, development, and application of novel antibacterial agents to reduce the adverse effects of antibiotic resistance in food animal farms.
Collapse
Affiliation(s)
- Chunming Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Lingqiang Kong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hanfang Gao
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Wang J, Xie G, Qi X, Ming R, Zhang B, Lu H. Kinetics of pentachlorophenol co-metabolism removal by micro-aeration sequencing batch reactor process. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Lei Z, Wei K, Yang J, Zhang L, Lu X, Fang B. Ultrasonication-Assisted Preparation of a Mn-Based Blast Furnace Slag Catalyst: Effects on the Low-Temperature Selective Catalytic Reduction Denitration Process. ACS OMEGA 2021; 6:23059-23066. [PMID: 34549106 PMCID: PMC8444199 DOI: 10.1021/acsomega.1c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Reducing costs and improving performance have always been hotspots in the field of catalyst research. In order to control the NO x in the low-temperature flue gas of nonpower industries, this paper studies the denitration performance of the ultrasonication-assisted preparation of Mn-based blast furnace slag selective catalytic reduction (SCR) low-temperature denitration catalysts. The catalyst was characterized by FT-IR, XRD, and SEM. The study found that ultrasound assistance can make the active components on the catalyst surface more uniformly dispersed and improve the catalytic activity of the catalyst. Under conditions of 80 W ultrasonic power and 20 min ultrasonic time, the denitration performance of the Mn-based blast furnace slag catalyst is optimal, and the NO removal rate is 2.5 times that of the unsonicated catalyst. This work clarified the mechanism of the effect of ultrasonic assistance on the Mn-based blast furnace slag catalyst and at the same time realized the utilization of solid waste resources and air pollution control.
Collapse
Affiliation(s)
- Zhang Lei
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
- Key
Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China
| | - Kuang Wei
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Jia Yang
- School
of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Lei Zhang
- China
National Heavy Machinery Research Institute Co, Lto, Xi’an 710032, China
| | - Xi Lu
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Bai Fang
- CAS
Key Laboratory of Green Process and Engineering, Institute of Process
Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Lei Z, Xi L, Lingbo Q, Hao S, Yang J, Zhang L, Yao Y, Fang B. Application of a blast furnace slag carrier catalyst in flue gas denitration and sulfur resistance. RSC Adv 2021; 11:15036-15043. [PMID: 35424048 PMCID: PMC8698001 DOI: 10.1039/d1ra00752a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
It is an urgent need to develop a new catalyst with high efficiency and low cost. In the present study, we successfully prepared bimetallic-supported denitration catalysts using the blast furnace slag as the main material and calcium bentonite as the binder. The as-prepared catalyst was characterized via X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Besides, the mechanism of denitration was further determined with the help of the denitration and sulfur resistance of the catalyst. The results indicated that when the Mn load was 5%, and the second metal reactive component was loaded at 3%, Mn-Cu/GGBS (catalyst prepared by loading Mn and Cu on the blast furnace slag) had the best effects on low temperature denitration. Moreover, the conversion rate of NO was up to 97%, and it possessed the capability of specific sulfur resistance; when the third metal reactive component, Ce, was introduced with 1% load, the sulfur resistance of the Mn-Cu-Ce/GGBS (catalyst prepared by loading Mn, Cu, and Ce on the blast furnace slag) catalyst was further improved compared with that of the Mn-Cu/GGBS catalyst.
Collapse
Affiliation(s)
- Zhang Lei
- Xi'an University of Science and Technology Xi'an 710054 China +8618502993567
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources Xi'an 710021 China
| | - Lu Xi
- Xi'an University of Science and Technology Xi'an 710054 China +8618502993567
| | - Qi Lingbo
- Xi'an University of Science and Technology Xi'an 710054 China +8618502993567
| | - Shu Hao
- Xi'an University of Technology Xi'an 710048 China
| | - Jia Yang
- Xi'an University of Technology Xi'an 710048 China
| | - Lei Zhang
- China National Heavy Machinery Research Institute Co, Ltd Xi'an 710032 China
| | - Yan Yao
- Xi'an University of Science and Technology Xi'an 710054 China +8618502993567
| | - Bai Fang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|